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Abstract20

The climatological mean barotropic vorticity budget is analyzed to investigate the rel-21

ative importance of surface wind stress, topography, planetary vorticity advection, and22

nonlinear advection in dynamical balances in a global ocean simulation. In addition to23

a pronounced regional variability in vorticity balances, the relative magnitudes of vor-24

ticity budget terms strongly depend on the length-scale of interest. To carry out a length-25

scale dependent vorticity analysis in different ocean basins, vorticity budget terms are26

spatially coarse-grained . At length-scales greater than 1000 km, the dynamics closely27

follow the Topographic-Sverdrup balance in which bottom pressure torque, surface wind28

stress curl and planetary vorticity advection terms are in balance. In contrast, when in-29

cluding all length-scales resolved by the model, bottom pressure torque and nonlinear30

advection terms dominate the vorticity budget (Topographic-Nonlinear balance), which31

suggests a prominent role of oceanic eddies, which are of O(10− 100) km in size, and32

the associated bottom pressure anomalies in local vorticity balances at length-scales smaller33

than 1000 km. Overall, there is a transition from the Topographic-Nonlinear regime at34

scales smaller than 1000 km to the Topographic-Sverdrup regime at length-scales greater35

than 1000 km. These dynamical balances hold across all ocean basins; however, inter-36

pretations of the dominant vorticity balances depend on the level of spatial filtering or37

the effective model resolution. On the other hand, the contribution of bottom and lat-38

eral friction terms in the barotropic vorticity budget remains small and is significant only39

near sea-land boundaries, where bottom stress and horizontal viscous friction generally40

peak.41

Plain Language Summary42

Vorticity provides a measure of the local circulation of fluid flow. The analysis of43

physical processes contributing to ocean vorticity has proven fundamental to our under-44

standing of how those processes drive ocean flows, ranging from large-scale ocean gyres45

to boundary currents such as the Gulf Stream, which is tens of km in size. Furthermore,46

a vorticity analysis can inform us about the relative importance of different physical pro-47

cesses in generating flow structures having different length scales. In the present work,48

we perform a length-scale dependent vorticity budget analysis using a coarse-graining49

method to remove signals finer than a fixed length scale. We coarse-grain the climato-50

logical mean vorticity budget terms over a range of length scales, and then compare the51

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

relative magnitudes to identify the dominant vorticity balances as a function of length52

scale. We find that the spatial structure of the meridional transport is mainly controlled53

by atmospheric winds, variations in ocean depth and the momentum transport by ocean54

currents. However, the relative magnitudes of these factors change drastically at differ-55

ent length scales. We conclude that physical interpretations of the primary vorticity bal-56

ances are fundamentally dependent on the chosen length scale of the analysis.57

1 Introduction58

Vorticity budget analyses are quite effective for understanding how surface winds59

drive ocean motions at different length scales. In particular, the classical Stommel model60

of the wind-driven gyre has provided significant insight into the linear, steady state bal-61

ance of ocean gyres driven by surface wind stress (Stommel, 1948; Munk, 1950),62

ρo β V = ẑ · (∇∧ τs −∇ ∧ τb) . (1)

Equation (1) shows that, in the absence of bottom stress τb, the vertical component of63

the surface wind stress curl, ẑ·(∇∧τs), balances a meridional flow (V is the vertically-64

integrated meridional velocity) through the β−effect (β is the meridional gradient of the65

planetary vorticity), which is commonly known as “Sverdrup balance” (Sverdrup, 1947).66

Also, the mass conservation condition requires a return meridional flow in the zonally67

integrated vorticity balance, which appears to be controlled by bottom friction stress,68

ẑ ·(∇∧τb). The Stommel model effectively explained the east-west asymmetry due to69

nonzero β and flow intensification at the western boundary in the gyre circulation. In70

a slight modification, Munk (1950) argued that the ocean flow does not reach the ocean71

bottom so that horizontal friction acts mainly along the western boundary; thus, per-72

mitting a return flow along the western boundary.73

The Stommel and Munk models apply to a flat bottom ocean since neither model74

accounts for bathymetry. If we take the curl of depth-integrated momentum equations75

to derive a linear vorticity equation in the presence of a variable topography at z = −H(x, y),76

the resulting vorticity equation has an additional term known as the bottom pressure77

torque (Holland, 1973; Hughes & De Cuevas, 2001),78

ρo β V = ẑ · (∇∧ τs −∇ ∧ τb) + J(pb, H). (2)

A nonzero bottom pressure torque, J(pb, H) = ẑ · (∇pb ∧ ∇H), arises due to varying79

bottom pressure along isobath contours, and the variations in bottom pressure, pb, ex-80
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ert a nonzero torque on fluid lying over a variable topography (Jackson et al., 2006). In81

essence, equation (2) implies that the return flow along the western boundary can be bal-82

anced by bottom pressure torque, and western boundary currents can be perceived as83

being largely inviscid because friction is not required to explain a closed gyre circulation84

(Hughes, 2000; Hughes & De Cuevas, 2001). In general, ocean flow along barotropic po-85

tential vorticity isolines would naturally allow the formation of western boundary cur-86

rents and gyre circulations (Kiss, 2004; Welander, 1968). In fact, Schoonover et al. (2016)87

carried out vorticity budget analysis in realistic simulations from three different ocean88

models and found that bottom pressure torque controls the Gulf Stream flow magnitude89

along the western boundary; thus, the Gulf Stream is indeed largely inviscid (also see90

Gula et al., 2015; Le Bras et al., 2019). The three-way balance among ρo β V (meridional91

advection of planetary vorticity), bottom pressure torque, and surface wind stress curl92

is called “Topographic-Sverdrup balance” (Holland, 1967). Notably, from the perspec-93

tive of energy conservation, friction is ultimately necessary for maintainingan energy equi-94

librium state in the presence of energy input by wind forcing since bottom pressure torque95

does not dissipate energy (Jackson et al., 2006). However, in the presence of realistic bot-96

tom pressure torques, the role of friction (either bottom or side friction) for establish-97

ing basin-scale gyre circulations is no longer fundamental within the vorticity budget frame-98

work.99

Several works have shown that bottom pressure torque appears as a first-order term100

in the vorticity budget of the depth-integrated flow and is crucial for understanding the101

returning boundary flows in gyres (Hughes & De Cuevas, 2001; Le Bras et al., 2019; Lu102

& Stammer, 2004; Sonnewald et al., 2019; Yeager, 2015). However, there remains sig-103

nificant regional variability in the relative magnitudes of vorticity budget terms. For ex-104

ample, in the North Atlantic Ocean, wind stress curl tends to be more important in con-105

trolling the depth-integrated meridional flow in the subtropics (except along the west-106

ern boundary), whereas bottom pressure torque balances ρo β V in almost all of the sub-107

polar basin (Le Bras et al., 2019; Sonnewald & Lguensat, 2021; Yeager, 2015). Global108

analyses from ocean state estimates and in situ observations also show that the Sverdrup-109

balance holds only in the tropics and subtropics (Gray & Riser, 2014; Thomas et al., 2014;110

Wunsch, 2011). These differences in the interpretation of regional vorticity balances are111

partly due to the choice of regional boundaries for vorticity budget integration (Sonnewald112

et al., 2023). For example, bottom pressure torque vanishes when integrated over any113
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area enclosed by an isobath, and the planetary vorticity advection appears to be con-114

trolled by wind stress and bottom friction (Kiss, 2004; Stewart et al., 2021). On the other115

hand, when integrating the vorticity budget over closed streamlines or fixed latitudinal116

bands, bottom pressure torque appears as the leading-order term. (Hughes & De Cuevas,117

