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Abstract

The  movement  and  spreading  of  contaminated  groundwater  plumes  and  their  mixing  with  non-

contaminated water is strongly influenced by the heterogeneity of the aquifer properties, which may vary

strongly over small spatial scales. Thus, imaging these small-scale features and monitoring transport of

tracer  plumes  at  a  fine  resolution  is  of  interest  to  characterize  transport  processes  in  aquifers.  Full-

waveform inversion (FWI) of crosshole ground penetrating radar (GPR) measurements can provide an

aquifer  characterization  at  decimeter-scale  resolution.  The  method  produces  images  of  both  relative

dielectric  permittivity  (εr) and  bulk  electrical  conductivity  (σb),  which  related  to  hydraulic  aquifer

properties  and  tracer  distributions.  To  test  the  potential  of  time-lapse  GPR FWI  for  imaging  tracer

plumes,  we  conducted  a  numerical  experiment  of  tracer  transport  in  a  heterogeneous  aquifer.

Concentration was converted to saline and desalinated tracers, which changed σb, and to ethanol, which

changed both  εr and  σb. The simulated  εr and  σb distributions in a crosshole plane were considered to

simulate GPR data. These data were subsequently used to reconstruct  εr and  σb distributions using the

crosshole 2D GPR FWI. Tracer concentrations were retrieved from the inverted εr and σb models using

information about petrophysical parameters. GPR FWI εr images could recover preferential paths of ~0.2

m width, while the σb images resolved structures up to ~ 0.2-0.3 m. The results highlight that changes in

εr, e.g., ethanol and hot water, can be used to image transport processes with high resolution by time-lapse

GPR FWI, while the accuracy of the recovery of σb is limited.
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1 Introduction

Ever increasing water demands and anthropogenic pollution lead to depletion of clean

groundwater resources. Detailed knowledge of the flow and transport processes,  which control

migration of fluids, particles, and solutes in the subsurface (hereafter tracers), is necessary, e.g.,

to protect groundwater pumping wells from pollution and operate remediation measures [Maliva,

2016]. Important transport characteristics that need to be known are the tracer velocity, the tracer

plume  spreading,  and  the  tracer  dilution  by  mixing  with  groundwater.  These  transport

characteristics depend strongly on the heterogeneity of hydraulic aquifer properties [Cheng and

Bear, 2016], which are difficult to observe directly because of the intrinsic inaccessibility of the

subsurface. Tracer experiments that monitor tracer plumes in aquifers can be used to determine

transport characteristics and infer the underlying hydraulic aquifer properties and their spatial

variability [e.g., Vereecken et al., 2000]. 

Traditional  techniques  for hydrologic characterization,  such as pumping tests,  provide

data on large-scale aquifer hydraulic properties but with low spatial resolution [e.g., Li et al.,

2007]. Other well established techniques provide fine-scale information in the vertical direction,

such as borehole measurements [Englert, 2003], cone penetration tests [Tillman et al., 2008], and

measurements  on  sediment  cores  [Vereecken  et  al.,  2000],  but  cannot  characterize  spatial

variability in the horizontal (flow) direction with high spatial resolution. Geophysical imaging

techniques  such  as  electrical  resistivity  tomography  (ERT)  and  GPR can  close  this  gap  in

observation capabilities and provide information on an appropriate scale (up to ~10 m) and with

high spatial resolution in both vertical and horizontal direction, while being minimally intrusive

[e.g., Looms et al., 2008, Binley et al., 2015]. Geophysical imaging methods enable to image the

subsurface by sensing changes  in the physical  parameters  of a porous medium. Specifically,

relative dielectric permittivity (εr) and electrical conductivity (σ) of porous media or an aquifer

vary in space and time [Everett,  2013].  εr is  mainly dominated by the water content  and its

temperature, while σ depends on the salinity and temperature of the pore water and on the clay

content  [Everett,  2013].  Migration  of  a  tracer  through  the  aquifer  changes  these  aquifer

properties so that imaging these changes in a time-lapse manner using dedicated geophysical

methods, such as GPR [Klotzsche et al., 2019a, Looms et al., 2008], and ERT [Kemna et al.,

2002, Singha et al., 2005, Hermans et al., 2015], can be used to image the tracer plume. Whereas

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



4

ERT measurements are made using direct current and provide bulk electrical conductivity  (σb),

GPR operates at high-frequencies range (typically 10-2600 MHz) and uses the propagation of the

electromagnetic (EM) wave in resistive earth materials. In contrast to ERT, GPR can provide

both εr and σb. While the velocity of the EM wave can be linked to εr , the attenuation of the EM

wave provides information about the  σb [Annan, 2009]. The used  high-frequency of the GPR

systems allow higher imaging resolution of the subsurface that scales with the wavelength (λ) of

the measured signal. For a typically used frequency spectra of 10-200 MHz (the range used in

this study) of the EM signal and a εr of 12-25 of the media, the wavelength scales between 0.3

and 8.5 m [Annan, 2009]. Especially, GPR acquisition in a wave transmission configuration with

transmitters  in  one  borehole  and  receivers  in  another  (crosshole)  [Huisman  et  al.,  2003,

Klotzsche et  al.,  2019b]  allows a good subsurface illumination  with dense ray-coverage and

relatively small acquisition errors [Axtell et al., 2016]. Time-lapse crosshole GPR monitoring of

fluid transport was successful in illuminating preferential pathways from either signal attenuation

due to  a  saline tracer  [Day-Lewis  et  al.,  2003],  or wave velocity  changes  due to  soil  water

content changes [Looms et al., 2008]. 

Crosshole GPR data is measured mainly in multi-offset gather (MOG) measurements and

commonly  imaged  with  ray-based  tomography.  Velocity  distribution  (e.g.,  Dafflon  et  al.,

[2011]), from which r images are derived, are obtained from the first arrival travel times of the

wave signals, and, attenuation tomograms of the subsurface, from which σb images are estimated,

are obtained from first-cycle amplitudes [Holliger et al., 2001]. Unlike the ray-based approach,

which  uses  only  specific  features  of  the  recorded  waveform,  GPR full-waveform inversion

(FWI) uses the full  information content of the received signal,  what ultimately improves the

resolution of the r and σb images [Klotzsche et al., 2019b] . Time-domain crosshole GPR FWI

was applied in the last  decade to more than 40 different datasets  from various test sites and

demonstrated the possibility to characterize aquifers within decimeter-scale resolution including

important small-scale structures like high porosity zones and impermeable clay lenses (overview

provided by Klotzsche et al. [2019b]). Thereby, an amplitude analysis approach and the FWI was

able  to  detect  and  localize  zones  of  higher  permittivity  (intermediate  σb),  which  act  as  low

velocity electromagnetic waveguide and which were linked to zones of preferential water flow

with higher hydraulic conductivity  [Klotzsche et  al.,  2013]. A similar  study, investigated the

possibility to map zones with higher  σb  associated with increased clay content indicating clay
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lenses  in  the aquifer  [Zhou et  al.,  2020].  Gueting  et  al.,  [2015,  2017] demonstrated  that  2D

crosshole GPR FWI results improved large-scale  characterization of aquifer heterogeneity and

could identify aquifer layers of a few decimeters thickness. This high-resolution reconstruction

of layers allowed to explain a previously observed tracer plume transport and in particular tracer

plume splitting [Müller et al., 2010] that was caused by the presence of a thin layer with a lower

hydraulic conductivity. 

Generally,  the  time-domain  crosshole  GPR  FWI  is  an  iterative  approach  to

simultaneously  estimate  r and  σb by  minimizing  the  misfit  function  between measured  and

modeled GPR data with a gradient-type approach (for more details  we refer to Meles et  al.

