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ABSTRACT  17 

Accurately simulating global surface ozone has long been one of the principal components of 18 

chemistry-climate modelling, but divergences in simulation outcomes have been reported as a 19 

result of the mechanistic complexity of tropospheric ozone budget. Settling the cross-model 20 

discrepancies to achieve higher accuracy thus is a task of priority. Building on the Coupled Model 21 

Intercomparison Project Phase 6 (CMIP6), we have transplanted a conventional ensemble learning 22 

approach, and also constructed an innovative 2-stage enhanced space-time Bayesian neural 23 

network to fuse an ensemble of 57 simulations together with a prescribed ozone dataset, both of 24 

which have realised outstanding performances (R2 > 0.95, RMSE < 2.12 ppbv). The conventional 25 

ensemble learning approach is computationally cheaper and results in higher overall performance, 26 

but at the expense of oceanic ozone being overestimated and the learning process being 27 

uninterpretable. The Bayesian approach performs better in spatial generalisation and enables 28 

perceivable interpretability, but requires heavier computational burdens. Both of these multi-stage 29 

learning-based approaches provide frameworks for improving the fidelity of composition-climate 30 

model outputs for use in future impact studies.  31 

 32 

Keywords  33 

CMIP6; CCM; surface ozone; model ensemble; space-time Bayesian neural network; data fusion  34 

  35 



1 INTRODUCTION  36 

Tropospheric ozone (O3) is a trace-gas, near-term climate forcer with global mean lifetime 37 

~23 days, and also a major air pollutant being of detrimental defects on human and ecosystem 38 

health.1-3 Besides warming the atmosphere as a greenhouse gas, ground-level O3 also reduces crop 39 

yields.4-6 Laboratory experiments have confirmed O3 exposure to cause oxidative stress, 40 

inflammatory responses and immunologic diseases.7 Epidemiological studies report that short-41 

term exposures to high-level ozone are significantly associated with the exacerbation of asthma8 42 

and have increased hospitalisations among children,9 while long-term ozone exposure is linked to 43 

respiratory diseases like chronic obstructive pulmonary disease, cardiovascular diseases, and even 44 

premature deaths.10-14 Global Burden of Disease (GBD) reported over 0.36 million premature 45 

deaths globally in 2019 from exposure to ambient O3;15 and high O3 exposure could exacerbate the 46 

PM2.5-mortality risk associations.16 These results underscore the pressing need for research linking 47 

population exposure assessment to surface O3 and its impacts on human health.  48 

Satellite-based observations cannot provide accurate measurements for O3 at the surface 49 

since surface O3 will be obscured by the climbing O3 abundance in high-layer atmosphere thus 50 

cannot be measured directly from remote-sensing; while the ground-level station-based 51 

observation sites are still rather limited in spatial coverage.17, 18 The demands for full-coverage 52 

surface O3 concentrations have promoted the application of model simulations, which have been 53 

being improved as our understanding of the mechanisms behind tropospheric O3 has improved.19-54 

21 But model simulations are not perfect, due to imperfections of O3 chemistry mechanisms built 55 

in the models, biases and errors in the underlying emissions, and uncertainties caused by the 56 

discretisation and numerical treatment of a non-linear complex system. Archibald et al. have 57 



shown that for future evolution projections of the tropospheric column O3, model differences are a 58 

leading order term of uncertainty over decadal scales.21 There are various types of models used to 59 

simulate surface O3. Chemical transport models (CTM) perform satisfactorily especially in 60 

regional-level simulations;22-25 and are considered to be free of biases in meteorology due to the 61 

use of prescribed meteorology. But these models lack important feedbacks from atmospheric 62 

composition on to the model meteorology and climate, hence atmospheric composition-climate 63 

models (CCM) have been developed; and when coupled with land, sea, and sea-ice modules into 64 

earth system models (ESM), it is feasible to simulate multi-decadal or even centennial scale 65 

changes in atmosphere.26-29  66 

To evaluate and compare the coupled models, a number of research institutes have 67 

contributed to the Coupled Model Inter-comparison Project Phase 6 (CMIP6) with a range of 68 

experiments conducted by a series of state-of-the-art coupled CCMs and ESMs. The same inputs 69 

are used, including emission inventories and land properties.30-33 CMIP6 has endorsed a total of 23 70 

MIPs to answer a wide range of scientific questions in atmospheric chemistry and climate, among 71 

which the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) involves a 72 

collection of simulations targeted at reactive gases and aerosols including tropospheric O3.
34 Large 73 

discrepancies have been detected across models; beyond figuring out the mechanistic causes for 74 

these differences,31, 35 an urgent challenge is how to calibrate and make the maximum use of the 75 

simulation ensemble.  76 

Applying frontier machine learning algorithms to assimilate the outputs from multi-source 77 

modelling activities like MIPs and observation databases, known as data “assimilation” or data 78 

“fusion”, is an important part of environmental research in the big data era. Studies which enhance 79 



the prediction accuracy of ambient air pollution concentrations by ensemble learning have 80 

emerged in recent years.36-39 However, these studies only used no more than one model simulation 81 

integrated with predictor variables contributing to the budget of O3, without involving fusing 82 

multiple simulation ensembles like CMIP6. In addition, the conventional machine- or deep-83 

learning approaches aim purely at brute-force fitting into high accuracy while sacrificing the 84 

interpretability of the training processes, so have long been criticised as “black-box” and 85 

contradict the nature of mechanism-driven sciences like atmospheric modelling.40-42 Under these 86 

circumstances, reaching a performance-interpretability balance for multi-source data fusion 87 

following credible observations will be of high value in atmospheric research.  88 

Our current study is an innovative exploration on this issue, emphasising on developing 89 

innovative ensemble-learning frameworks to assimilate the multiple CMIP6 model simulation 90 

ensembles and TOAR observations to obtain one single surface O3 dataset capturing the 91 

spatiotemporal variabilities as accurate as possible. Fusing a collection of simulation ensembles 92 

rather than just using the output from one simulation can give more prominence to the 93 

mechanism-driven models so as to avoid brute-force overfitting resulting from external predictor 94 

variables, especially when any given model simulation could be largely biased. The primary 95 

innovation of this study is in transplanting the conventional ensemble-learning data-assimilation 96 

methodology onto multi-source data fusion, and optimising an enhanced 2-stage space-time 97 