2001; Stewart et al., 2021).118

In addition to the regional variability, spatial resolution in an ocean model affects119

the interpretation of dominant vorticity balances. In general, Stommel-Munk-type vor-120

ticity balances (equations 1 and 2) apply to large-scale ocean flows (see section 5.3 in121

Pedlosky, 1987). Thomas et al. (2014) showed that a linear Sverdrup balance only holds122

at length scales greater than 5◦ in ocean models. At relatively small length scales, i.e.,123

mesoscales, western boundary currents, and multiple jets, ocean eddies and the associ-124

ated nonlinearities make a notable contribution to the vorticity budget. For example,125

the nonlinear advection term in the vorticity equation (see equation 3) can induce nar-126

row and fast western boundary currents in the opposite direction to the wind-driven Sver-127

drup transport (Fofonoff, 1955). Using an eddy-resolving simulation of the North At-128

lantic Ocean, Le Corre et al. (2020) showed that bottom pressure torque and curl of non-129

linear advection terms appear to be the largest vorticity budget terms. On the other hand,130

in relatively coarse non-eddy-resolving and eddy-permitting ocean simulations, the non-131

linear advection term tends to have a relatively small contribution to the overall vortic-132

ity budget (Yeager, 2015), and the meridional flow is mainly controlled by bottom pres-133

sure torque and surface wind stress. These differences arise because high resolution mod-134

els permit the use of lower horizontal viscosity coefficients and can better resolve nar-135

row boundary currents and nonlinear processes than coarse-resolution models (Griffies136

& Hallberg, 2000). Thus, interpretations of vorticity analyses depend on the region of137

interest, as well as the length scale of interest.138

Several model-based vorticity analyses have shown that the relative magnitudes of139

vorticity budget terms depend on the details of model spatial resolution and associated140

representation of bathymetry (e.g. Hughes & De Cuevas, 2001; Le Corre et al., 2020; Yea-141

ger, 2015). However, a quantitative comparison is not feasible because these studies used142

different ocean models that significantly differ in terms of numerical methods, sub-grid143

parameterizations, and other features, each of which can affect the magnitudes of the144

vorticity terms (Styles et al., 2022). The present study investigates the primary balances145

in the vorticity budget of the depth-integrated flow in an eddy-permitting global ocean146
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simulation and quantifies the impacts of spatial resolution on dynamical balances. In ad-147

dition to analyzing the regional variability in vorticity budget terms, we examine how148

the relative magnitudes of these terms change as a function of length scale, which is achieved149

by employing a coarse-graining technique (Buzzicotti et al., 2023; Storer et al., 2022).150

In particular, spatial maps of vorticity budget terms are examined at different coarse-151

graining length-scales to understand the relative contributions of different processes in152

controlling the magnitude of planetary vorticity advection. The methodology is described153

in section 2, and the results are in section 3. Conclusions and broader implications of154

this study are discussed in section 4.155

We offer four appendices that detail the methods used to perform a vorticity bud-156

get analysis and coarse-grain terms in that budget. Appendix A presents the mathemat-157

ical expressions for the vorticity of the depth-integrated flow; Appendix B details the bud-158

get terms saved online in MOM6 ocean model and how we then compute the vorticity159

terms offline; and Appendix C discusses the magnitudes of the vorticity budget terms.160

Finally, Appendix D compares results from the coarse-graining method to the spatial fil-161

tering algorithm of Grooms et al. (2021), revealing that the two approaches agree qual-162

itatively.163

2 Methodology164

2.1 Theory of Vorticity Budget Analysis165

We analyze the vorticity budget based on the depth-integrated Boussinesq-hydrostatic166

ocean primitive equations. Several studies have employed this vorticity budget approach167

to examine the role of surface wind stress, bottom pressure, and ocean eddies in govern-168

ing the flow dynamics (e.g. Le Corre et al., 2020; Hughes & De Cuevas, 2001; Yeager,169

2015), see Waldman and Giordani (2023) for a recent review. The complete vorticity bud-170

get of the depth-integrated flow can be written as (see Appendix A for derivation)171

β V =
J(pb, H)

ρo
+ẑ·

(
∇∧ τs

ρo
− ∇ ∧ τb

ρo
+∇∧A+∇∧ B

)
−f

Qm

ρo
+f ∂tη−ẑ·(∇∧ Ut) , (3)

where β = ∂yf is the meridional derivative of the Coriolis parameter, V is the vertically-172

integrated meridional velocity, z = η is the ocean free surface height, z = −H is ocean173

bottom, pb is bottom pressure, ∇ = x̂ ∂x + ŷ ∂y is the horizontal gradient operator,174

and ρo = 1035 kg m−3 is the Boussinesq reference density. τs and τb are surface wind175

stress and bottom friction stress vectors, respectively. A and B represent the vertically176
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integrated velocity advection and horizontal viscous friction terms. Qm is the downward177

mass flux on the ocean surface and Ut is the vertically integrated velocity tendency term.178

By assuming a steady state, Qm = 0, linearity, and a flat bottom ocean, equation (3)179

readily reduces to the Munk-Stommel model of wind-driven gyre given by equation (1).180

It is important to note that there are other ways to derive a two-dimensional vor-181

ticity equation, e.g., compute the curl of the depth-averaged velocity equations (Mertz182

& Wright, 1992), and the curl of the velocity equations at each depth level and then com-183

pute the vertical integral or mean. All these formulations are equally valid and can be184

used depending on the research problem at hand (these variations on vorticity budgets185

are reviewed in Waldman & Giordani, 2023). In this study, we only use the vorticity bud-186

get formulation in equation (3), which will be referred to as the “barotropic vorticity bud-187

get”. We discuss our results in the context of previous studies that used the same for-188

mulation.189

2.2 Diagnosing Vorticity Budget Terms in a Global Ocean Simulation190

For the vorticity budget analysis, we employ output from the global ocean-sea ice191

model GFDL-OM4.0, which is constructed by coupling the Modular Ocean Model ver-192

sion 6 (MOM6)(Adcroft et al., 2019; Griffies et al., 2020) with the Sea Ice Simulator ver-193

sion 2 (SIS2). GFDL-OM4.0 configuration uses a Mercator-bipolar grid and has nom-194

inal 1/4◦ horizontal grid resolution, which permits mesoscale eddies especially in the lower195

latitudes, and uses a hybrid z∗−isopycnal vertical coordinate, which significantly reduces196

artificial numerical mixing and the associated biases (Adcroft et al., 2019; Tsujino et al.,197

2020). The bottom topography is represented by linear piecewise fits, the same as that198

used by other isopycnal layered models. This approach provides an accurate represen-199

tation of bottom pressure torques in a manner similar to terrain following models. For200

the present work, GFDL-OM4.0 was forced using JRA55-do.v1.4 reanalysis product (Tsujino201

et al., 2018) following the Ocean Model Intercomparison Project protocol (Griffies et al.,202

2016; Tsujino et al., 2020). Surface wind stress is computed relative to the ocean veloc-203

ity, and stress is computed between the ice-ocean when ice is present, with the ice ex-204

periencing the winds rather than the ocean. Bottom frictional stress is computed using205

a quadratic bottom drag with a dimensionless drag coefficient of 0.003 and a constant206

background ‘tide’ speed of 0.1 m s−1 and, for the horizontal friction, biharmonic viscos-207

ity is used. Further model configuration details are provided in Adcroft et al. (2019). The208
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time-mean model output for 60 years (1958–2017) is used for the barotropic vorticity bud-209

get analysis.210

Figure 1. Spatial maps of the vertical component of relative vorticity (units are in s−1) com-

puted using the time-mean (1958–2017), depth-averaged velocity. The plotted vorticity maps are

coarse-grained to (a) 200 km, (b) 1000 km horizontal length scale (using the FlowSieve package,

Storer & Aluie, 2023). Note the different color ranges used for the two panels.