[2010]  and  Klotzsche  et  al.  [2019b]).  Thereby,  a  2D finite-difference  time-domain  (FDTD)

algorithm is used that solves the full Maxwell equations and allows predicting the EM wave

propagation  through  the  heterogeneous  medium.  In  order  to  prevent  the  misfit  function  to

converge  to  a  local  minimum,  a  εr starting  model  (SM)  is  required  that  yields  synthetic

waveforms that match all the observed data within less than half of the wavelength and avoids

cycle-skipping  [Meles  et  al.,  2010].  Normally,  ray-based  inversion  results  can  provide  such

starting models.  In the presence of high contrasts,  such as a water table  or high permittivity

zones, ray-based SM often need to be updated to meet these  criteria [Klotzsche et al., 2012].

Local invasion of tracer may generate small-scale high contrasts in r and b over short distances,

which cannot be resolved by ray-based inversions. SM based on a ray-based inversion may differ

too much from the true distribution so that a local gradient based optimization algorithm may not

find the global minimum of the misfit function.

Next to spatial resolution, another problem in geophysical imaging is the translation of

imaged  parameters  (εr and  σb in  GPR)  to  the  property  of  interest,  the  tracer  or  substance

concentration. Since the petrophysical relations between them depend on aquifer properties like

porosity  [Birchak et  al.,  1974],  pore  structure  [Archie,  1942],  surface  charge  density  of  the

mineral  surfaces  [Rhoades  et  al.,  1981],  which  are  caused  by  spatially  variable  aquifer

heterogeneity, this relation is spatially variable and site dependent (e.g., Müller et al. [2010)].

The  translation  of  the  imaged  electric  property  distributions  to  concentration  distribution  is

therefore afflicted by this spatial variability. Utilizing high-resolution GPR FWI before and after

the tracer can be used to reduce the uncertainty in petropysical relations.
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In this study, we analyze the potential  of time-lapse crosshole GPR FWI for imaging

tracer tests in heterogeneous aquifers, using a numerical experiment. The setup of the experiment

is  based  on  the  properties  of  the  aquifer  at  the  Krauthausen  test  site,  which  consists  of

heterogeneous alluvial sandy-gravel sediments showing preferential flow paths with thicknesses

of ~0.2 m [Gueting et al., 2017]. Different tracer scenarios were analyzed using a salt and an

ethanol tracer. Through petrophysical relations the plume concentrations I) of positive/negative

salt tracers were converted to increases/decreases in σb and II) of an ethanol tracer to decreases in

both  σb and  εr. Note, commonly, only changes in  σb from salt [Kemna et al.,  2002] and heat

[Hermans et al., 2015] tracers are imaged with methods like ERT. Since the GPR FWI is able to

provide both high-resolution εr and σb images, we want to evaluate the potential of imaging small-

scale tracer distributions from both parameters. Crosshole GPR data were generated before and

during the plume intrusion. We tested the ability of FWI to recover the tracer distribution for

different tracer concentrations that generated different changes and contrasts in  b and  r. To

monitor tracer experiments, starting models for εr and σb based on a high resolution FWI model

of a previous time step may be beneficial [Zhang and Huang, 2013, Asnaashari et al., 2015].

That  because  When changes  in  electrical  properties  due  to  changes  in  tracer  concentrations

between  two  time  steps  are  moderate  and  smaller  than  the  changes  from  the  background

distribution, a starting model that uses r and σb distributions from the first time step rather than

from the background might be closer to the global minimum of the misfit function of the second

data. Therefore, we tested two starting model strategies: I) Using the recovered FWI background

models and, II) considering the recovered FWI models from GPR measurements from a previous

time step when the plume concentration distribution is relatively similar to the actual one. 
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2 Realistic hydrological aquifer model domain

To  realistically  model  time-lapse  GPR  data  and  perform  the  FWI  for  the  different  tracer

scenarios,  we  developed  a  realistic  hydrological  model  domain  of  an  aquifer  in  which  we

simulated  flow and transport  processes.  To  achieve  this,  we used  the  detailed  database  and

knowledge from the Krauthausen test site in Germany (see Tillmann et al. [2008] and Gueting et

al., [2017] for more details).

2.1 Krauthausen test site as aquifer model domain

The Krauthausen aquifer is an alluvial sandy-gravel aquifer with a silt and clay content

that varies between 0.5 - 7.5% [Vereecken et al., 2000]. With respect to GPR, the aquifer is well

suited due to its low to intermediate electrical conductivity between 5 and 20 mS/m [Zhou et al,

2021]. The test site extent is 200 x 70 m and has more than 70 wells used for pumping and water

sampling which reach to 9 - 12 m depth. The ground water level varies through the year between

1-3 m  below  surface  [Englert,  2003].  The  site  was  investigated  in  multiple  studies  using

hydrogeological characterization by cone penetration test (CPT) [Tillman et al., 2008] and tracer

tests [Vereecken et al., 2000, Vanderborght and Vereecken, 2001], using soil and water sampling

[Englert  et  al.,  2000],  borehole  velocity  measurements  [Englert,  2003],  geophysical  imaging

methods of ERT [Kemna et al., 2002, Müller et al., 2010], GPR [Oberröhrmann et al., 2013,

Gueting et al., 2017, Zhou et al., 2020], spectral induced polarization [Kelter et al., 2018]), and

pumping tests [Li et al., 2008]. The hydraulic  conductivity (K) and porosity (𝝓, derived from

neutron activity in cone penetration tests – CPT [Tillman et al., 2008]) datasets were used for

flow and transport modeling, and εr (from 𝝓 using CRIM model [Birchak et al., 1974]) and σb

datasets for GPR modeling. Heterogeneity of K that mostly influences preferential path thickness

was derived from lnK histograms with variance of 0.6 and correlation lengths (I) in the vertical

Iv=0.18 m [Englert et al., 2003] and in the horizontal directions of Ih=1.75 m direction [Tillmann

et al., 2008]. 

As a first step, we adopted the 3D facies model (Figure 1a) from Gueting et al. [2017 and 2018],

which was generated based on adjoint tomograms from 2D GPR full-waveform inversions, and

subsequently expanded to a 3D cube using multiple-point statistics. This model is composed of

three facies: sandy gravel, sand, and gravel. Secondly,  we generated the distributions of four
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aquifer parameters (K, ,𝝓  εr, σb), in each of the three facies using stochastic Gaussian simulation

(SGSIM) based on variogram modeling [SGeMS software, Remy et al., 2009]. For each property

and facies,  the simulation was performed over the entire  model  domain,  and then they were

integrated to one aquifer model domain (“cookie-cutter”) based on the 3D facies model [Gueting

et al., 2018]. K and 𝝓 models were simulated independently with no spatial crosscorrelation, εr

was calculated directly from the 𝝓 model using the CRIM model [Birchak et al., 1974], and σb

was  simulated  using  sequential  Gaussian  co-simulation  (COSGSIM)  based  on  the  εr spatial

distribution as a secondary information with correlation  r=0.5 in each facies [Gueting et  al.,

2015]. For all the stochastic simulations an exponential variogram model was used with a nugget

of 0. Tables 1 and 2 summarize the parameter values and references used to set up the different

property distributions.  The final models are visualized in Figure 1, with a grid that covers a

domain size of 20.07 x 30.15 x 4.68 m, from 3.58 to 8.26 m depth and this is composed of cubic

cells with edge size of 0.09 m.  

Table 1:  Mean values,  variance,  horizontal  and vertical  correlation lengths (Ih,  Iv)  of aquifer

properties: the porosity 𝝓, log hydraulic conductivity lnK, relative permittivity εr and electrical

conductivity σb of the Krauthausen test site used for stochastic simulation within Facies 1-3. 

*𝝓 **lnK
[K in m/d]

***εr

[-]

****σb

[mS/m]

Facies 1 - sand

Mean 35. 8 -7.69 21 17.2

Variance 7.7 0.1 2.94 2

Iv [m] 0.13 0.6 0.13 0.13

Ih [m] 0.56 5 0.56 0.56

Facies 2 - sandy-gravel

Mean 31.9 -6.4 18.6 12

Variance 3.6 0.6 1.24 1.75

Iv [m] 0.12 0.18 0.12 0.12

Ih [m] 0.39 1.75 0.39 0.39

Facies 3 - gravel

Mean 25.7 -5.78 15.2 10.3

Variance 6 1 1.97 1.5

Iv [m] 0.12 0.4 0.12 0.13

Ih [m] 0.6 0.3 0.6 0.6

* The mean variance of the porosity was calculated from water content point measurements from

neutron logs at  CPT locations  [Tillmann et  al.,  2008].  The correlation lengths  Ih  and Iv were
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calculated (using semi-variogram analysis) after conversion from εr tomograms at multiple GPR

FWI planes [Gueting et al., 2017, Zhou et al., 2021] using the CRIM model. 