Bayesian neural network to assimilate the CMIP6 simulation ensemble. The advantages of the 98 

conventional approach include a much lower computation burden and higher accuracy in 99 

observation-covered regions, while the merits of the innovative Bayesian approach lie in its better 100 

spatial generalisability and intuitive perception of spatiotemporal model weighting. In either case, 101 



the multi-model fused surface O3 concentration can fill in the observational gaps and enable 102 

further relevant researches in the long term. As an example we show here using Fourier-series 103 

function to fit the temporal surface O3 variability provides a feasible way to effectively summarise 104 

periodic air pollutant concentrations. Detailed evaluations and comparisons on CMIP6 model 105 

ensemble, and deeper discussions on model revision insights from deep learning-based calibration 106 

processes are beyond the scope of this study.  107 

 108 

2 METHODOLOGY AND DATA SOURCES  109 

2.1 CMIP6 simulation ensemble  110 

We collect 14 coupled earth system models having finished the “historical” simulations 111 

(1850-2014) of tropospheric O3 as listed in Table S1, of which 8 models use interactive chemistry 112 

schemes. A prescribed O3 concentration dataset is used for all 4 non-interactive chemistry models 113 

(AWI-ESM,43 BCC-CSM2,44-46 IPSL-CM6A,47, 48 and MPI-M-ESM1.249-52) and 2 CNRM models 114 

are not considered for fusion due to the simplified treatment of O3 chemistry.53-57 A total of 8 115 

models, including BCC-ESM1,58, 59 MPI-ESM1.2-HAM,60 MRI-ESM2.0,61-63 NASA-GISS-116 

E2.1,64-66 NCAR-CESM2-WACCM6,67, 68 NCC-NorESM,69 NOAA-GFDL-ESM4,70, 71 and 117 

UKESM1-0-LL, 19, 28, 72-75 consisting of 57 individual simulation experiments (i.e. realisations in 118 

terms of CCM simulation labelled as rninpnfn) and 1 prescribed input dataset (from Inputs4MIPs)76 119 

are recruited for data fusion. The multiple ensemble members under one model allow for capturing 120 

the uncertainties in the chaotic coupled chemistry-climate system; and because of the free-running 121 

nature of the simulations, each of the 57 individual simulations is treated separately with no cross-122 

ensemble averaging clustering into each model involved. All simulation outputs are averaged to 123 



monthly time frequency for assimilation with observations. Detailed information of the participant 124 

research institutes, design of atmosphere module settings, and experiment labelling rules are 125 

illustrated in the Supporting Information.  126 

2.2 Observations  127 

The tropospheric ozone assessment report (TOAR) programme has archived high-quality 128 

ground-level O3 measurements over the period 1990-2014,17 which are used as “standard” for 129 

physical and statistical model evaluation; our study period is thus selected as 1990-2014. To 130 

support analyses at the planar spatial resolution of the CCMs involved in this study, TOAR sites 131 

are aggregated into 2°×2° latitude-longitude grid as plotted in Figure S1, including 585 spatial 132 

grids with a total of 5,322 different observational sites; and averaged to monthly temporal interval 133 

for the robustness of model-observation evaluation. Such spatiotemporal aggregations can also 134 

strengthen the stability of grid-level observation-simulation evaluation, and to some extent abate 135 

the statistical compromises by excluding the observation missing records for some certain sites in 136 

the early years of the dataset (ca. 1990s). Only spatial grids in which there is at least one 137 

observation site are used. Throughout the study, the gridded TOAR observations are used as 138 

supervised learning labels.  139 

2.3 Additional auxiliary predictors  140 

Higher prediction accuracy can be achieved when integrating additional features into 141 

statistical models.36-38 Comprehensively considering the O3 budget mechanisms, experiences from 142 

previous relevant studies, and statistical correlations with surface O3, we screen out 13 variables as 143 

assistant predictors as: CMIP6 simulated concentrations of surface PM2.5, NO2, higher layers of O3 144 

(vertical O3 column), and ambient air temperature obtained from the World Climate Research 145 



Programme (WCRP) Earth System Grid Federation (ESGF) CMIP6 database (https://esgf-146 

node.llnl.gov/search/cmip6); emissions of biogenic VOCs, NOx, CO, black carbon (BC) and 147 

organic carbon (OC) together with urbanised land proportions, collected from input datasets for 148 

Model Intercomparison Projects (https://esgf-node.llnl.gov/search/input4mips); surface elevation 149 

downloaded from the Global Multi-resolution Terrain Elevation Data (GMTED);77 and gridded 150 

urban and rural populations linearly interpolated with corrections towards the actual annual world 151 

total populations into year-precision from United Nation's World Population Prospects (UN WPP) 152 

Adjusted Population Density and Gridded Population of the World (GPW) operated by NASA 153 

Socioeconomic Data and Applications Centre (SEDAC).78  154 

2.4 Multi-model Fusion Frameworks  155 

We use “physical model” to refer to the CMIP6 mechanism-driven atmospheric models, and 156 

“statistical model” for the data-oriented machine- or deep-learning frameworks to avoid confusion 157 

in terminology. No transformations are made for either the observations or model simulations as 158 

they follow the Gaussian distribution well with slight temporal imbalance. Following literatures,36-159 

38 an adjusted ensemble learning-based multi-model fusion framework is constructed as presented 160 

in the upper panel of Figure 1. In this approach, raw simulations (i.e. 57 CMIP6 historical 161 

simulations and 1 prescribed O3 dataset, noted as “57+1 ensemble” hereafter) together with the 162 

normalised additional predictor variables are first re-gridded onto the 2°×2° TOAR observation 163 

grids, following procedures graphically presented in Figure S2. Then, all the model simulation 164 

ensembles, external predictors, and 6 space-time indices (i.e. 3 Euclidean spherical coordinates in 165 

analytic geometry, and 3 helix-shape trigonometricised month sequence t as [cos(2πtT-1), sin(2πtT-166 