Since vorticity has a higher-order spatial derivative than velocity, the vorticity field211

can be very noisy due to strong spatial and regional variability, which is especially en-212

hanced at small length scales (see the maps of relative vorticity of the depth-averaged213

flow in Figure 1). Hence, it requires additional care to have a fully closed barotropic vor-214

ticity budget. To diagnose the vorticity budget terms in equation (3), different terms in215

the depth-integrated primitive velocity equations from the model are saved as diagnos-216

tics, and the curl of these diagnostics is computed to obtain the relevant barotropic vor-217

ticity budget terms (see Appendix B for details). Computing the vorticity budget terms218

directly from the depth-integrals of velocity equation terms reduces numerical errors due219
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to mathematical manipulations and interpolation, and the vorticity budget closes suf-220

ficiently for our purposes.221

We point to the particularly difficult task of accurately computing bottom pres-222

sure torques using the Jacobian operator, J(pb, H), which generally leads to significant223

numerical errors in regions of large topographic slopes. To minimize these numerical er-224

rors, bottom pressure torque can be computed as the residual of all other vorticity bud-225

get terms (Le Bras et al., 2019), or we can locally smooth bottom topography to obtain226

realistic magnitudes in bottom pressure torque (Le Corre et al., 2020). Our preferred method227

is to compute the curl of depth-integrated pressure gradient terms from the velocity equa-228

tions. The same approach holds for the rest of the terms in the barotropic vorticity bud-229

get. Hence, to be consistent with the model numerical schemes and minimize the numer-230

ical errors in offline calculations, we compute vorticity budget terms directly from the231

depth-integrated momentum budget diagnostics, an approach used in many previous stud-232

ies (Bell, 1999; Hughes & De Cuevas, 2001; Yeager, 2015). Since we calculate vorticity233

budget terms using the time-mean model output, our vorticity diagnostics include ev-234

ery modeled timescale and no Reynolds stress terms are required to close the vorticity235

budget (unlike the situation of offline calculation from time-mean prognostic fields). Note236

that, for calculating bottom pressure torque, we used the method described in Appendix237

B2 to minimize numerical errors.238

As seen in the spatial maps of the time-mean vorticity budget terms (Figure 2a–239

2d), planetary vorticity advection, bottom pressure torque, the nonlinear advection curl,240

and the surface wind stress curl dominate the barotropic vorticity budget in terms of the241

magnitude. However, the vorticity balance tends to be very region dependent, as differ-242

ent terms dominate in different geographical locations (also see Sonnewald et al., 2019;243

Sonnewald & Lguensat, 2021). For example, bottom friction and lateral friction stress244

terms are relatively small in magnitude (Figure 2e–2f); however, these terms have no-245

table contributions in local balances especially near continental boundaries. Similarly,246

we observe a drastic change in the relative magnitudes of vorticity budget terms and dom-247

inant vorticity balances as we vary the coarse-graining length scale. These characteris-248

tics of the vorticity budget terms motivate a length-scale-dependent vorticity analysis249

considered separately in different ocean regions (e.g. see Le Corre et al., 2020; Palóczy250

et al., 2020). Note that the remainder of the vorticity budget terms, which are associ-251

ated with surface mass flux and time-tendencies (Figures 2g–2i), have a negligible con-252
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tribution. Even so, we include them in the analyses to enable a fully closed vorticity bud-253

get.254

Figure 2. Time-mean (1958–2017, indicated with overbars) barotropic vorticity budget

terms (units are in m s−2). Each of the fields are coarse-grained to a 500 km length scale (used

FlowSieve package, Storer & Aluie, 2023). Note the different colorbar ranges on the panels.

Signs of the barotropic vorticity budget terms can rapidly change spatially (e.g.,255

see spatial variations in bottom pressure torque and nonlinear advection term in the South-256

ern Ocean in Figures 2a–2c). Hence, positive and negative signals tend to cancel when257

integrated over large domains. For example, the global averages of bottom pressure torque258

and nonlinear advection vanish and the main balance is between surface wind stress and259

friction terms. As a result, a domain-averaged vorticity budget cannot pick up fields that260

have large magnitudes but with spatially alternating signs. Furthermore, the relative mag-261

nitudes of domain-averaged vorticity budget terms can be sensitive to the choice of do-262

main boundaries (Sonnewald et al., 2023; Stewart et al., 2021). The resultant domain-263

averaged vorticity balance cannot represent the true nature of vorticity dynamics and264

can lead to incomplete or incorrect interpretations. To overcome these issues, we employ265

a coarse-graining technique to deduce the dominant vorticity budget terms appearing266

at different length scales (Buzzicotti et al., 2023). Coarse-graining allows us to exam-267

ine the local and non-local impacts of different processes as a function of length scale,268

while maintaining the structure of the patterns corresponding to scales at or larger than269
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the chosen coarse-graining scale. In the present work, we focus on the impacts of the choice270

of length scale on local barotropic vorticity balances.271

2.3 The coarse-graining method272

Coarse-graining can be used to examine the spatial variability in a multi-dimensional273

field. For any field, F (x), the coarse-graining produces a filtered field, Fℓ(x), that has274

variability on scales longer than ℓ, with variability on smaller scales preferentially removed275

(Buzzicotti et al., 2023). Fℓ(x) is computed as276

Fℓ(x) = Gℓ ∗ F (x), (4)

where ∗ is the convolution on the sphere (Aluie, 2019) and Gℓ is a normalized filtering277

kernel, which is a top-hat filter in this study (see equation (4) in Storer et al., 2022), so278

that
∫
A
Gℓ = 1. Relation (4) basically represents a spatial average of F (x) centered at279

geographical location x.280

In practice, the coarse-graining technique can be applied to the entire globe, which281

has land/sea boundaries, while preserving the fundamental physical properties, such as282

the global mean of a field and non-divergence of the velocity in a Boussinesq ocean (Aluie,283

2019). Coarse-graining commutes with differential operators so that the coarse-grained284

equations resemble the original equations and the underlying mathematical properties285

of the system are preserved across different length scales. Coarse-graining has been suc-286

cessfully used for analyzing the kinetic energy spectrum and inter-scale energy transfers287

in the oceans (Aluie et al., 2018; Rai et al., 2021; Storer et al., 2022). Since the vortic-288

ity budget term magnitudes tend to peak around continental boundaries (Figure 2), spa-289

tial filtering near boundaries requires additional care so that there are no artificial large290

signals as a result of the spatial filtering. The coarse-graining technique is well suited291

for the present analysis as it handles gradients around land-sea boundaries appropriately292