** Mean value of  lnK was adopted from a  K model  based on grain size distribution (GSD)

[Bialas and Kleczkowski, 1970, Gueting et al., 2017]. Variance and  Ih of  lnK were calculated

based on a dense grid of vertical CPT with ~1.5 m horizontal separation distance [Tillmann et

al.,  2008],  using  a  calibrated  correlation  between  GSD  and  CPT  geophysical  properties

(mechanical  resistance,  natural gamma activity  and bulk density),  where co-located data was

available.  Iv=0.18 m of  lnK  in the main Facies 2 of the model (green facie in Figure 1a) was

adopted from borehole groundwater velocity measurement [Englert, 2003]. 

*** εr was calculated directly from the porosity model using CRIM model. 

**** Mean value of σb and variance, Ih and Iv were calculated from σb tomograms at multiple GPR

FWI planes [Gueting et al., 2017, Zhou et al., 2021].

Figure 1. Aquifer model domains used for the hydrological flow and transport modeling. (a) Facies model, (b) log-

conductivity, (c) porosity model, (d) background relative permittivity, and (e) electrical conductivity. The 3D facies

model was adopted from Gueting et al. [2018]. 
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2.2 Tracer transport simulation 

We used a flow and transport  model based on the designed aquifer model domain to

imitate a  past positive saline tracer test performed by Müller et al. [2010]. The results of this

tracer  test  were  used  in  our  numerical  study  as  a  reference  for  the  synthetic  plume  fate

reconstruction.  The  3D  flow  equation  of  the  transport  model  was  solved  using  TRACE

[Vereecken et al., 1994] and the transport equation was solved using a random-walk particle-

tracking algorithm PARTRACE [Bechtold et al., 2011]. We simulated a tracer injection for 7

days using a uniform water influx source of 20 m³/day between 3.58 -  8.26 m depth in the

borehole, and a particle injection source of 1.429∙107 “conservative or non-reactive” particles

injected per day, resulting in an injection concentration of 7.15∙105 particles/m3. We modelled the

borehole (diam. 50.8 mm, slots 0.5 mm) by a vertical column of grid cells (cubic, edge of 0.09

m) assigned with K = 267 m/d [Klotz, 1990] and porosity of 1. The borehole was surrounded by

a gravel pack that fills the well (diam. 0.328 m), modelled by 8 grid cell columns with K = 2246

m/d [Klotz, 1977] and porosity 0.4. To solve for the total head and velocity distributions in the

heterogeneous  aquifer,  we adopted a  natural  hydraulic  gradient  in the  aquifer  of 0.002 m/m

[Vereecken  et  al.,  2000]  implemented  by  pressure  head  boundary  conditions  at  the  up  and

downstream  boundaries,  and  zero  flux  condition  at  the  lateral,  top  and  bottom  boundaries.

During the injection phase, we used the flow velocity field that was simulated considering the

water injection in the well for the transport simulation. After the injection phase, this field was

instantaneously shifted to the flow velocity field that was simulated for the natural background

hydraulic  gradient.  The  heterogeneity  of  the  simulated  plume  was  controlled  by  the

stochastically-generated lnK and porosity (Table 1), which generated a variable fluid velocity. To

account for the effect of velocity fluctuations on solute transport at the grid-cell scale, we used

longitudinal and transverse dispersivities of 0.003 and 0.001 m, respectively. 

The results of the transport simulation are shown in plan, side and front view (Figure 2a, c, d),

for an exemplary snapshot at 15 days after the start of the injection. In each plane view, the

distribution of mass represent the sum of particle mass along the perpendicular axis to that plane.

A substantial part of the plume was transported over a large distance in the lower part of the

aquifer (between 7 and 8 m depth),  whereas a second part of the plume was moving slower

between roughly 5 and 6.5 m depth. This was also apparent in breakthrough curves that showed

an earlier  plume arrival  at  7.5 than at 5.5 m depth both at  10 and 20 m downstream of the
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injection  well  (Figure  2b).  The plume is  mainly transported in facies  2,  which has a  higher

hydraulic conductivity than facies 1, whereas facies 3 (with the highest conductivity) was hardly

present  within  the  range  of  depths  where  the  tracer  was  injected.  Figure  3  illustrates  the

simulated tracer distribution in the monitoring plane at 15 days after the start of the injection, the

facies distribution, and the distribution of a salt tracer that was imaged in this plane using ERT

during a real tracer test carried out under the same conditions (injection well, injection rates) in

the Krauthausen test site [Müller et al., 2010]. The simulated plume splitting corresponded with

the  observed  one  and  the  correspondence  of  the  simulated  and  observed  tracer  distribution

indicated that the reconstructed facies distribution represented the real distribution quite well.

The simulated tracer distribution is characterized by thin horizontal lenses of 0.1 m thickness

with high concentrations (e.g., at 6.2 m depth, Figure 3b), which corresponds with the vertical

correlation length of  Iv  = 0.18 m of the hydraulic conductivity in facies 2. Note that the ERT

images did not resolve these small-scale tracer concentration variations and the results are more

smoothed (Figure 3c). 

Figure 2. Normalized particles mass in plan (a), side (c) and front (d) view at day 15 after beginning of the tracer

injection. The mass shown is a sum of mass at line of cells perpendicular to the view. Color map is normalized to the

maximum mass for each view. Boreholes, which are used to derive the GPR data, are located 10 m down gradient

from the injection well and are illustrated by orange circles and dashed lines. (b) Breakthrough curves at two down-

gradient positions, 10 and 20 m, and at two depths, 5.5 and 7.5 m. 
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Figure 3. Tracer intrusion in the monitoring plane. (a) Facies model, (b) concentration distribution, and (c) ERT

image (modified from Müller et al. [2010], Figure 5) for the domain of the plane between the two GPR monitoring

boreholes  10  m  downgradient  from  the  injection  borehole  (see  Figure  2).  The  concentration  represented  the

distribution after day 15 from the transport simulation normalized to injected tracer distribution. The x-axis relates to

the distance between boreholes (4.95 m). The electrical conductivity image is derived from the ERT tomogram and

borehole loggers from a previous tracer test at day 15 after beginning the injection. Note that the logger data was

obtained in two boreholes (seen as vertical anomalies) with vertical intervals of 0.35 m. The color scale represents

the bulk electrical conductivity difference. 

3 Tracer types and petrophysical relations

3.1 Change only in electrical conductivity: Salt and desalinated water tracer

The concentration of electrolytes in the groundwater determines the electrical conductivity of the

fluid phase,  whereas it  has only minor  influence  on the permittivity  [Sreenivas et  al.,  1995,

Hagrey and Mülller, 2000]. For pore fluid conductivities that are smaller than ~15 S/m, the fluid

electrical conductivity is proportional to the equivalent electrical charge concentration [Sreenivas

et  al.,  1995].   Salt  tracers  with  a  higher  concentration  are  not  often  imaged  with  GPR in

transmission mode because of the high attenuation of the EM wave [exception in Day-Lewis,

2003].