1), t] where T is prescribed as 1 year)79 are mixed together as inputs for random forest, gradient 167 



boost decision tree, and convolutional neural network regression models separately; and outputs 168 

from the 3 algorithms are finally blended by L2-regularisation-based weighting (ridge regression). 169 

This approach is entitled as “aggressive” approach because this methodology respects the 170 

observations (i.e. labels for supervision) more than the physical models, hence during the process 171 

of training, the concentrations in each grid are treated individually so as to compromise the 172 

spatiotemporal continuous structure of the original physical model simulations, leading to 173 

inexplicability. The aggressive approach involves at least two stages of ensemble: the first CMIP6 174 

multi-model ensemble and second multi-algorithm ensemble, where the random forest regressor 175 

essentially is another layer of ensemble learning. The random forest regressor is a large collection 176 

of separate decision trees with individual of which generating a single prediction and the final 177 

prediction given by averaging all trees, thus the random forest is perceived as an ensemble 178 

learning method.80  179 

Contrarily, in order to maintain the interpretability of the deep learning processes, we also 180 

adopt an enhanced 2-stage space-time Bayesian neural network (BNN) framework as illustrated in 181 

the lower panel of Figure 1. Space-time indices and additional predictors are put into a 10-layer 182 

1024-node BNN to generate spatiotemporal variant re-scaling factors (k), bias correctors (b) and 183 

the randomised noises (σ), under the supervision of TOAR observations to pre-calibrate the raw 184 

re-gridded CMIP6 simulations. Then, spatiotemporal variant model weights (α) are estimated by 185 

5-layer 256-node BNN merely from the 6 space-time indices, to finally reach the weighted 186 

average ensemble surface O3 concentration predictions. This approach is named as the 187 

“conservative” approach as throughout the process of prediction enhancement, all parameters are 188 

clamped by space-time indices with presumed distributions, thus this framework respects the raw 189 



simulations more and might be highly biased on extreme observations. All involved parameters 190 

can be thoroughly separated from the framework and presented intuitively by mapping, so that the 191 

whole process of assimilation is traceable and interpretable. We construct the two-stage BNN 192 

instead of single-stage because the divergences still exist among the calibrated CMIP6 models in 193 

the first-stage and hence further mixing is required. Directly using the second-stage BNN will lose 194 

the chance to observe the calibration features for individual physical models; and different degrees 195 

of initial biases will cast higher weights onto the smaller biased models, possibly leading to 196 

undesirable feature monopolisation.  197 

Statistical principles of naïve space-time BNN (i.e. single-stage space-time BNN) are 198 

illustrated in details by a recent report.79 Mathematically speaking, solutions of the spatiotemporal 199 

parameters (i.e. k, b, and α) are not unique, but it is reasonable to assume the observation covered 200 

and uncovered regions are of homogeneity in distribution of these parameters, which requires a 201 

Bayesian method to replace the single value of parameters with a distribution. The 6 space-time 202 

indices can assist in capturing the spatiotemporal autocorrelation of the surface O3. 10,000 times 203 

of Monte Carlo simulation ensembles are applied to approximate the distribution, so as to 204 

guarantee the robustness of BNN estimation, thence the conservative approach involves 3-stage 205 

ensemble: first in multi-model ensemble and the latter two in the 2-stage Bayesian parameter 206 

generation. For the final predictions based on the optimised distribution parameters trained 207 

through the BNN, 69.2% fall into 1 standard deviation (σ) range, 96.2% into 2σ and 99.9% into 208 

3σ, conforming to the regularity of Gaussian distribution and thus justifying our Bayesian model 209 

presumption.  210 

To evaluate the performance of 2 approaches, 10-fold cross-validation (CV) assessment is 211 
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The complex machine learning frameworks are constructed instead of using simple statistical 222 

models owing to their limitations in handling the i) similarities across multiple physical models 223 

(i.e. collinearity in statistical term); ii) interaction effects between the input variables; iii) 224 

spatiotemporal auto-correlations and discrepancies in calibration parameters; and iv) propensity of 225 

overfitting when introducing high-order polynomial terms. Additionally, this cross-disciplinary 226 

study closely follows the trends of applying the cutting-edge data sciences onto environmental 227 

studies, hence only machine- and deep-learning approaches are transplanted, enhanced and 228 

discussed here.  229 

2.5 Other relevant statistics  230 

Fourier-series sinusoid functions theoretically can fit any periodical variables,82 so are used to 231 

capture the location-specific seasonal periodic variations of surface O3 in this study to 232 

parametrically interpret the final assimilated surface O3 concentrations by revealing the intra- and 233 

applied, and 7:3 training-test split is used through the full dataset during 1990-2014. An additional 

temporal extrapolation test is conducted by manually setting the 1990-2009 TOAR observations 

with grid-corresponding physical model simulations as training set and 2010-2014 as test set. 

Three manual cross-validation tests are conducted by splitting the whole dataset into training- 

testing sets with regional integrity as i) Europe-training for North-America-testing; ii) North- 

America-training for Europe-testing; and iii) Europe-North-America-training for East-Asia- 

testing, so as to evaluate the spatial extrapolation capability of the 2 statistical models. 