(see details in Buzzicotti et al., 2023).293

Following the steps described in section 2.2, we compute the barotropic vorticity294

budget diagnostics, which are then coarse-grained by employing the FlowSieve package295

(Storer & Aluie, 2023). Prior to coarse-graining, vorticity budget diagnostics were re-296

gridded from the native Mercator-bipolar grid (Adcroft et al., 2019) to a uniform 0.25◦×297

0.25◦ grid using a conservative regridding method because the current implementation298

of FlowSieve package only accepts rectangular latitude-longitude grids. Since we only299
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analyze the vertical vorticity component, the barotropic vorticity budget terms are treated300

as scalar fields for the purpose of coarse-graining. We use the fixed-kernel method, in301

which land is treated as ocean with a zero value of every vorticity balance term, to con-302

serve global averages of vorticity terms (Buzzicotti et al., 2023). Coarse-grained diag-303

nostics are then analyzed to identify the dominant vorticity balances as a function of coarse-304

graining scale, ℓ.305

Furthermore, we compute the mean of the absolute values, {|Fℓ|}, for all the vor-306

ticity budget terms in different ocean regions and analyze their relative magnitudes as307

a function of coarse-graining scale,308

{|Fℓ|} =

∑
i wi|Fℓ(xi)|∑

i wi
, (5)

where i is a grid cell index within a region and wi is the associated weight , equal to grid309

cell area on the uniform 0.25◦×0.25◦ grid. The regional means of absolute values, {|Fℓ|},310

are required to investigate the regional variability and length-scale-dependence in vor-311

ticity balances. If we instead preserve the signs of vorticity budget terms while calcu-312

lating domain-averages, the positive and negative signals will offset each other, poten-313

tially resulting in incorrect interpretations of the dominant vorticity balances (see Fig-314

ure 2). Note that {|Fℓ|} magnitudes decline significantly with increasing the coarse-graining315

scale (see appendix Figure C1). Thus, we analyze the normalized {|Fℓ|} magnitudes to316

measure the relative importance of different vorticity budget terms,317

{|Fℓ|}j(normalized) =
{|Fℓ|}j∑
j ({|Fℓ|}j)

, (6)

where j corresponds to a vorticity budget term and {|Fℓ|}j(normalized) measures the318

relative magnitude a vorticity budget term.319

3 Vorticity Budget Analysis as a Function of Length-scale320

Vorticity budget analyses from relatively coarse ocean models have shown that bot-321

tom pressure torque plays a prominent role in regional vorticity balances and in guid-322

ing western boundary currents (Hughes & De Cuevas, 2001; Lu & Stammer, 2004; Yea-323

ger, 2015; Zhang & Vallis, 2007). On the other hand, more recent studies employed mesoscale324

eddy-resolving ocean models having horizontal grid spacing of 2−10 km, with these stud-325

ies emphasizing that bottom pressure torque and nonlinear advection are equally impor-326

tant for regional vorticity dynamics (Le Corre et al., 2020; Palóczy et al., 2020). The present327
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study aims to quantify the impacts of resolution on vorticity balances using a single global328

ocean simulation. Coarse-grained barotropic vorticity budget terms are examined as a329

function of coarse-graining scale in different ocean basins to assess the impact of spatial330

smoothing on the magnitudes of all vorticity terms.331

3.1 Vorticity Budget in the North Atlantic Ocean332

At first, we examine the spatial structure of coarse-grained vorticity budget terms333

in the North Atlantic Ocean, which has been considered in several works (e.g. Le Corre334

et al., 2020; Schoonover et al., 2016; Yeager, 2015; Zhang & Vallis, 2007). As seen in Fig-335

ure 3, all vorticity terms, except the wind stress curl, have pronounced spatial variabil-336

ity and peak near continental boundaries and mid-ocean topographic features.337

Coarse-graining has a notable impact on the relative contributions of different vor-338

ticity terms. For example, when spatial variations larger than 200 km are retained (Fig-339

ures 3a1-3g1), planetary vorticity advection (β V ), bottom pressure torque and the curl340

of the nonlinear advection term (∇∧A), dominate in terms of the magnitude (also see341

Le Corre et al., 2020). Hence, the local meridional flow is controlled by bottom pressure342

torque and nonlinear advection (henceforth will be referred to as “Topographic-Nonlinear343

balance”). Surface wind stress, bottom friction, and horizontal friction terms also have344

large magnitudes around land-sea boundaries; however, their contribution to the local345

vorticity budget is relatively small. The rest of the vorticity budget terms (surface mass346

flux and time-tendencies) are negligible in comparison. There appears to be a significant347

cancellation between bottom pressure torque and ∇∧A at mesoscales and submesoscales348

(smaller than about 500 km), and their sum is roughly in balance with β V . Our results349

are consistent with Le Corre et al. (2020), who found that bottom pressure torque and350

∇∧A signals generally are of opposite signs to each other, so that these two terms com-351

pensate for each other (also see Gula et al., 2015).352

On the other hand, with coarse-graining at scales 1000 km and larger (Figures 3a3-353

3g3), the nonlinear advection term almost disappears, and the dominant balance is then354

among planetary vorticity advection, bottom pressure torque and wind stress curl. This355

result suggests that vorticity dynamics at large scales are close to the Topographic-Sverdrup356

balance, which agrees with vorticity budget analyses from relatively coarse ocean mod-357

els (Lu & Stammer, 2004; Yeager, 2015). The coarse-graining exercise shows that bot-358
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Figure 3. Vorticity budget analysis for the North Atlantic Ocean (a-g) Time-mean (1958–

2017, indicated with overbars) spatial maps of barotropic vorticity budget terms (units are in m

s−2) as a function of the coarse-graining scale; (h) Normalized magnitudes of the absolute bud-

get terms (see equation 6) at different coarse-graining scales . {|Fℓ|} is computed for the region

bounded between 30◦N–70◦N and 80◦W–0◦W. Note that ẑ· is omitted in panel titles and leg-

ends.
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Figure 4. Vorticity budget analysis for for North Atlantic gyres (a) Time-mean (1958–2017,

indicated with overbars) barotropic streamfunction computed as
∫ x

xw
V dx; (b-c) Normalized mag-

nitudes of the absolute budget terms (see equation 6) at different coarse-graining scales for the

subpolar gyre (within the region of −25 Sv contour) and subtropical gyre (within the region of 10

Sv contour). The results are not sensitive to the choice of gyre contours, which were arbitrarily

selected here. For brevity, ẑ· is omitted in the legend.

tom pressure torque is significant at all length scales, whereas ∇∧A contribution to the359

barotropic vorticity budget is limited to scales smaller than 1000 km. These results in-360

dicate that the model resolution (or the length scale of interest) is a key parameter while361

examining relative contributions from different vorticity terms, as physical interpreta-362

tions of these results depend on the length scale.363

For a quantitative investigation on the impacts of coarse-graining on vorticity bal-364

ances, we compute normalized domain-averaged absolute values of the time-mean bud-365

get terms (Figure 3h). Consistent with the results discussed above, for coarse-graining366

with 200 km length scale (or smaller), bottom pressure torque and ∇∧A are the largest367

in magnitude vorticity terms and represent more than 60% of the magnitudes of vortic-368

ity budget terms. β V is the third largest term and explains about 10% of the signals.369

As the coarse-graining kernel width increases, ∇∧A signals smooth out, and the pri-370

mary balance is then among β V , bottom pressure torque, and surface wind stress curl.371