3.1.1 Implementation of the salt tracer simulation 

We simulated the solute transport using particle tracking and one particle was associated with a

certain equivalent  additional  charge compared to the background charge concentration in the

groundwater.  If  a  tracer  solution  with  a  lower  electrical  conductivity  than  the  background

groundwater  conductivity  was  injected  (desalinated  water),  particles  were  associated  with  a

‘negative’  additional  charge.  Assuming that  the  electrical  conductivity  of  the  injected  tracer
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solution  σf_tracer_injection is  constant  during  the  injection  and  that  the  background  fluid

conductivity in the aquifer σf_background is constant in space, the electrical conductivity of the

fluid at time t in a grid cell centered at a 3D coordinate x,  σf (,t), was related to the number of

particles in grid cell  np(x,t) at time t, the volume Vcell and porosity 𝝓 (x) in the grid cell, the

total number of particles injected  np,injection, and the total volume of water that was injected

Vinjection as: 

σf(x,t) = (σf_tracer_injection - σf_background) ∙ C(x,t) / Cinjection   +

σf_background 

Eq. (1)

with 

C(x,t) = np(x,t)/(Vcell ∙𝝓(x))  and Eq. (2)

Cinjection = np injection/Vinjection . Eq. (3)

C(x,t) and Cinjection are the particle concentrations in a cell and in the injected tracer solution,

respectively. The background pore fluid conductivity was equal to σf_background = 93.7 mS/m.

For the electrical conductivity of the injected salt tracer, we considered four cases: 

I. Injection  of water with an electrical  conductivity  smaller  than the background (negative

tracer, Desalinated case σf_tracer_injection = 69.6 mS/m), 

II. Injection  with a  conductivity  slightly  higher  (positive  tracer)  than the  background (Low

conductivity case: σf_tracer_injection = 117.8 mS/m), 

III. Injection with an Intermediate conductivity (σf_tracer_injection = 610 mS/m), and 

IV. Injection with a High conductivity (σf_tracer_injection = 1525 mS/m). 

The  Low  electrical  conductivity  case  adds  the  same  magnitude  of  tracer  fluid  electrical

conductivity  that  Desalinated  subtracts,  and  the  high  case  adds  2.5  times  the  tracer  fluid

conductivity of the Intermediate case. The background pore water conductivity and the negative

and intermediate tracer conductivities were adopted from the tracer experiments carried out by

Müller et al. [2010].
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3.1.2 Salt tracer – electrical conductivity petrophysical relations

The bulk electrical  conductivity  σb at each cell  of the grid is calculated using Archie’s Law

[Archie, 1942]:

σb(x,t)=σf(x,t)/F(x)+ σsurf(x), Eq. (4)

where F(x) is the formation factor of saturated soil and σsurf(x) is the surface conductivity. F(x)

is linked to the complex geometry of the pore channels and is smaller for a larger porosity and

smaller tortuosity of the pore network [Archie, 1942; Jackson et al., 1978]. σsurf(x)  is controlled

by the specific surface area, surface charge density, and effective ionic mobility in the electrical

double layer around the charged surface [Johnson et  al.,  1986]. For low fluid conductivities,

σsurf depends in a non-linear way on the fluid conductivity σf. But, for sufficiently large σf, σsurf

reaches a constant value so that the relation between σb and σf is linear, which we assume further

in this study. 

We  adopted  an  average  σsurf of  1.2  mS/m derived  from laboratory  experiments  in  packed

columns with sediments from the Krauthausen aquifer (Müller et al., [2010], sampled in B70 at

5.5 - 6 m). Using this information, we generated a random field of  σsurf(x) using SGSIM of

normally disturbed σsurf ~N (1.2,0.32) mS/m with the same correlation lengths as σb (Table 1),

but with no spatial correlation between σsurf and σb [Müller et al., 2010]. Then, we calculated

F(x) using Equation 4 with σf(x,t)= σf_background. The distribution of the obtained F(x) (Figure

8d) shows a range from 4.5 to 14.5 and is bimodal, reflecting the different distributions in the

two main facies  1 and 2 (Figure 3a).  The well  sorted sand facies  1 has a mean porosity of

𝝓1_mean=0.36 and a mean F(x) of approximately 6. The sandy gravel facies 2 shows a mean

porosity  𝝓2_mean=0.31 and a mean formation factor of 8.5. The gravel facies 3 has a mean

porosity 𝝓3_mean= 0.25 and a mean F(x) value is about 11, which is larger than the laboratory

measured value for the disturbed samples of Müller et al. [2010] of 4.56 to 6.63 which excluded

larger stones. 
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The flowchart in Figure 4 illustrates the steps to obtain the tracer concentrations from GPR FWI

σb images.  First,  F(x) is  recovered  from  background  GPR  FWI  σb  (Figure  4a)  using

σf,background and assuming a constantσ surf , which represents the average of  σsurf(x) derived

from lab measurements. Second, σf is estimated from time-lapse GPR FWI σb (Figure 4c). Last,

the tracer σf,tracer is calculated by subtracting σf,background from σf. 
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Figure 4. Flowchart presenting the recovery of solute (salt and desalinated water) and ethanol tracers. a) Formation

factor and b) porosity recovery from background GPR FWI. c) Salt and d) ethanol recovery from time-lapse GPR

FWI.

3.2 Change in permittivity and electrical conductivity: Ethanol tracer

Ethanol is commonly used as an additive in gasoline blends [McDowell et al., 2003, Spalding et

al.,  2011],  and  is  currently  treated  as  an  emerging  environmental  contaminant  [Gomez  and

Alvarez, 2009]. The dielectric properties of ethanol differ from water and these differences can

be used to detect ethanol in water-saturated conditions in a sand matrix with GPR [Glaser et al.,

2012]. Pure ethanol has a relative permittivity of 26.7 at 10 °C and an electrical conductivity of

0.025  mS/m  [Petong  et  al.,  2000,  Glaser  et  al.,  2012].  Note  that  the  properties  of  the

(ground)water at the Krauthausen test site at 10 °C are εr = 84 [Malmberg and Maryott, 1956]

and σ  ~ 90 mS/m [Müller et al., 2010]. Water-EtOH mixtures are miscible in all proportions as

they are both dipolar liquids [Lide, 2004]. Ethanol experiences polarization relaxation at central

frequency of about 1 GHz and dispersive behavior becomes effective from about f > 200 MHz,

lower than those of water: 25 GHz and 1GHz, respectively [Petong et al., 2000]. Thus, dispersive

behavior is expected for high GPR frequency ranges, but were not considered in study using low

frequencies  between  10-200  MHz  with  central  frequency  of  69  MHz.  Regarding  transport

properties,  ethanol  has  a  lower  density  and  a  higher  viscosity  than  water,  and  it  is

microbiologically  degraded.  However,  we  neglected  density,  degradation,  and  temperature

effects on ethanol transport, because we focused on the ability to retrieve the distribution of the

tracer from time-lapse GPR FWI parameter changes (εr, σb). Therefore, we simulated the ethanol

plume migration with the same particle tracking method and using the same transport parameters

(velocity, dispersivity) as the ones used for the salt tracer. 

3.2.1 Implementation of the ethanol tracer simulation 

We  produced  heterogeneous  ethanol  plumes  that  have  the  same  structure  as  the  salt  tracer

plumes.  For the ethanol plume simulations,  a particle represents a certain volume of ethanol

Veth, and therefore the volumetric concentration of ethanol in a cell Seth(x,t) is:

Seth(x,t) = Seth injection ∙ (np injection / Vinjection )-1 ∙ np(x,t)/ (Vcell ∙𝝓(x)). Eq. (5)
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where Seth injection is the volume concentration of ethanol in the injected solution, which was

considered to be 0.5. The injection volume  Vinjection and the duration of  the injection were

identical to those of the saline tracer simulations. 

3.2.2 Ethanol-permittivity petrophysical relations

An effective mixing model for permittivity of water ethanol mixtures, r_fε  , at 10°C was 

derived from fitting a second-order polynomial to experimental data [Wyman, 1931] (Figure 5): 

r_f (x,t) = 84.05 – 42.6∙Seth(x,t) – 15.7∙Seth(x,t)2 Eq. (6)

Figure 5. Relative permittivity εr,f of the fluid at 10°C as a function of ethanol volumetric concentration in 

ethanol-water mixture (adapted from Wyman [1931]).