Decomposition of model-observation errors follow a previous research. 81The neural network 

trainings are accomplished by Adam stochastic optimisation algorithm, setting the initial anchor 

values from observations and the learning rate as 10 -4after centric normalisation.



inter-year variability quantitatively with perceivable mapping. Akaike Information Criteria (AIC) 234 

is used for statistical model selection, taking the realistic explicability altogether into 235 

consideration as listed in Table S2. Given TOAR observations and model outputs are monthly 236 

averaged, the final Fourier function is chosen as  237 

𝑓(𝑡) = 𝑎'𝑒)*+ + (𝑏' + 𝑏.𝑡) 𝑠𝑖𝑛 2
3
4
𝑡 + 𝜑.6 + 𝑐' 𝑠𝑖𝑛 2

83
4
𝑡 + 𝜑86,  238 

where t represents the month-sequence; a0 as starting-point surface O3 concentration (January 239 

1990); 12a1 as annual average change rates; 2b0 as the baseline and 24b1 as annual change of 240 

seasonal variation amplitude (i.e. peak-valley difference); and c0 as the fine-tuning parameter 241 

which can modify the sinusoidal shape, but usually the absolute values are rather small, thus not 242 

considered for interpretation. An exponential term for the annual average surface O3 is applied 243 

instead of linear term as the long-term simulations have reported exponential increasing trend of 244 

the tropospheric O3 over centennial scales,31 regardless of the fact that the AIC values vote for the 245 

linear model.  246 

 247 

3 RESULTS  248 

3.1 Raw simulation evaluations  249 

Raw CMIP6 surface O3 simulations generally perform fairly well across all TOAR covered 250 

areas in terms of synchronicity (Figure 2), as the correlations between observations and the 57+1 251 

ensemble averages are 0.74 ± 0.18 (inter-quartile range, IQR: [0.67, 0.87], Range: [-0.58, 0.96]). 252 

Overestimations are observed at 4.1 ± 2.0 (IQR: [5.1, 13.1], Range: [-22.2, 31.1]) ppbv across all 253 

TOAR covered spatial grids, hence the normalised mean biases (NMB) are high at 9.7 ± 6.3 (IQR: 254 

[4.2, 13.5], Range: [-28.1, 48.9]) %. Some regions like west Australia coastline even report 255 



negative correlations (Pearson’s ρ = -0.58).  256 

The synchronicity and bias for realisation-ensembled model outputs are also evaluated in 257 

Figure S3 and Figure S4. NASA-GISS-E2.1 reports negative synchronicity in the USA-Canada 258 

border, while NCC-NorESM fails to reproduce the temporal variabilities in most of the studied 259 

sites. UKESM1-0-LL predicts closely to the measurements, but underestimates the surface O3 260 

around the USA-Canada border; while all the rest models present overestimations. Divergences 261 

are found between the individual models (Figure S5), and the high simulation discrepancies are 262 

mainly aggregated in the intertropical convergence zone (ITCZ) and eastern China, where the 263 

standard deviations exceeded 20% of the ensemble means. The barely satisfactory synchronicities 264 

and high overestimation biases indicate that the raw surface O3 simulation might not be suitable 265 

for direct application in health impact studies, verifying the necessity of calibrations, at least 266 

statistically.  267 

3.2 Performance of multi-model ensemble fusion  268 

Both aggressive and conservative multi-model fusion perform well in prediction 269 

enhancement (Figure 2). The model-observation correlations are high at 0.98 ± 0.01 (IQR: [0.97, 270 

0.99]) and 0.95 ± 0.08 (IQR: [0.95, 0.98]) for the aggressive and conservative approach, 271 

respectively; and NMBs of the aggressive model are 0.29 ± 3.06 (IQR: [-1.22, 1.54]) %, 272 

marginally smaller than the conservative model at 0.40 ± 3.57 (IQR: [-1.72, 1.93]) %. The general 273 

overestimation issues of the raw CMIP6 simulations have been handled well, but there are still 274 

some sporadic high NMBs detected in Asia, Africa, and South America, where the ground-based 275 

monitoring sites are rare and spatially scarce.  276 

The full-range fitting R2 (Table 1) of the aggressive and conservative approaches are 0.96 and 277 



0.95, respectively, both indicating plausibility of the multi-model fusion with calibration; while 278 

the conservative predictions follow more loosely to the observations, especially in the low-279 

concentration ranges (Figure S6), resulting in relatively higher root mean squared error (RMSE) at 280 

2.12 ppbv compared with 1.81 ppbv for the aggressive approach. However, the conservative 281 

approach performs better in 1:1 model-observation calibration criteria according to the closer-to-282 

one slope factor (kc
-1 < ka, 0.97-1 < 1.05) and closer-to-zero systematic bias (|bc| < |ba|, |0.71| < |-283 

1.35|). This is because directly involving additional features (i.e. the aggressive approach) can 284 

possibly introduce noise into the calibration, as their association with surface O3 are not simply 285 

linear, especially in higher concentration ranges, so that the 1:1 model-calibration line is deviated.  286 

Both approaches calibrate the physical models effectively, with the conventional aggressive 287 

approach performing slightly better than the innovatively established conservative model, which 288 

however, is already good. The spatiotemporal stability of the two approaches are also assessed in 289 

Table 1, concluding that the aggressive approach performs better in the later years of the dataset, 290 

while the conservative approach performs consistently well across the 25-year period. This is 291 

because the aggressive approach depends so largely on the observations that defects of observation 292 

coverage in early years will compromise the learning effects. However, the aggressive approach 293 

performs well across different continents (R2 > 0.90), but the conservative approach performs 294 

slightly worse in the southern hemisphere (R2 > 0.83), as a result of insufficient observations. This 295 

data sparsity results in the inter model-spread in the raw simulations being, to some extent, 296 

retained, as this could not be addressed by the BNN-based weighted linear combination; instead, 297 

additional features in the prediction-oriented aggressive approach brute-forcedly correct the large 298 

observation-simulation gaps. Both approaches perform well across seasons.  299 



3.3 Extrapolation generalisability  300 

Due to the limitations of lacking systematic observations in China, India, Africa and oceanic 301 

regions during 1990-2014, there are no means to verify the simulations in these areas directly; but 302 

this problem can be explored indirectly by checking the extrapolation potential on the observation-303 

uncovered locations. Three regional cross-validation tests are graphically summarised in Figure 304 

S7, all of which reveal better generalisation capability of the conservative approach than 305 

aggressive. Neither underfitting nor overfitting issues are detected on the conservative approaches 306 