Together, these three terms capture more than 70% of the vorticity budget at length scales372

greater than 1000 km. The rest of the contribution to the vorticity balance is from fric-373

tion terms, −∇ ∧ τb/ρo and ∇ ∧ B, which project on all length scales. Overall, these374

vorticity analyses show a clear transition from the Topographic-Nonlinear balance to the375
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Topographic-Sverdrup balance as we move from small to large length-scales. The same376

results hold even if a different spatial filtering algorithm is used (see Figure D1).377

3.1.1 Vorticity budget within closed gyre contours378

To understand the dominant vorticity balances within subtropical and subpolar North379

Atlantic gyre circulations, we analyze {|Fℓ|} magnitudes within closed gyre contours (Fig-380

ure 4). Even within subtropical and subpolar gyres, the vorticity balance is largely among381

bottom pressure torque, ∇∧A, and β V when all length scales are included. When spa-382

tial features only larger than 1000 km are retained, there is a relatively small contribu-383

tion from ∇ ∧ A, and about 70% of the magnitudes of the barotropic vorticity terms384

are explained with β V , bottom pressure torque, and the surface wind stress curl. How-385

ever, there is one key difference between the vorticity budgets of subtropical and sub-386

polar gyres. At relatively large length-scales (greater than 500 km), bottom friction and387

horizontal friction terms, −∇∧ τb/ρo and ∇∧B, capture about 20% of the signals in388

the subpolar gyre, whereas their contribution to the vorticity balance in the subtropi-389

cal gyre is less than 10%. This difference is because a large part of the subpolar gyre is390

influenced by physical processes occurring near land-sea boundaries. Since bottom and391

horizontal friction have their peak magnitudes near continental boundaries (see Figures392

3e–3f), they are more important in the vorticity budget of the subpolar gyre than in the393

subtropical gyre.394

3.1.2 Why does the nonlinear advection term smooth out at large scales?395

The nonlinear advection term mainly accounts for the redistribution of vorticity396

via western boundary currents, transient eddies and standing meanders (Gula et al., 2015),397

which generally are 1−300 km in size (Chelton et al., 2007; Eden, 2007). Since these398

nonlinear flow patterns have spatial variations over length scales smaller than about 500399

km, the nonlinear term is expected to be weak at large length scales (also see Hughes400

& De Cuevas, 2001). One can show that the nonlinear advection term has higher-order401

spatial derivatives than bottom pressure torque and β V (Appendix A2). This property402

indicates that the magnitude of the non-linear advection term decreases faster than other403

vorticity budget terms with increasing coarse-graining length scale. Therefore, at rela-404

tively large scales, bottom pressure torque, β V and wind stress curl are expected to be405

in balance (see Figures 3a1–3c1).406
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Figure 5. Scaling of the domain-mean magnitudes of vorticity budget terms, |{Fℓ}| (units are

in m s−2), in (a) Subpolar North Atlantic Ocean (45◦N–70◦N and 80◦W–0◦W) (b) Subtropical

North Atlantic (20◦N–45◦N and 80◦W–0◦W) (c) Global Ocean. Note that ẑ· is omitted in the

legends.

To further investigate the relative importance of the nonlinear advection term and407

bottom pressure torque at different length scales, we perform a scale analysis (also see408

Schoonover et al., 2016),409 ∣∣∣∣ J(pb, H)

ρo

∣∣∣∣ = | f ug · ∇H | ≈ f
VLv

Lh
, (7)

| ẑ · (∇∧A) | ≈ V2Lv

L2
h

, (8)

where ug is the horizontal geostrophic velocity at the ocean bottom, V is the velocity410

scale, Lh is the horizontal length scale, and Lv is the vertical length scale. Equations411

(7–8) imply that the magnitudes of bottom pressure torque and the nonlinear advection412

term follow 1/Lh and 1/L2
h scalings, respectively. Hence, the nonlinear advection term413

must decay faster than bottom pressure torque when increasing the horizontal length414

scale. Therefore, at relatively large length scales, the meridional flow then has to be con-415

trolled by a combination of bottom pressure torque and surface wind stress. As seen in416

Figure 5, the domain-mean absolute values of the nonlinear advection term and bottom417

pressure torque (in both the subpolar North Atlantic and global ocean) are generally in418

agreement with these scaling arguments. However, in the subtropical North Atlantic, the419

decline seems to occur at a relatively slower pace. Overall, the nonlinear term roughly420

follows ℓ−2 scaling whereas the bottom pressure torque magnitude declines as ℓ−1.421

At relatively large scales, β V dominates over ∇∧A and the cross-over occurs near422

200 km (Figure 5c), which interestingly corresponds to the mesoscale spectral peak in423

the global kinetic energy spectrum (Storer et al., 2022). Using the scale analysis, we es-424
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timate this cross-over length scale,425

|β V | ≈ | ẑ · (∇∧A) | , (9)

β VLv ≈ V2Lv

L2
h

. (10)

By setting β = 10−11 m−1s−1 and V = 0.1 m s−1, we obtain Lh = 100 km, which426

largely agrees with the results from Figure 5. Thus, the contribution of the nonlinear ad-427

vection term to the barotropic vorticity budget can be neglected at scales larger than428

300–400 km, which was also argued by Hughes and De Cuevas (2001). Coincidentally,429

equation (10) implies a horizontal length scale of
√

V/β, which is the same the inertial430

western boundary current scale proposed by (Fofonoff, 1955) and Rhines scale in geostrophic431

turbulence (Rhines, 1975). In a sense, all of these different theories predict a length scale432

beyond which linear flow dynamics takes over nonlinear eddy dynamics, thus the sim-433

ilarity in these different length scales is not surprising. Furthermore, many works have434

investigated the physical processes that determine these length scales over flat topog-435

raphy (Haidvogel et al., 1992; Ierley & Sheremet, 1995; Kiss, 2002).436

One caveat to note is that our analyses use output from a 0.25◦ ocean model, which437

does not resolve all mesoscale activity. Hence, the contribution of the nonlinear advec-438

tion term to barotropic vorticity budget, especially at mesoscales, is not fully captured.439

Furthermore, since we coarse-grain the barotropic vorticity budget terms diagnosed on440

the native model grid, coarse-graining does not remove Reynolds correlations arising from441

motions at length-scales smaller than the coarse-graining scale. Hence, if we were to cal-442

culate the nonlinear advection term in the barotropic vorticity budget using coarse-grained443

prognostic model diagnostics, such as velocities and layer thicknesses, as a function of444

coarse-graining scale, the length-scale dependence of ∇∧A term may slightly differ from445

the one observed in Figure 5. Consequently, some results may not be directly compared446

against outputs from coarse non-eddy-resolving ocean models. On the other hand, β V447

and bottom pressure torque terms are linear and do not suffer from issues related to non-448

linear Reynolds stresses.449

3.2 Vorticity Budget in Weddell Sea Region450

Topography plays a fundamental role in the Southern Ocean, which comprises highly451

energetic ocean regions, e.g. Weddell Sea and Drake Passage, in terms of flow-topography452

interactions and mesoscale eddy dynamics (Hughes, 2005; Neme et al., 2023; Rintoul et453
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Figure 6. Vorticity budget analysis for the Weddell Sea region (a-g) Time-mean (1958–2017,

indicated with overbar) spatial maps of barotropic vorticity budget terms (units are in m s−2) as

a function of the coarse-graining scale; (h) Normalized magnitudes of the absolute budget terms