To derive the bulk relative permittivity  r of the mixture-soil  system, we used the Complex

Refractive Index Model (CRIM) [Birchak et al., 1974]

εr (x,t)=( 𝝓(x)√εr,f  (x,t)∙ + (1-𝝓(x))√εr,s ) 2 Eq. (7)

where  εr,s =4.5  is the relative permittivity of the solid grains [Carmichael, 1988].  In order to

retrieve εr,f and eventually S(x,t) from a GPR FWI permittivity model (Figure 4d), the porosity

must be recovered from εr background measurements (Figure 4b): 

𝝓recovered(x) = (√εr(x,t0)-√εr,s) / (√εr,f-√εr,s) Eq. (8)
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3.2.2 Ethanol-conductivity petrophysical relations

We  modeled  the  electrical  conductivity  of  the  ethanol-water  fluid  mixture  σf with  the

Lichtenecker–Rother (L–R) model [Guéguen and Palciauskas 1994] by Personna et al. [2013]: 

σf(x,t) = (Seth (x,t) ∙ eth +(1-Seth σ α (x,t)) ∙ f,background ) 1/α α Eq. (9)

with α = 0.3 for ethanol volumetric concentration Seth ≤ 0.5. 

In order to retrieve σf(x,t) and eventually Seth (x,t) from a GPR FWI bulk electrical conductivity

model  (Figure  4c),  the  formation  factor  must  be  recovered  from  σb(x,t0)  background

measurements (Figure 4a, Equation 2).

4 GPR modeling

Synthetic  GPR data  were  calculated  in  a  crosshole  setup  at  10  m distance  from the

injection borehole and perpendicular to the main flow direction (Figure 2, Figure 3a, b). The

distance between the boreholes was 4.95 m. GPR data were derived between 3.2 - 10 m depth,

which is below the water table (2.4 m depth).  We added a realistic ambient noise level to the

synthetic waveforms to evaluate  its effect on the inversion performance (Appendix A1).   To

realistically include reflection and refractions of the GPR data, we describe the unsaturated zone

above 2.4 m depth with εr  = 4.7 [Daniels, 2004].  A semi-reciprocal acquisition setup was used

with 35 transmitters and 69 receivers on each side, spaced 0.2 and 0.1 m, respectively, similar to

previously performed measurements at the test site [Oberröhrmann et al., 2013]. With this setup

a high ray coverage  that  improves  the electrical  conductivity  reconstruction  is  obtained.  We

considered for our modeling a constant source wavelet (SW) with a central frequency of 69 MHz

for the background and time-lapse cases (adopted from a previous FWI studies [Gueting et al.,

2015]). It has been shown in experimental studies that for this operating frequency GPR FWI can

obtain models with a vertical resolution as small as 0.2 m [Zhou et al., 2020].

5. GPR FWI results 

For the inversion and forward modeling, we considered a cell size of the models of 0.09 m and

0.03 m,  respectively.  Note  that  the  inversion  grid has  the  same size  of  the  of  the transport
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simulation (Figure 3b). For the crosshole GPR FWI we considered the approach based on van

der Kruk et al. [2015] that allows an update of the medium properties close to the boreholes and

we follow the criteria given by Klotzsche et al. [2019b] to define the final inversion results.

5.1 Background models

The starting models (SM) for the FWI were derived from ray-based inversion results (Figure 6 b,

g). The permittivity starting model is based on the first arrival time inversion. For the σb starting

model, we considered a uniform σb of 15 mS/m based on the mean of the first-cycle amplitude

inversion [Holliger et al., 2001]. The εr and σb results of FWI (Figure 6 c, d, h, i) of the noise-free

and noise-added datasets visually show the same structures with decimeter-scale resolution and a

smoothed recovery of the real input models. As expected, the inversion of the noise-free data

performed  slightly  better  than  the  noise  added  inversion  (see  Table  2  for  performance

evaluation),  therefore  from here  on  we consider  only  the  noise-added dataset.  Model  errors

(Figure 6e, j) are larger at locations of high contrasts. The RMSE of the background models are

0.86 for εr and 1.64 mS/m σb. The εr FWI models resolved the fine features better than the FWI σb

models, as indicated in horizontal and vertical 1D profiles and by spectral analysis (Figure 7).

The illumination of the domain using crosshole acquisition results in a better resolution of the

vertical than the horizontal structures [Meles et al., 2010]. In  vertical direction the ratio of the

spectral densities of the FWI to RM starts decreasing for wavenumbers larger than υ = 3 m-1 and

υ = 1.13 m-1 (equiv. to wavelength λ of 0.33 m and 0.88 m, λ = 1/υ) for εr and σb, respectively. In

the horizontal direction, this ratio starts increasing for wavenumbers larger than υ = 0.77 m-1 (λ =

1.3 m) and υ=0.51m-1 (λ = 2 m) for εr and σb, respectively. 
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Figure 6. Background permittivity (top row) and electrical conductivity (bottom) models. (a, f) real models, (b, g)

starting models based on ray-based inversion results, and (c, h) FWI models of the noise free dataset and (d, i) with

noise. (e, j) Show the difference between real and FWI models with noise. Transmitter and receiver positions are

located on black circles  and crosses,  respectively near the panel side boundaries.  Above and right to (d),  plots

compare the real (blue) with FWI (orange) permittivity models (a, d) along vertical profile at 2.5 m distance and

horizontal profile along 6.5 m depth (indicated by arrows). Below and right to (i), plots compare the real (blue) with

FWI (orange) electrical conductivity models (f, i).
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Figure 7.  Spectral  density of  (a)  permittivity and (b)  electrical  conductivity.  Curves compare  between the real

models (RM, blue) and reconstructed FWI (orange) models for horizontal (line) and vertical (dashed line) directions.
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Table 2: Performance evaluation of the FWI of the background data and models. 

Noise-free Noise

GPR FWI data Iterationa 67 59

rmsb ⋅10-7 1.26 1.42

R2 0.9986 0.9983

MAEc⋅10-7 4.94 5.41

RMSE ⋅10-7 (% RMSEu) d 1.77 (99.1) 1.96 (98.7)

FWI model εr R2 0.768 0.742

MAE 0.659 0.714

RMSE (%RMSEu) 0.862 (72.8) 0.936 (66.5)

FWI model σb R2 0.648 0.698

MAE [mS/m] 1.24 1.27

RMSE [mS/m] (%RMSEu) 1.64 (71.3) 1.68 (70.3)
a - Number of FWI iterations.
b - Root-mean squared error of the misfit function between real and modelled data
c - Mean absolute error.
d - See Appendix B Equations 16-19.

5.2 Porosity and formation factor estimation of the background models

The background FWI results (Figure 6 d, i) are used to derive the porosity 𝝓recovered and the

formation  factor  Frecovered distributions  using  Equations  4  and  8  (Figure  8).  𝝓recovered

shows a better correlation with the real model porosity 𝝓RM than Frecovered with FRM.  The

mismatch for both parameters is related to the unresolved structures and deviations between FWI

and real εr and σb models (Table 2, Figure 6e, i). We see that low values of 𝝓recovered (<0.28)

overestimate 𝝓RM, while high values of 𝝓recovered underestimate 𝝓RM (Figure 8c), which is

a bias originating from FWI results. For higher values of  Frecovered (>10) we can notice larger

scatter. Locations with a high F correspond with locations where σb,bakground is low. Errors in the

recovered σb,background and deviations between the local σsurf and the mean σsurf, which is used to

recover F, lead to a larger scatter for high values of Frecovered.
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Figure  8.  Porosity  (top  row)  and  formation  factor  (bottom row)  distribution  calculated  from permittivity  and

electrical  conductivity  models,  respectively:  a)  and d)  show the  real  models,  and,  b)  and  e)  the  FWI models.

Correlation plots and coefficient of correlation are presented in c) and f).

5.3 Time-lapse GPR FWI results of salt tracer

We chose to investigate day 15 after the tracer injection of the different tracer scenarios in the 

defined monitoring plane. Note that permittivity models are unchanged [Sreenivas et al., 1995] 

for all scenarios of the salt tracer test and therefore only the σb real models are used (Figure 9). 