(i.e. CV and test scores are quite close); while underfitting is apparent for the aggressive approach 307 

in these regions, mainly reflected by failures in capturing extreme O3 concentrations. The temporal 308 

extrapolation tests of two statistical models reveal high generalisability on the most recent 5-year 309 

test sets during 2010-2014 as R2 = 0.91 (CV-R2 = 0.88, test-R2 = 0.82) for the aggressive approach 310 

and R2 = 0.92 (CV-R2 = 0.89, test-R2 = 0.85) for the conservative approach. The temporal 311 

extrapolation performances are better than spatial generalisation, because the temporal periodic 312 

variations of surface O3 are of a more stable pattern than regional divergences. In a nutshell, the 313 

conservative BNN approach wins over towards spatial and temporal generalisability, and we thus 314 

regard the conservative BNN results as “standard” for further interpretation.  315 

3.4 Differences between ensemble approaches  316 

Comparisons between the “standard” and aggressive approach outcomes are graphically 317 

summarised in Figure S8, revealing most of the global regions are of high congruity (ρ = 0.85 ± 318 

0.17, IQR: [0.81, 0.96]), while the divergences mostly occur on the ITCZ and Arabian-African 319 

areas (ρ < 0.02). Small relative biases have also justified the similarity between the aggressive and 320 

conservative approaches, as the NMBs (defined as aggressive – conservative) are 1.38 ± 4.61 321 



(IQR: [-1.59, 3.77]) %. The positive differences mainly aggregate in Africa, Antarctica, Oceania 322 

and most of the oceanic basins, while the negative differences cluster in Asia, Europe and 323 

America.  324 

The simplest fusion, the arithmetic average, of CMIP6 simulation ensemble would be used as 325 

a compromise were there no ground-based observations as used by precedent studies,31 which 326 

factually could lead to high biases if the real surface O3 exposure assessment is the main research 327 

interest. This study aims to develop innovative approaches to fuse both model simulations and 328 

observations, and by comparing with the simplest fusion, advantages of new methods can be 329 

highlighted. The conservatively ensembled surface O3 concentrations are of higher synchronicity 330 

(ρ = 0.97 ± 0.06, IQR: [0.97, 0.99]) with the simple ensemble average than the aggressive 331 

approach (ρ = 0.87 ± 0.14, IQR: [0.83, 0.96]), as the BNN is essentially an enhanced linear 332 

combination of multiple model simulations without substantial changes to the spatiotemporal 333 

auto-correlation. The ensemble average exceeds the aggressive fusion by 5.9 ± 9.7 (IQR: [-7.9, 334 

14.3]) %, and the overestimations cluster regularly on land surface, especially the high-335 

population-density regions; but surpass the conservative fusion by 9.6 ± 10.5 (IQR: [0.81, 336 

20.2]) %, with the overestimations mainly detected in the wide-coverage northern-hemisphere 337 

without apparent land-ocean distinguishment. In conclusion, the simple ensemble average can lead 338 

to overestimations, especially in the northern hemispheric land surface; and the differences also 339 

reveal that the aggressive fusion model has modified the spatial auto-correlation of the raw CMIP6 340 

simulation to a larger extent than the conservative approach.  341 

3.5 Bayesian spatiotemporal weights  342 

The differences between the two approaches can also be partially attributed to the different 343 



weighting schemes of the raw individual simulations. The 57+1 ensembles occupy 93.9% weights 344 

in the aggressive approach while the additional assistant variables only contribute 6.1%. 345 

Generally, for the aggressive approach, 4 among the 58 simulations contribute dominantly by over 346 

10%, as UKESM1-0-LL-r3i1p1f2 (18.6%), the prescribed O3 (17.4%), NASA-GISS-E2.1-G-r1i1p3f1 347 

(14.7%) and NCAR-CESM2-WACCM6- r1i1p1f1 (14.1%), while 36 ensemble members contribute 348 

less than 0.1%, as graphical presented in Figure S9. On the contrary, the conservative approach 349 

results in relatively more even weights, where the prescribed O3 (2.1%), UKESM1-0-LL (1.9%) 350 

and NASA-GISS-E2.1 (1.8%).  351 

Besides the physical model weights, the space-time BNN also generates spatiotemporal 352 

variant weights, which can reflect the regions of skill for each individual physical model as 353 

presented in Figure S10: UKESM1-0-LL and NCAR-CESM2-WACCM6 are weighted higher in 354 

northern hemisphere over land, while the prescribed O3 dataset, NASA-GISS-E2.1, and NOAA-355 

GFDL-ESM4 contribute more in southern hemisphere over land. The temporal variations of the 356 

spatial weights are generally small and of regular regional clustering trends, indicating that the 357 

physical models have captured the seasonal variability well.  358 

BNN-based multi-model fusion treats the assistant variables independently with the CMIP6 359 

model simulations, so that the weights of these additional features are not at the same level as the 360 

physical models like in the aggressive approach. Direct comparisons of the weights of the assistant 361 

variables between the two approaches reveal quite similar patterns of using these additional 362 

features for model calibration as shown in Figure S11 which indicates that urban-rural 363 

populations, ambient air temperature and elevation are important factors. We suggest further work 364 

pay more attention to the role of model surface temperature, which is not fixed in these free-365 



running simulations. High contributions of the space-time indices also indicate that more 366 

additional features need to be included for further consideration.  367 

3.6 Long-term surface ozone variations  368 

Spatiotemporal variabilities of the BNN-fused surface O3 are summarised parametrically 369 

using Fourier-series functions (Figure 3). The fitting quality R2 has reached 0.81 ± 0.12 (IQR: 370 

[0.77, 0.87]), where the poor performances (R2 < 0.50) concentrate in ITCZ and the coastlines. 371 

The global annual average increasing rate of the surface O3 is estimated to be 0.23 (95% CI: [0.21, 372 

0.25]) % yr-1, and the highest increasing rates are detected in south Asia, South America, and 373 

continental Europe. Decreasing trends are also discovered in eastern China and eastern US. The 374 

average intra-year seasonal variation is 13.9 (IQR: [2.1, 49.5]) ppbv, and the highest amplitude 375 

differences cluster in eastern US, Africa, Europe, and eastern China. The annual changes of 376 

seasonal variations also demonstrate regional variabilities: widening in eastern China by 377 

maximum as 1.8 ppbv per year while narrowing in western countries by extreme to -0.8 ppbv per 378 

year. The intra-year peak and valley concentrations are generally ascending, as the peaks increase 379 

by 8.8 ± 1.1 (IQR: [-6.8, 16.1]) ppbv per year, and the valleys ascend by 0.6 ± 0.8 (IQR: [-7.0, 380 