(see equation 6) at different coarse-graining scales . {|Fℓ|} is computed for the region bounded

between 85◦S–40◦S and 70◦W–0◦W. Note that ẑ· is omitted in panel titles and legends.
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al., 2001; Rintoul & Naveira Garabato, 2013; Rintoul, 2018). To investigate the roles of454

topography and nonlinear eddies on local vorticity balances, we repeat the vorticity bud-455

get analysis in the Weddell Sea region (Figure 6). For coarse-graining scale of 100–200456

km, the main balance is among bottom pressure torque, ∇ ∧ A, and β V . For coarse-457

grained fields at scales larger than about 1000 km, the contribution from the nonlinear458

advection term is minimal, and β V and bottom pressure torque terms explain more than459

70% of the signals in the barotropic vorticity balances.460

Interestingly, the relative contribution of the surface wind stress curl to the vor-461

ticity budget at length scales larger than 1000 km is much smaller than observed in the462

North Atlantic Ocean (compare Figures 3h and 6h). This behavior is because the mag-463

nitudes of β V and bottom pressure torque are much larger in the Southern Ocean than464

in the North Atlantic (Figures 2a–2b), whereas the wind stress curl magnitudes vary lit-465

tle with latitude (Figure 2d). In the Southern Ocean, the presence of prominent topo-466

graphic features, in conjunction with substantial bottom pressure torque signals asso-467

ciated with strong bottom flows, gives rise to meandering and spatial variations in the468

flow structure due to topographic steering and potential vorticity conservation (Hughes,469

2005; Kiss, 2004). As a consequence, the vorticity balance in this region prominently fea-470

tures substantial bottom pressure torque and β V signals, with wind stress curl playing471

a secondary role. These results do not imply that the wind component is unimportant472

in the Weddell Sea region. On the contrary, surface winds are a key driving force for ocean473

flows at all length scales. However, for the climatological local vorticity budget and spa-474

tial variability in vorticity terms, bottom pressure torque appears to be the primary fac-475

tor in governing the spatial structure of the depth-integrated meridional flow in the Wed-476

dell Sea.477

3.3 Vorticity Budget in the Equatorial Pacific Ocean478

The equatorial Pacific Ocean slightly differs from ocean regions at high latitudes479

in terms of barotropic vorticity dynamics. Here, the contribution of the nonlinear ad-480

vection term to the barotropic vorticity budget is relatively small at all length scales (Fig-481

ure 7). Instead, bottom pressure torque and wind stress curl are the dominant terms that482

balance β V at all length scales, and these three terms capture more than 80% of the sig-483

nals. Hence, dynamics in the equatorial Pacific Ocean largely follow the Topographic-484

Sverdrup balance. These results are in contrast to North Atlantic and Weddell Sea anal-485
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Figure 7. Vorticity budget analysis for an oceanic region in the equatorial Pacific (a-g) Time-

mean (1958–2017, indicated with overbar) spatial maps of barotropic vorticity budget terms

(units are in m s−2) as a function of the coarse-graining scale; (h) Normalized magnitudes of the

absolute budget terms (see equation 6) at different coarse-graining scales . {|Fℓ|} is computed

for the region bounded between 20◦S–20◦N and 180◦W–100◦W. Note that ẑ· is omitted in panel

titles and legends.

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

yses, which indicate significant nonlinear eddy advection contribution to vorticity dy-486

namics at length scales smaller than 1000 km.487

3.4 Global Vorticity Budget488

To have an understanding of the global picture of vorticity balances, we divide the489

global ocean into four regions and repeat the vorticity analysis in these four regions (Fig-490

ure 8). These basins are sufficiently large such that the regional variability (as in sec-491

tions 3.1–3.3) becomes less apparent. In general, bottom pressure torque and β V terms492

are the largest terms, followed by the surface wind stress curl that appears on relatively493

large scales. These three terms together capture roughly 80% of the signals. As seen in494

sections 3.1–3.3, the nonlinear advection term is only important at length scales smaller495

than about 1000 km, except in the Indian Ocean sector where, even at length scales of496

1000–2000 km, the nonlinear advection term is as important as surface wind stress curl497

and bottom pressure torque. The relatively large contribution of the nonlinear advec-498

tion in the Indian Ocean could be due to larger mesoscale eddy length scales in tropics499

than at higher latitudes (Chelton et al., 2007, 2011). Similarly, we observe a relatively500

larger contribution of the nonlinear advection term in the Tropical Pacific-Atlantic re-501

gion (Figure 8f). In addition, bottom friction and horizontal friction explain about 10%–502

20% of the signals in the vorticity balance in all four regions.503

To further emphasize how spatial smoothing affects the local vorticity balance, we504

identify grid points at which 80% of the magnitudes in the barotropic vorticity budget505

can be explained with two or three largest vorticity terms. Sonnewald et al. (2019) ap-506

plied a machine learning algorithm to ECCO global ocean state estimate, which has hor-507

izontal grid spacing of 1◦, and identified different dynamical regimes using the barotropic508

vorticity budget framework. However, impacts of the spatial resolution on these dynam-509

ical regimes have not been examined before. Here, we analyze point-wise vorticity bal-510

ances for four coarse-graining scales (Figure 9). Firstly, three vorticity balances stand511

out, i.e., Topographic-Sverdrup balance, Topographic-Nonlinear balance, and Sverdrup512

balance. The proportion of the global ocean surface area at which these balances are sat-513

isfied increases when we increase the coarse-graining scale (see Table 1). In fact, a large514

part of the global ocean transitions from a Topographic-Nonlinear regime to a Topographic-515

Sverdrup regime, especially in the Southern Ocean. As the coarse-graining kernel width516

increases and more length scales are filtered out, the contribution of the nonlinear ad-517
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Figure 8. Vorticity budget analysis for the global ocean (a) Extent of four ocean basins (b-f)

Normalized magnitudes of the absolute budget terms (see equation 6) at different coarse-graining

scales . {|Fℓ|} is computed separately for the basins shown with different colors in (a) and the

hatched region covers tropical Atlantic-Pacific Ocean (15◦S − 15◦N). Note that ẑ· is omitted in

the legends.

vection term decreases. In the case of 200 km coarse-graining scale, the vorticity dynam-518

ics closely follow Topographic-Sverdrup and Topographic-nonlinear relationships at about519

22% and 16% of the global ocean surface area, respectively. On the other hand, these520

percentages change to 37% and 6%, respectively, at length scales greater than 2000 km.521

In tropical and subtropical oceans (roughly 40◦S–40◦N), Sverdrup balance holds522

reasonably well at length scales larger than 1000 km (Figure 9c), which is in agreement523

with Gray and Riser (2014); Thomas et al. (2014); Wunsch (2011). However, Sverdrup524
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balance rarely holds at higher latitudes in those regions where topography significantly525

affects the spatial variability of the depth-integrated meridional flow at large scales. This526

role for topography is enhanced in such regions due to a relatively weak stratification527

allowing for strong deep flows. Note that maps of Sverdrup and Topographic-Sverdrup528

relationships in Figure 9 are not mutually exclusive. If the local vorticity dynamics can529

be approximated as being in Sverdrup balance (based on the chosen criteria of captur-530

ing 80% of the signals in the barotropic vorticity budget), then the dynamics would also531

be in accord with Topographic-Sverdrup balance. Hence , in the spatial maps shown in532