However, in the simultaneous inversion nature of the FWI, the permittivity and conductivity 

updates are influenced and linked with each other, thus also the permittivity is updated. 

For injections with Intermediate and High tracer conductivity, the bulk electrical conductivity

distribution is predominantly determined by the distribution of the saline tracers, which generate

larger  variations  in  σb than  spatial  variations  of  σb_background (Figure  9d  and e).  For  the

Desalinated (negative) and Low (positive) conductivity tracer, the changes in σb are in the same

order of magnitude as the spatial variation in σb_background. 
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Figure 9. Bulk electrical conductivity real models in the monitoring plane for different cases of injected salt tracer

concentrations: (a) Desalinated water, (b) Background, (c) Low, (d) Intermediate and, (e) High. The intrusion is

shown for 15 days after the injection, and the main location of the tracer intrusion are emphasized by rectangles in

(a). Note that panels (a-c) have the same colorbar scale, and (d) and (e) have different ones. Transmitter and receiver

positions are located on black circles and crosses, respectively near the panel side boundaries.

We  obtained  time-lapse  FWI  models  using  two  strategies  of  the  starting  models:  I)  using

reconstructed  FWI  models  of  the  background,  and,  II)  reconstructed  FWI  models  from  a

previous day. Note that we also investigated the use of ray-based starting models of each day, but

the performance was less good than the other two strategies. We chose to use as a SM the FWI

results  from  2  days  before  (13  days  after  the  tracer  injection,  Figure  S1  in  Supporting

Information).

We show the difference in FWI σb models between day 15 and the background (Δσb) from noise-

added  data  for  the  Intermediate tracer  conductivity  case  (Figure  10a-c),  together  with  the

recovery  of  tracer  fluid  conductivity  distribution,  σf_tracer (Figure  10d-f)  at  depths  within  the

transport model domain, from 3.58 to 8.26 m. The σf_tracer calculated from σb using petrophysical

relation  conversion  which  includes  Frecovered (Figure  8e)  that  contains  an  additive  error  (0.75

correlation between FFWI and FRM), recovered the structure of the plume (Figure 10f) and could

resolve σb anomalies up to ~0.2-0.3 m in thickness with lower values than real one (Figure 10d),

but shows slightly more smoothed structure than Δσb (e.g. at location 7.5-8 m depth, compare

with Figure 10c). An unexpected slightly better recovery evaluation for σf_tracer than Δσb (higher

R2 in Figure 10, and other measures in Table 3) may be explained by the spatial distribution in

the errors of σb background (see Figure 6j) and of day 15, and the distribution of the tracer

concentration at the location of these errors. Inversions using the SM from FWI distribution from

2 days before, yielded slightly better inversion results than the SM using FWI of the background

(Table 3), evaluated by a larger R2 (0.728 compared with 0.698) and also visible by less smearing
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of thin preferential paths, e.g., at 5 m depth between 2 - 2.5 m distance. Subtracting σb at day 13

(FWI model and the recovered plume are shown Figure S1 in Supporting Information) from that

in  day  15  shows  that  time-lapse  GPR  FWI  can  follow  the  solute  changes  (Figure  S2  in

Supporting Information).

   

Figure 10. Tracer recovery of the intermediate salt tracer at day 15. Difference in bulk conductivity between day 15

and the background (top row) and tracer fluid conductivity (bottom) from (a,d) true model, (b,e) FWI of noise-added

data with SM from FWI background, and FWI of noisy-data and (c,f) with SM from FWI day 13.

Table 3: Performance evaluation of FWI modelled data, FWI model parameters εr and σb, and 

tracer fluid conductivity of the salt tracer, σf, at day 15 for four cases: Desalinated (negative 

conductivity change), Low, Intermediate and High. For each scenario, results are given for noise-

free and noise-added datasets using the background FWI as SM, and noise-included dataset using

the day 13 FWI as SM.

GPR FWI modelled data FWI model Δσb Tracer σf

Iter. rms
⋅10-8

R2 MAE
(⋅10-7)

RMSE ⋅10-7

(%RMSEu)
R2 RMSE [mS/

m]
(%RMSEu)

R2 MAE
[mS/
m]

MBE
[mS/m]

RMSE [mS/
m]

(%RMSEu)

Desali
nated

Noise-
free

15 14.9 0.9987 0.609 2.11 (99.2) 0.65 0.864 (57.7) 0.704 5.07 0.43 6.85 (56)

Noise 24 16.2 0.9986 0.648 2.24 (98.8) 0.629 0.89 (58.3) 0.687 5.22 0.454 7.05 (56.6)
SM day
13 noise 

32 15.2 0.9988 0.603 2.1 (98.9) 0.645 0.87  (63.5) 0.708 5.12 0.314 6.81 (61.9)

Low Noise-
free

32 10.5 0.9987 0.39 1.49 (99.3) 0.672 0.836 (71.1) 0.727 4.85 -0.577 6.59 (68.5)

Noise 23 12.2 0.9983 0.441 1.67 (99.1) 0.655 0.858 (62.4) 0.703 4.84 -0.578 6.87 (61.8)
SM day
13 noise 

19 11.2 0.9987 0.39 1.47 (99.4) 0.643 0.873 (68) 0.697 5.13 -0.659 6.93  (64.7)

Interm
ediate

Noise-
free

51 7.93 0.9985 0.243 1.12 (99.6) 0.703 5.91
(63.7)

0.734 32.1 -4.21 48.2 (65)

Noise 36 9.52 0.9981 0.281 1.27  (99.1) 0.668 6.02 (61.8) 0.703 32.9 -4.43 48.3 (64.6)
SM day
13 noise 

34 8.76 0.9984 0.253 1.15 (99.2) 0.698 5.95 (64.8) 0.728 32.7 -4.42 48.8 (65.8)

High Noise-
free

66 8.8 0.9979 0.275 1.24 (98.8) 0.386 21.2 (49.7) 0.46 116 -14.6 172 (48.1)
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Noise 46 10.7 0.9971 0.323 1.45 (98.9) 0.294 22.8 (44) 0.397 125 -10.6 181 (41.7)
SM day
13 noise 

30 9.59 0.9977 0.284 1.28 (99.7) 0.363 21.6 (50) 0.447 117 -10.1 173 (47.6)

Recovery of FWI Δσb model and tracer intrusion σf_tracer for the four tracer conductivity cases,

using FWI models of two days before as SM, are shown in Figure 11a - d (only shown for the

noise-added data), in comparison to the real models (Figure 9a and c-e). Desalinated, Low and

Intermediate  recovered  FWI  σb model  cases  show a  good  recovery  of  the  plume structure,

whereas the High case in general captures the structure, but contains internal errors inside the

anomaly distribution. The best  Δσb and  σf_tracer recoveries are obtained for the Intermediate

case  (shown by  R2 and  %RMSEu,  Table  3),  while  Desalinated  and  Low cases  show lower

performance. This is a consequence of the spatial variability in σsurf(x), which is approximated

by a constant value in the petrophysical relations (Equation 2) and has a larger impact on the σf

recovery for lower σb values.
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Figure 11. Recovered salt tracer distributions for four different conductivity magnitude cases from FWI (noise-

added datasets)  using FWI from day 13 as  SM. Difference  in FWI bulk conductivity between day 15 and the

background, real and recovered tracer conductivity distribution are in top, middle and bottom rows, respectively.