8.3]) ppbv per year.  381 

 382 

4. DISCUSSION  383 

4.1 Multi-model fusion improvement potentials  384 

Decomposition of model-observation errors (Figure S12) can assist in evaluating the 385 

optimisation potentials for both the physical and statistical models.83 The overall RMSE for the 386 

aggressive approach is 1.81 ppbv, among which the irreducible root-noise is 1.42 ± 0.47 ppbv, 387 



occupying 66.1 ± 16.7 % of the total errors; while the averaged error of the conservative approach 388 

is 2.58 ppbv, where the root-noise is 1.87 ± 0.70 ppbv, accounting for 62.2 ± 25.4 %. The noises 389 

together with the biases by conservative approach are generally higher than the aggressive 390 

approach, while their proportions are close except for the African regions, as listed in Table S3. 391 

Most of the unsolvable noises take over more than half of the errors, indicating that both fusion 392 

approaches have well approached the realistic observations.  393 

The variances, also known as cross-model divergences, are comparable or even greater than 394 

biases for the aggressive approach, while for conservative approach the variances are several folds 395 

lower than biases, accounting for less than 10% except for South America (17%). This indicates 396 

the conservative fusion model is more robust. The model variances can be statistically perceived 397 

as discrepancies of model construction by random draws of the training subset, so that higher 398 

model variances represent severe dependences on training inputs, revealing higher sensitivity and 399 

lower generalisability.  400 

The current crux of the conservative fusion model falls on the biases, suggesting higher 401 

optimisation potentials than the aggressive approach. The biases originate from the inherent 402 

systematic biases in physical models, and also the insufficient inclusion of assistant features to 403 

enhance the prediction statistically. Comparatively, due to the relatively higher statistical model 404 

variances, the aggressive approach shall no longer be the prevalent stream for multi-model fusion, 405 

as changes in observation coverage (i.e. labels for supervision in machine learning) will affect the 406 

stability of the statistical model substantially.  407 

4.2 Differences in spatial extrapolation  408 

The better spatial generalisation ability of the conservative space-time BNN multi-model 409 



fusion is an advantage over the aggressive approach. Paradoxically, the aggressive approach 410 

actually performs well on capturing the extreme values. This shall be attributed to overfitting on 411 

the assistant features added directly into the fusion processes, so that the predictions are 412 

excessively reliant on these external variables. However, due to the complexity of the mechanisms 413 

controlling O3, the statistical associations between physical models, auxiliary predictors, and the 414 

realistic concentrations recognised by the aggressive approach will be superfluous and of localised 415 

boundedness so that might be drastically different across regions. Excluding these features from 416 

aggressive multi-model fusion alleviates the poor performance in spatial extrapolation, as for each 417 

regional cross-validation test, R2 rise to 0.81, 0.83, 0.74, and RMSE decline to 3.64, 3.97, 5.95 418 

ppbv for North America, Europe and East Asia, respectively. To put it briefly, the external assistant 419 

features can increase the fitting quality in statistical training, but also serve as the limiting factors 420 

for model generalisation. This presents an issue towards understanding the processes of aggressive 421 

multi-model fusion, as conservative predictions manifested as underfitting by aggressive approach 422 

should be ascribed to the overfitting in the additional feature-assisted aggressive pathway. It 423 

suggests that conventional ensemble deep-learning approaches respecting the observations as 424 

supervision and linking the input variables only statistically rather than respecting the physical and 425 

chemistry mechanisms are of rather limited use, hence it is the second reason that the novel 426 

conservative multi-model fusion approach by space-time BNN is preferred.  427 

4.3 Cross-approach divergences  428 

Most discrepancies between the two fusion approaches and the simple ensemble average are 429 

located in tropics (Figure S8), which is primarily attributable to the lack of observations as 430 

training data, and the variations in raw simulations (Figure S5) resulting from the difficulty in 431 



capturing O3 in this region as a result of complexity in the precursor emissions like biogenic 432 

VOCs, soil NOx, lightning NOx, etc.31 We highlight in particular the need for long-term 433 

continuous ground-based measurements of O3 in the tropics as a research priority.  434 

The differences between the simple ensemble average and the aggressive fusion approach 435 

(Figure S8) indicate that the aggressive approach only addressed the systematic overestimations 436 

on the land surface; the additional variables lead to a land-ocean contrast (e.g. the population, 437 

ambient air temperature, O3 precursor emissions), which are used as key nodes in the tree-438 

structure regressions, so that the calibrations are only effective over the land rather than the whole 439 

global surface. The conservative approach respects the raw simulations more by calibrating 440 

uniformly for both lands and oceans, so that the average-conservative differences are more 441 

spatially uniform (Figure S8).  442 

4.4 Systematic overestimation  443 

Direct use of the raw CMIP6 surface O3 simulation ensemble mean, as commonly used in the 444 

literature2, 31, 35, causes positive biases around 5-10%, equal to 3.6 ± 4.4 ppbv, with some regions 445 

like India high-biased by +40% (+22.7 ppbv), consistent with recent multi-model ensemble 446 

studies in this region.84 Such large biases have important implications on the use of raw ensemble 447 

mean data for work related to public health and pollution control policy studies in these regions, 448 

reiterating the necessity of observation-supervised calibration. The systematic overestimations 449 

across CMIP6 simulations speculate the major cause as the inadequate vertical stratification in 450 

atmospheric module. Essentially speaking, the lowest layers of CMIP6 model simulations are used 451 

to approximate the surface O3, but the layer actually refers to a vertical average. Tropospheric O3 452 

concentration rises with the altitude,31 thus resulting in overestimation. UKESM1-0-LL stratifies 453 



85 vertical layers,19 which is the most among 8 interactive chemistry CMIP6 models (Table S1), 454 

and lowest overestimations are found, with even underestimations observed in quite a few regions 455 