Figure 9, Sverdrup balance is a special case of Topographic-Sverdrup balance. At length533

scales larger than 1000 km, the barotropic vorticity dynamics can be understood in terms534

of Topographic-Sverdrup balance in more than 60% of the global ocean. A schematic of535

different dynamical regimes in the global ocean is shown in Figure 10.536

Intriguingly, there is virtually no ocean region in the friction-dominated regime,537

in which planetary vorticity advection is controlled by bottom friction and horizontal538

friction. This result suggests that the global ocean is dominated by inviscid processes539

in terms of barotropic vorticity dynamics. Indeed, there is a large part of the oceans where540

these simplified vorticity relationships (Topographic-Nonlinear and Topographic-Sverdrup)541

do not hold and vorticity dynamics are controlled by more than three terms. In these542

regions, friction can play an important role, for example, by allowing flow across mean543

potential vorticity contours and altering western boundary current flow and separation544

(Hughes & De Cuevas, 2001; Jackson et al., 2006). In such situations, the combination545

of friction with other vorticity budget terms can alter the meridional transport struc-546

ture and strength, leading to complex vorticity balances that may not be captured by547

simplified relationships shown in Figure 9. Additionally, Neme et al. (2023) identify the548

importance of bottom friction for transient vorticity budgets, thus offering a further caveat549

to the vorticity balances found here, which are based on climatological means (1958-2017).550

4 Discussion and Conclusions551

The vorticity budget of the depth-integrated flow is analyzed to understand how552

bottom pressure torque, surface wind stress curl, nonlinear advection, and friction drive553

spatial variability in meridional transport in the oceans. Previous studies have shown554

that interpretations of vorticity budget analyses can significantly change depending on555

the region of interest and length scale. For example, the classical Sverdrup balance only556
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Figure 9. Global map of leading vorticity balances with different levels of coarse-graining (a)

200 km (b) 500 km (c) 1000 km (d) 2000 km. Different colors indicate balance among different

vorticity terms (see legend), which capture 80% of the signals in the vorticity budget at any grid

point. For legend ‘Other’, vorticity balance is complex, and more than three terms are required

to capture 80% signals in vorticity balances.
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Figure 10. Schematic of primary barotropic vorticity balances and dynamical regimes as

a function of length scale in a steady state. Both velocity field (see black arrows) and bottom

pressure (brown ± circles) project on all length scales whereas surface wind stress projects only

on large length scales. At length scales smaller than 500 km, nonlinear advection and bottom

pressure torque control the spatial variability in meridional transport. At length scales greater

than 500 km, meridional transport is mainly controlled by bottom pressure torque and surface

wind stress curl as the nonlinear advection contribution is insignificant at large length scales.
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200 km 500 km 1000 km 2000 km

β V ≈ J(pb, H)/ρo + ẑ · (∇∧ τs) /ρo 22.04% 34.73% 38.47% 37.00%

β V ≈ J(pb, H)/ρo + ẑ ·
(
∇∧A

)
16.14% 12.82% 9.16% 6.20%

β V ≈ ẑ · (∇∧ τs) /ρo 5.31% 16.22% 22.84% 27.04%

β V ≈ ẑ ·
(
−∇ ∧ τb/ρo +∇∧ B

)
0.15% 0.06% 0.06% 0.002%

Other 56.75% 39.03% 31.41% 30.85%

Table 1. Percentage of the global ocean surface area at which vorticity balances plotted in

Figure 9 satisfy and capture more than 80% signals in vorticity balances.

holds in tropics and subtropics at length scales greater than about 5◦ (Thomas et al.,557

2014; Wunsch, 2011). At higher latitudes and in eddy-active regions, bottom pressure558

torque and nonlinear advection control the spatial variability in the depth-integrated merid-559

ional flow (Hughes & De Cuevas, 2001; Le Corre et al., 2020; Lu & Stammer, 2004; Yea-560

ger, 2015).561

The present work investigates the regional variability and length-scale dependence562

in vorticity budget analyses using the 60-year mean vorticity budget terms from an eddy-563

permitting global ocean simulation (Adcroft et al., 2019). The time-mean vorticity bud-564

get terms are analyzed as a function of spatial-filtering scale by employing a coarse-graining565

technique (Buzzicotti et al., 2023; Storer et al., 2022). Consistent with previous stud-566

ies (Hughes & De Cuevas, 2001; Sonnewald et al., 2019), the relative magnitudes of dif-567

ferent vorticity budget terms display significant regional variability. In general, depth-568

integrated meridional velocity is balanced by a combination of the surface wind stress569

curl, bottom pressure torque, and the curl of the nonlinear velocity advection in the barotropic570

vorticity budget. The relative importance of these terms is examined by performing vor-571

ticity analyses in different ocean regions at different coarse-graining length scales.572

We show that Topographic-Svedrup balance, in which β V (meridional gradient of573

Coriolis parameter × depth-integrated meridional velocity), bottom pressure torque, and574

surface wind stress curl are in balance (Holland, 1967), applies to vorticity dynamics in575

the majority of the global ocean. These three vorticity terms capture more than 70% of576

the signals in the barotropic vorticity budget (Figures 3–8); however, it requires signif-577
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icant spatial coarse-graining, and this simplified balance only holds at length scales larger578

than about 1000 km. This result is in agreement with previous studies that employed579

coarse non-eddy resolving model outputs in their vorticity analyses (Lu & Stammer, 2004;580

Yeager, 2015). Although bottom pressure torque contribution is significant in all ocean581

regions that we considered, a simpler Sverdrup balance, in which the depth-integrated582

meridional transport is driven by surface wind stress curl (Sverdrup, 1947), holds rea-583

sonably well in subtropical oceans at length scales greater than 1000 km (also see Gray584

& Riser, 2014; Thomas et al., 2014; Wunsch, 2011). On the other hand, at higher lat-585

itudes and throughout the Southern Ocean, the contribution of bottom pressure torque586

for the vorticity balance cannot be neglected, with this importance due to relatively strong587

deep flows.588

In the case of nominal or no coarse-graining (retaining variations on length scales589

greater than 100 km in the present work), bottom pressure torque and the nonlinear ad-590

vection term dominate the vorticity budget locally (referred to as “Topographic-Nonlinear”591

balance here) indicating a prominent role of ocean eddies in vorticity balances. We note592

that bottom pressure torque and nonlinear advection terms compensate against each other593

(e.g. see Le Corre et al., 2020), and the residual from these two terms is roughly balanced594

by planetary vorticity advection. As we increase the length scale of coarse-graining, the595

nonlinear advection term largely smooths out, and we find a clear transition from Topographic-596

Nonlinear balance to Topographic-Sverdrup balance in the local vorticity budget (see597

Figure 9). Hence, the nonlinear advection term contributes to vorticity balances mostly598

at length scales smaller than 1000 km, and we offer a scaling argument to explain why599

it plays a negligible role for larger scale vorticity balances.600

By incorporating the coarse-graining method in vorticity budget analysis, we find601

that the relative magnitudes of vorticity budget terms not only vary regionally but also602

have a strong length-scale dependence. Although Sverdrup and Topographic-Sverdrup603

relationships explain the spatial structure of the meridional transport in many places,604

these relationships only apply to large-scale oceanic flows (larger than about 1000 km).605