Note the different colorbars for each case including negative values colorbar for Desalinated case.
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Investigating  the  data  fit  between  the  simulated  and  FWI  modeled  traces  for  the  different

scenarios (Figure 12), exemplary shown for one transmitter position at the depth of major tracer

intrusion (6 m) and one with no intrusion (9.6 m), we notice generally a good overlap of the

traces  and  that  the  FWI  can  resolve  most  details  of  the  traces.  A higher  σb entails  lower

amplitudes  causing  gradually  decreased  amplitudes  from  Background  to  Intermediate  cases

(compare  the  Observed data  for  the  transmitter  shot  gathers  at  6  m of  different  cases).  We

observed a gradual decrease in  R2 between the true and inverted traces from Background to

Intermediate cases, associated with decreasing signal-to-noise ratio.  The models seems to have

difficulties to represent the very large difference in signal amplitude in different regions (e.g.

between 6 m and 9.6 m in Intermediate case) of the domain rather than to distinguish the signal

from the noise. This is even more pronounced for High tracer case.
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Figure 12. Observed (real data noise-added), FWI inverted and the difference between inverted and 

observed data for transmitters at the depth of major tracer intrusion (6 m) and at depth where no intrusion 

occurs (9.6 m). Data is presented for the (a) background (tracer case in Figure 9 b) and (b,c) Low and 

Intermediate (tracer case in Figure 9 c-d) tracer cases. Note that for the Intermediate case in (c) for the 

transmitter at 6 m depth panel where the signal is weaker because the wave travels through the increased 

σ of the tracer, the color scale is 15 times smaller. R2 quantifies the correlation between FWI inverted and 

the observed data. The standard deviation of the Gaussian ambient noise was 4.6∙10-8 in all cases.

Figure S4 (in Supporting Information) shows observed and FWI traces of Intermediate

and High cases for ray paths travelling parallel to the surface. At the central part of the plume,

the High FWI waveform at 6 and 7 m show a bad fit (Figure S4 f,h), with erroneous amplitudes
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and phase shifts. The FWI traces with a large misfit are related to a  i) a further decrease in

signal-to-noise ratio, and ii) large σb parameter anomalies in combination with trade-offs between

εr and σb on trace attenuations that result in local optima in the objective function far from the

true optimum where local and gradient based optimization schemes converge to [Klotzsche et al.,

2019b]. 
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5.4 Time-lapse GPR FWI of ethanol tracer

The real models of  εr and σb in the monitoring plane 15 days after the ethanol tracer injection

show a decrease in both εr and σb (Figure 13a, g) compared with the background (Figure 6a, e),

with maximum changes of Δεr = -3.35 and Δσb = -11.95 mS/m at 6.3 m depth. This corresponds

to the GPR traces for the ethanol tracer distributions with increased amplitude and which are

shifted to earlier times by about 1-1.5 ns (examples of ethanol FWI and corresponding RM traces

at the main intrusion depth are shown in Figure S5). We used the same SM strategies as for the

salt  tracer.  Difference in FWI permittivity  between day 15 and the background  (Δεr) models

using the two different SM show (Figure 13b, c compared with Figure 13a) FWI using a SM of a

reconstructed FWI model from a previous day is better than using the background SM (Table 4).

FWI Δσb recovery (Figure 13h, i compared with Figure 13g) is more smoothed than that of εr,

and is related to a higher sensitivity to fit the phase than to fit the amplitude. Modelled FWI

traces (blue dashed lines in Figure S5) for the ethanol case show a good fit to the observed

traces. 

Volumetric concentration of ethanol Seth distributions calculated from εr (Figure 13e, f compared

with Figure 13d) using SM from FWI of a previous day recovers a sharper distribution, a finer

size of the preferential paths, and a better reconstruction of the quantitative values than SM from

FWI of the background (Table 4). A more accurate recovery of Seth distribution is derived from εr

rather than from σb (Figure 13k, l compared with Figure 13j) because of the better recovery of

FWI  εr,  and due to uncertainty in  σsurf(x) that propagates in the derivation of  Seth from  σb.  In

addition, since the uncertainty of 𝝓recovered is smaller than that of Frecovered (Figure 8), less errors

propagate in the recovery of Seth from εr than from σb.

Table 4: Performance evaluation of FWI modelled data at day 15, difference in permittivity (Δεr)

and conductivity (Δσb) between day 15 and the background, and the volume concentration of the

ethanol tracer at day 15. Report is on FWI datasets with 1) SM background noise-free, 2) SM

background noise added, and 3) SM using day 13 noise added.
GPR FWI modelled data FWI model Δεr FWI model Δσb

Iter Rms
⋅10-8

R2 MAE
(⋅10-7)

RMSE ⋅10-7

(%RMSEu)
R2 RMSE [-]

(%RMSEu)
R2 RMSE [mS/m]

(%RMSEu)

SM bkgd 37 20.4 0.9985 0.805 2.71 (98.8) 0.777 0.3 (65.8) 0.629 1.55 (67.9)
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noise-free
SM bkgd

noise
31 22.2 0.998 0.909 3.11 (99.6) 0.712 0.34 (58.4) 0.61 1.59 (62.8)

SM day
13 noise 

31 18.9 0.9986 0.778 2.64 (99) 0.776 0.3 (78.4) 0.636 1.53 (61.9)

Tracer Seth from εr Tracer Seth from σb

R2 MAE MBE RMSE [-]
(%RMSEu)

R2 MAE MBE RMSE (%RMSEu)

SM bkgd
noise-free

0.806 0.0284 0.0019 0.04 (59.3) 0.663 0.0386 -0.0067 0.054 (57.9)

SM bkgd
noise

0.747 0.0318 0.0014 0.0469
(53.7)

0.642 0.0395 -0.0083 0.0557 (51.6)

SM day
13 noise 

0.812 0.0281 0.0043 0.0404
(69.5)

0.668 0.038 -0.0073 0.0536 (48.3)

Figure 13.  Tracer recovery of ethanol at day 15. Top row: difference in permittivity between day 15 and

the background, second row: ethanol volumetric concentration from permittivity, third row: difference in

bulk conductivity between day 15 and the background, bottom row: ethanol volumetric concentration

from permittivity. Left column: the real models, middle column: the recovered FWI models using SM of

background FWI, right  column: the recovered FWI models using SM of day 13 FWI. Note that  the

change in both permittivity and conductivity is negative.
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Further, subtracting εr at day 13 (FWI model of the recovered plume are shown Figure S6b in 

Supporting Information) from that in day 15 (Figure 14a,b) shows that time-lapse GPR FWI can 

image the solute concentration changes based on time lapse r images with about 0.2 m 

resolution, and better than from time lapse σb  images (Figure 14c,d, after subtracting εr in day 13 

in Figure S6f from that in day 15 in Figure 13i).

Figure 14.  Changes between day 15 and day 13 based on permittivity: a) Real and b) FWI recovered

models, and based on bulk conductivity: c) Real and d) FWI recovered models.
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6 Conclusions and outlook

In this study, we tested the reconstruction of a tracer plume with crosshole GPR FWI in a

numerical experiment.  Realistic dimensions of the plume and the electrical  aquifer properties

influenced  by  it  were  derived  from available  aquifer  and tracer  test  datasets  from previous

studies at the Krauthausen test-site. We used this information to generate aquifer and transport

simulations. We tested the GPR FWI to reconstruct the plume from a noise-free and a noise-

added dataset for a saline tracer, which changed σb, and an ethanol tracer, which changed both εr

and  σb.  We  retrieved  petrophysical  models  for  ethanol  for  conversion  between  ethanol

concentrations  and  relative  permittivity  and  electrical  conductivity.  For  the  salt  tracer

experiment, large increase in σb from tracer intrusion can cause trade-offs between εr and σb as

they both depend on the GPR trace amplitude. Plume reconstruction of ethanol from GPR FWI

crosshole  permittivity  changes  showed  an  improvement  compared  to  reconstructions  from

electrical conductivity changes, because GPR data is intrinsically more sensitive to εr than to σb

anomalies  [Lavoué  et  al.,  2014]. Fine  plume fingers  with  a  thickness  of  ~  0.2  m could  be

resolved by GPR FWI from permittivity changes. 

Our research showed that the selection of the starting model is important to adequately recover

time-lapse FWI models. A starting model from a previous day FWI recovered model was found

to perform better than using the FWI of the background. This however depends on the magnitude

of  the  tracer  concentration  changes.  It  requires  further  investigation  how such  a  time  lapse

approach can be designed optimally. Too large differences between the starting model and the

recovered model should be avoided, to fulfil the FWI requirement of a half-wavelength criteria

[Klotzsche et al., 2019b]. Note that when consecutive distributions do not differ enough, changes

may not be detected correctly. It is unclear how these errors will propagate through a series of

distributions that do not differ a lot  consecutively,  but which depict  significant changes over

longer times. 