(Figure S4). Further experiments by adjusting the vertical stratifications to observe the changes in 456 

surface O3 simulation performances are suggested to rigorously check this speculation.  457 

4.5 Rationality of enhanced space-time BNN  458 

Our enhanced space-time BNN is optimised from the traditional naïve space-time BNN, 459 

without additional feature involvement.79 The enhancement in part comes from overcoming the 460 

inconsistence between the overall and location-specific observation-simulation linear 461 

relationships: each simulation cell at different time requires a unique set of k-b parameters for 462 

calibration as 𝑦:,+<=> = 𝑘:,+ ∙ 𝑦:,+A<B + 𝑏:,+ + 𝜀:,+, where the subscripts l and t represent location and 463 

time indices, so that using a fixed slope k and intercept b to calibrate all simulation cells is of 464 

limited use. However, the calculated sets of parameters are spatially limited to the observations, 465 

thus a naïve space-time BNN framework is required for spatial extrapolation onto the full global 466 

space.  467 

The BNN generates the space-time variant calibration slopes and intercepts for each CMIP6 468 

model in the pilot attempts, with which the assistant features are significantly correlated Figure 469 

S13, indicating these additional factors can contribute to the calibration parameters. For the 470 

purpose of increasing the prediction accuracy, the enhanced 2-stage Bayesian neural network 471 

regression-based multi-model fusion framework is constructed by firstly incorporating the 472 

assistant features into the multi-layer perception structure to generate the calibrated individual 473 

simulations, and secondly fusing them up by another naïve space-time BNN without involving any 474 

external features.  475 



4.6 Sensitivity Analysis 476 

Considering the cross-realisation variations (0.5 ± 0.1 ppbv) are much lower than the cross-477 

model deviations (4.6 ± 1.7 ppbv, Figure S5), we conduct an additional sensitivity analysis by 478 

firstly averaging the multi-realisations within each model and then putting the 8 realisation-479 

averaged model simulations together with the prescribed O3 (hereafter noted as 8+1 models) into 480 

the aggressive and conservative model as input layer. The results of these new fused data are very 481 

similar to the previous calculations, with R2 = 0.94, RMSE = 2.24 ppbv for the aggressive 482 

approach, and R2 = 0.93, RMSE = 2.67 ppbv for the conservative approach. It shows that different 483 

numbers of realisations for each model will not significantly affect the fusion performance, 484 

indicating that the disparity in the number of realisations for a given model (e.g. 21 realisations for 485 

NASA-GISS-E2.1 while only a single realisation for NOAA-GFDL-ESM4) is not a significant 486 

issue when it comes to model data fusion. It also suggests averaging the multi-realisation 487 

ensemble before multi-model fusion takes place will still result in accurate results. This is 488 

particularly important if the model-data fusion approach is computationally expensive, as is the 489 

case for the conservative approach we have used.  490 

One-dropout sensitivity analysis shows removing one model (with all its realisations) can 491 

achieve accuracy R2 as 0.91 – 0.93 with RMSE 2.49 – 2.82 ppbv with the aggressive approach, 492 

and R2 ranging 0.89 – 0.93 with RMSE 2.97 – 3.46 ppbv by conservative approach; results which 493 

are insignificantly lower than using all 8+1 CMIP6 models. However, the multi-model fusion 494 

performances are substantially reduced when only 2 models are kept (keeping only one single 495 

model will be inappropriate for the basic idea of multi-model fusion), as R2 = 0.83 – 0.87, RMSE 496 

= 3.68 – 5.14 ppbv with the aggressive approach, and R2 = 0.71 – 0.78, RMSE = 4.79 – 8.02 ppbv 497 



with the conservative approach. The aggressive-conservative performance gap converges when 498 

fusing >9 realisations, or >4 realisation-averaged models. It exposes the critical limitation of the 499 

conservative approach and that the innovative enhanced space-time BNN will not perform 500 

satisfactorily when only a few models are used for fusion, because different models have used 501 

different chemistry mechanisms, or simplifications, or have other physical differences,85 so that 502 

limited numbers of models cannot capture the full variations of the realistic surface O3 by BNN-503 

based linear-combination. It also further justifies the necessity of the CMIP6 multi-model study 504 

from the perspective of raising the signal-noise ratio and enabling more credible surface O3 505 

datasets (the more models used in the fusion process the better the performance). We keep the 506 

aggressively and conservatively-fused outcomes separately as 2 ultimate achievements of this 507 

study, instead of mixing them up into a single dataset, because of our aim of maintaining the 508 

interpretability of the BNN-fusion processes instead of purely focusing on brute-force fitting.  509 

4.7 Merits and Limitations  510 

Five major merits of our study are highlighted. First, we establish an enhanced 2-stage space-511 

time Bayesian neural network regression-based deep-learning framework to fuse multi-ensemble 512 

surface O3 simulation, which is verified to be of high accuracy and accessible interpretability in 513 

spatiotemporal weighting. Second, we verify the better spatial extrapolation generalisability of our 514 

newly developed approach than the conventional method; and owing to the commendable spatial 515 

and temporal extrapolation potentials, our ensemble learning frameworks can be applied to a wide 516 

temporal range of surface O3 studies. Third, as far as we are aware, our study is the first study to 517 

fuse CMIP6 model simulations for surface O3 over the 25 historical year period of 1990-2014 by 518 

machine learning techniques, and such long-term global studies are still rather rare. Fourth, the 519 



fused and calibrated surface O3 concentration dataset can be used by further researchers for further 520 

cross-disciplinary studies. Last but not the least, we innovatively apply Fourier-series functions for 521 

the purpose of parametrising and visualising the complex temporal periodical variations of surface 522 

O3. However, our studies are still of several limitations. First, the model evaluation-calibration 523 

resolution is coarse as 2°×2°, and some heavily polluted regions like China, India and Africa are 524 

still lacking of observations. Second, the additional assistant features to enhance the statistical 525 

model prediction are still limited, and more variables shall be considered in further studies. Third, 526 

more detailed and deeper discussions concerning the parametric model calibration by 2-stage 527 

space-time BNN regression could have been replenished and excavated, but not included in this 528 

current paper as it is beyond the scope of this study. We aim to address some of these issues in our 529 

further research.  530 
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 532 