For  field  experiments,  the  quality  of  the  recovered  distributions  of  electrical  aquifer

properties from GPR FWI is reduced with sparse data sampling, and increased noise level in the

data, which is affecting the electrical conductivity results more [Oberröhrmann et al., 2013]. We

carefully need to analyze the influence of the different processing steps such as data processing

[Peterson, 2001, Axtell et al., 2016], time zero correction [Oberröhrmann et al., 2013], 3D to 2D
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data  conversion [Mozaffari  et  al.,  2020] and the estimation  of  the unknown source wavelet,

which is affected by different borehole fillings [Klotzsche et al., 2013, Klotzsche et al., 2019b].

A crucial point will be the nature of the tracer plume being 3D [Vanderborght et al., 2005], when

the GPR wave travels in 3D but the inverted crosshole tomogram is in 2D.

As an outlook, by utilizing the high-resolution of εr, GPR FWI has a potential to monitor

temperature changes [Seyfried and Grant, 2007]. Thus, heat can be used as tracer to investigate

zones of low hydraulic conductivity, like immobile water regions [Dassargues, 2018] and thin

rock fractures where heat is smeared over a volume larger than that influenced by the fluid in the

fracture [de La Bernardie et al., 2018]. 

APPENDIX A 

Noise in GPR synthetic data

GPR data are contaminated with ambient white noise that originated from the electronics

of  the transmitter,  receiver  and cables  [Annan,  2003].  In  order  for  events  in  the data  to  be

detectable, the power at the receiver must be in excess of the noise level at the receiver. At the

presence of a salt tracer, the signal power at the receiver will lose energy, and events in the data

may be overshadowed by the ambient noise. Eventually, this will lead to incorrect FWI modelled

data and FWI reconstructed parameter models. Other sources of uncertainty in the reconstructed

FWI models that originated from the instrument time drift, antennae spatial positioning [Axtell et

al., 2016], the effect of the effective source wavelet [Belina et al., 2012] and data processing

[Peterson,  2001]  are  neglected  in  this  study.  Nevertheless,  in  GPR  datasets  the  quality  of

recorded data and the acquisition setup differ and each of the sources of errors may be the one of

the largest impact on the quality of the reconstructed model, in this study we concentrate on the

effect of the ambient noise.

We added a realistic ambient noise level to the synthetic waveforms to evaluate its effect

on the inversion performance. We assumed that the ambient noise level (of the tracer before the

first rise) is independent of the conductivity of the tracer. This then leads to a different signal to

noise ratio for different configurations. We obtained realistic ambient noise levels from real GPR

traces  that  were acquired  from the  Krauthausen site  using the same cross  borehole  distance

[Gueting et al., 2015]. Based on this data, we calculated a relative ambient noise level with:
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Ambient noise ratio min . [% ]=
std .(noise recorded traces)

max .|A (recorded traces )|
∙100 % ,

Eq. (10)

where  std .(noise recorded traces) is  the  standard  deviation  of  the  ambient  noise  in  recorded

traces, which was calculated from amplitudes at the time range before the wave first arrival time,

and max .|A (recorded traces∈entire dataset )| is the maximum absolute amplitude of the recorded

traces over the entire dataset. 

From Equation  10, the minimal  ambient  noise ratio  is  0.062%. For short  distances (4.95 m,

parallel ray path) the signal dominates over the noise (Figure A1 a,c), with typical noise level ~

0.2%. For a typical wide-angle long-distance ray path trace (8.4 m, 54 ) the noise has a larger⁰

footprint in the recorded trace (Figure A1 6e, g) with noise level ~ 3%.

Then, we generated the absolute ambient noise as Gaussian random error G (0 , std .2
noise∈synthetics )

with a standard deviation based on the A mbient noise ratio min.

std .noise∈synthetic traces=
max .|A (noise free simulated traces )|∙ Ambient noise ratio min

100 %

Eq.
(11)

where max .|A (noise free simulated traces )|  is the maximum absolute amplitude of the simulated

traces over the entire dataset before adding noise.

Finally, we added the same absolute ambient noise to the synthetic simulated waveforms of the

background, salt and ethanol tracer cases:

data (noisy added simulated traces )=data (noise freesimulated traces )+G (0 , std .2
noise∈synthetics )Eq. (12)

The noise-added traces (in blue) eventually show a similar ambient noise level to the real traces

for short and long ray paths (see Figure A1).
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Figure  A1:  Realistic  noise  added  to  synthetic  waveforms  based  on  ambient  noise  from

experimental data. Examples for two different waveforms: a - d) the shortest ray path of 4.95 m

and e-h) 54° wide-angle ray path of 8.4 m. Panels c, d, g, h zoom in to view the noise. Note the

scale is a normalized amplitude to the maximal absolute amplitude of the same trace. Sampling

rate of the experimental GPR data is 0.2 ns, whereas the sampling rate of the synthetic data is

0.063 ns.
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APPENDIX B 

FWI model performance evaluation:

In a  synthetic  study the information  about  the true subsurface  model  allows to  evaluate  the

results from GPR FWI. To evaluate the correlation between the true subsurface tomogram (x) in

the space domain and the FWI modelled tomogram (y) the coefficient of determination  R2 is

used:

R2
=1−

∑
i=1

n

( y i−x i )
2

∑
i=1

n

( xi−x )
2

 Eq. (13),

where n is the number of variables in the tomogram,  xi and yi are the variables in the true and

modelled  tomograms,  respectively,  and  x is  the  true  tomogram  mean.  The  coefficient  of

determination R2 provides the percentage of the total variation in the FWI modelled tomogram y

that can be explained by the theoretical linear relationship  y=x between the FWI modelled and

true tomograms.

However, correlation measure like R2 is not consistently related to the accuracy and precision of

prediction model, i.e. the degree that the predicted variables approach the magnitude and a linear

function of their true variables counterpart, respectively [Willmott, 1982]. The evaluation is also

based on the difference measures between counterpart variables. Therefore, bias can be described

by the mean bias error (MBE):

MBE=n−1∑
i=1

n

( x i− y i ) Eq. (14).

Average difference is quantified by the mean absolute error (MAE) or the root mean square error

(RMSE):

MAE=n−1∑
i=1

n

|x i− y i| Eq. (15).

RMSE=[n−1∑
i=1

n

( x i− y i )
2]

0.5

 Eq. (16).
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Nevertheless, RMSE does not illuminate the type of errors. Systematic and unsystematic types of

errors  with  respect  to  the  expected  linear  relation  between  xi and  yi,  are  quantified  by  the

systematic and unsystematic root mean squared errors (RMSEs and RMSEu):

RMSE s=[n−1∑
i=1

n

( ŷi−xi )
2]

0.5

Eq. (17)

RMSEu=[n−1∑
i=1

n

( y i− ŷi )
2]

0.5

Eq. (18),

where ŷ i is calculated from the ordinary least-squares (OLS) regression ŷ=ax+b between the 

FWI modelled and true tomograms.RMSE s describes the linear bias produced by the FWI 

tomogram and RMSEu is used to interpret the precision of the FWI tomogram. 

 Equations A3 and A4 represent all partitions of the errors in RMSE:

RMSE2
=RMSE s

2
+ RMSEu

2 Eq. (19).

The relative fraction of  RMSE s
2 and  RMSEu

2 in  RMSE2 is then used to estimate the extent of

each type of error in the FWI tomogram.

Large-range persistence of processes in the space domain can be analyzed in the spectral domain

using power spectral density (PSD). It measures the wavenumber content of a process. Detailed

technical explanation of calculation of PSD can be found in Witt and Malamud. A process can be

defined with persistence in the space domain if for a range of wavenumbers, PSD depends in a

power law on wavenumber υ:

PSD(υ)~υ-β  Eq. (20),

where parameter β is the strength of range persistence.
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