 533 

Figure 1 Schematic diagram of machine learning-based multi-model fusion by aggressive and conservative 534 

approaches. The stacking of source data layers refers to the collections of datasets with the same level in training models; 535 

the ellipses indicate elemental machine learning methodologies; and the rectangles represent the raw outputs from 536 

machine learning treatments. A total of 57 physical model simulations and 1 prescribed O3 concentration dataset 537 

(Inputs4MIPs) are considered.  538 

Abbreviations and denotations: RFR, random forest regression; GBR, gradient boosting decision tree regression; CNN, 539 

convolutional neural network regression; SFP, semi-final product; BNN, Bayesian neural network regression; k, re-540 

scaling factor; b, systematic bias corrector; α, individual model weight; β, bias corrector; m, physical model identifier; l, 541 

location index; t, temporal index; σ, random noise.  542 
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 544 

Table 1 Evaluation summary of aggressive and conservative multi-model fusion for surface ozone. The model 545 

evaluation metrics include the cross-validation (CV), test and full dataset overall coefficient of determination (R2), the 546 

root mean squared error (RMSE), the normalised mean bias (NMB), and the linear regression slope (k) and intercept (b). 547 

Both two statistical models are evaluated separately for each 5-year period, season and continent to assess the 548 

spatiotemporal performances.  549 

  
Aggressive Approach Conservative Approach 

CV-R2 test-R2 full-R2 RMSE NMB k b CV-R2 test-R2 full-R2 RMSE NMB k b 

Period               

1990-1994 0.91  0.90  0.94  2.00  3.41  1.11  -1.62  0.92  0.91  0.93  2.00  0.02  0.98  0.59  

1995-1999 0.90  0.90  0.94  1.74  1.71  1.09  -1.26  0.92  0.91  0.92  2.10  0.84  0.97  0.66  

2000-2004 0.91  0.91  0.95  1.71  0.88  1.09  -1.16  0.91  0.91  0.93  2.28  0.71  0.97  0.95  

2005-2009 0.91  0.91  0.96  1.68  1.11  1.09  -1.17  0.91  0.91  0.91  2.22  0.83  0.97  0.82  

2010-2014 0.94  0.93  0.96  1.71  0.88  1.09  -1.16  0.92  0.91  0.94  2.28  0.71  0.97  0.95  

Region               

Europe 0.91  0.91  0.94  1.94  2.40  1.12  -1.61  0.92  0.91  0.92  2.02  1.27  0.98  0.37  

North America 0.93  0.93  0.96  1.61  1.27  1.08  -1.19  0.91  0.91  0.93  1.96  -0.04  0.97  0.94  

Latin America and the Caribbean 0.90  0.87  0.95  1.22  3.12  1.10  -0.89  0.83  0.81  0.83  2.55  3.06  0.92  1.51  

Asia 0.92  0.92  0.95  2.14  4.03  1.12  -1.65  0.90  0.90  0.92  2.96  1.85  0.96  0.90  

Africa 0.90  0.86  0.90  2.13  2.82  1.19  -2.33  0.82  0.80  0.84  3.69  -3.81  0.93  2.88  

Oceania 0.94  0.91  0.96  0.91  0.68  1.08  -0.78  0.83  0.81  0.84  2.13  -1.05  0.88  2.65  

Season               

March-May 0.93  0.90  0.97  1.91  0.84  1.13  -0.65  0.94  0.91  0.96  2.06  0.89  0.99  0.97  

June-August 0.94  0.92  0.98  1.78  1.12  1.09  -0.86  0.94  0.92  0.95  2.14  0.74  0.97  0.75  

September-November 0.93  0.89  0.98  1.75  3.09  1.12  -0.57  0.93  0.90  0.95  2.07  0.10  0.98  0.69  

December-February 0.93  0.90  0.98  1.80  3.05  1.14  -0.60  0.93  0.90  0.95  2.19  0.54  0.98  0.51  

TOAR 0.94  0.89  0.96  1.81  2.01  1.05  -1.35  0.90  0.88  0.95  2.12  0.57  0.97  0.71  

 550 
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 552 

 553 

Figure 2 Model-observation evaluation for the raw CMIP6 surface ozone simulation-ensemble and multi-model 554 

fusion by both aggressive and conservative approaches. A-C: Simulation-observation synchronicity, absolute and 555 

relative biases for 57+1 CMIP6 simulation ensemble. Model evaluations are conducted on TOAR observation covered 556 

sites across 1990-2014. D-G: Evaluations of aggressively and conservatively integrated surface ozone concentrations in 557 

terms of the overall model-observation synchronicity and bias. H-I: Multi-model and TOAR-observation assimilated 558 

historical global surface ozone concentrations by aggressive and conservative approaches. The 25-year average surface 559 

ozone concentrations during 1990-2014 are mapped as summary. All spatial resolutions are set as 2°×2°, and the 560 

temporal interval is set to month.  561 
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 563 

 564 

Figure 3 Spatiotemporal variability parametrisation for CMIP6 multi-model ensemble assimilated surface ozone 565 

concentrations during 1990-2014 by the conservative approach. The ensemble-learning predicted concentrations are 566 

clustered by month. A: Fourier-series function-based curve-fitting quality for grid-specific surface ozone variabilities 567 

against temporal sequence, quantified by R2. B: Annual increasing ratio for yearly average surface ozone concentrations, 568 

estimated by 12a1. C: Annual average intra-year amplitude as the peak-valley differences, estimated by 2b0. D: Annual 569 

average linear change rates of the intra-year amplitudes, estimated by 24b1. E-F: Averaged annual change rates of peak 570 

and valley concentrations, deduced from the fitted second-order Fourier-series function.   571 
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Supporting Information. Further detailed information on CMIP6 AerChemMIP Surface O3 historical simulation 573 

participant research institutes, and annotations on atmospheric module settings. A total of 13 supplementary figures and 574 

3 tables.  575 
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