At relatively small length scales, the contribution of eddies and nonlinear advection to606

vorticity balance tends to be significant. Hence, the interpretations from vorticity anal-607

yses can be completely different depending on the extent of spatial filtering. We present608

a schematic describing these different vorticity balances (see Figure 10).609
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The present study only considers time-mean vorticity balances and the temporal610

variability in local vorticity balances has not been analyzed. Vorticity analyses from sea-611

sonal vorticity diagnostics (not shown) closely follow the time-mean results presented612

in the present work. In temporally varying vorticity diagnostics, we expect similar tran-613

sitions among different dynamical regimes at different length scales (Figure 9) in barotropic614

vorticity balances, albeit some regional differences may be present. For example, although615

the contribution of the friction term is negligible in the time-mean vorticity balances,616

friction can play an important role in driving transient changes in vorticity balances (Neme617

et al., 2023).618

Appendix A Vorticity Budget of the Depth-integrated Flow619

The governing hydrostatic and Boussinesq ocean primitive velocity equation on a620

generalized vertical coordinate r = r(x, y, z, t) is given by (Adcroft et al., 2019; Griffies621

et al., 2020)622

∂u

∂t
+ (f + ζ) ẑ ∧ u+ w(ṙ) ∂u

∂r
= −

[
∇rp

ρo
+∇rΦ

]
−∇rK + F +

∂rτ

ρo
, (A1)

where we have623

v = u+ ẑw = x̂u+ ŷ v + ẑw velocity (A2)

∇r = x̂

[
∂

∂x

]
r

+ ŷ

[
∂

∂y

]
r

horizontal gradient on r-surface (A3)

w(ṙ) =
∂z

∂r

Dr

Dt
dia-surface velocity used for remapping (A4)

ζ =

[
∂v

∂x

]
r

−
[
∂u

∂y

]
r

r-coordinate vertical vorticity (A5)

−
[
ρ−1
o ∇rp+∇rΦ

]
horizontal pressure acceleration (Φ = gz) (A6)

K =
u2 + v2

2
horizontal kinetic energy per mass (A7)

F = F (horz diff) + F (vert diff) horizontal and vertical diffusion (A8)

∂rτ = δ(z − η)τs − δ(z +H)τb wind stress, τs and bottom drag, τb (A9)

δ(z) Dirac delta with dimensions L−1 (A10)

A1 Depth integration and its curl624

To derive the vorticity budget of the depth-integrated flow, we first vertically in-625

tegrate the velocity equation (A1) from the ocean bottom, z = −H(x, y), to the sea626
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surface, z = η(x, y, t)),627 ∫ η

−H

∂tudz = −f ẑ ∧
∫ η

−H

u dz−
∫ η

−H

(
∇rp

ρo
+∇rΦ

)
dz+

τs

ρo
− τb

ρo
+

∫ η

−H

a dz+

∫ η

−H

bdz.

(A11)

Here, a = −ζ ẑ∧u−∇rK−w(ṙ) ∂ru and b = F (horz diff). Vertical integral of F (vert diff),628

which is the vertical convergence of the vertical viscous flux, with the viscous flux van-629

ishing at the ocean top and bottom, over the whole depth vanishes. Since we use the depth-630

integrated velocity equation to derive the vorticity budget, the mathematical manipu-631

lations in the following steps remain the same irrespective of the choice of the vertical632

coordinate in the velocity equation. Thus, for simplicity, the pressure gradient term is633

just written as ∇p above (note that the geopotential, Φ = g z, does not appear in hor-634

izontal pressure gradients), where ∇ = x̂ ∂x + ŷ ∂y is the horizontal gradient operator635

on a fixed depth. We now introduce the shorthand notation636

Ut =

∫ η

−H

∂tu dz and A =

∫ η

−H

adz and B =

∫ η

−H

bdz, (A12)

and make use of Leibniz’s rule on the pressure gradient term to render637

Ut = −f ẑ ∧
∫ η

−H

udz − 1

ρo
∇
[∫ η

−H

p dz

]
+ ps ∇η + pb ∇H +

τs

ρo
− τb

ρo
+A+ B. (A13)

Here, ps and pb are pressures at the surface and bottom of the ocean, and the terms638

ps ∇η, pb ∇H are pressure form stresses at the ocean surface and ocean bottom, respec-639

tively. We now take the curl of this equation and split the curl of the linear Coriolis term640

into two terms to obtain641

∇∧ Ut = −∇ ∧
(
f ẑ ∧

∫ η

−H

udz

)
− 1

ρo
∇∧

(
∇

∫ η

−H

p dz − ps ∇η − pb ∇H

)
+
∇∧ τs

ρo
− ∇ ∧ τb

ρo
+∇∧A+∇∧ B, (A14)

ẑ · (∇∧ Ut) = −β

∫ η

−H

v dz − f ∇ ·
∫ η

−H

u dz +
J(ps, η)

ρo
+

J(pb, H)

ρo

+ ẑ ·
(

∇∧ τs

ρo
− ∇ ∧ τb

ρo
+∇∧A+∇∧ B

)
. (A15)

We can further manipulate the second term on the right hand side (RHS) by making use642

of volume conservation for a vertical column of Boussinesq fluid, which is643

∇ ·
∫ η

−H

udz =
Qm

ρo
− ∂tη. (A16)

In addition, ocean surface pressure is assumed to be constant, as is the case in the644

MOM6 configuration used here and often the case in climate models, so that J(ps, η) =645
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0. Finally, the vorticity budget for the depth-integrated flow (with some rearranging and646

writing
∫ η

−H
v = V ) can be written as647

β V =
J(pb, H)

ρo
+ ẑ ·

(
∇∧ τs

ρo
− ∇ ∧ τb

ρo
+∇∧A+∇∧ B

)
− f

Qm

ρo
+ f ∂tη− ẑ · (∇∧ Ut) .

(A17)

A2 Manipulating the nonlinear advection term648

∇∧A term can be further manipulated to represent it in a simpler form. In a z−coordinate649

model, we can write a as650

a = ax x̂+ ay ŷ (A18)

= −∇3 · (vu) x̂−∇3 · (vv) ŷ, (A19)

where v = u + ẑw = x̂u + ŷ v + ẑw is the velocity and ∇3 = ∇ + ẑ ∂z. We can651

integrate a vertically to obtain A = Ax x̂+Ay ŷ (Leibniz’s rule is also used),652

Ax = ax = −
∫ η

−H

∇3 · (v u) dz (A20)

= −
∫ η

−H

∇ · (uu) dz − [w u]z=η + [w u]z=−H (A21)

= −∇ ·
∫ η

−H

(uu) dz + [uu]z=η · ∇η + [uu]z=−H · ∇H

− [w u]z=η + [w u]z=−H . (A22)

We can further simplify the above equation by using the surface and bottom kinematic653

boundary conditions,654

∂η

∂t
+ u · ∇η = w +

Qm

ρo
at z = η, (A23)

−u · ∇H = w at z = −H. (A24)

Using equations (A22–A24) and following the same steps for Ay, we obtain655

Ax = −∇ ·
∫ η

−H

(uu) dz +

(
Qm

ρo
− ∂η

∂t

)
[u]z=η (A25)

Ay = −∇ ·
∫ η

−H

(u v) dz +

(
Qm

ρo
− ∂η

∂t

)
[v]z=η (A26)

Finally, the nonlinear advection term in the barotropic vorticity budget can be written656

∇∧A = −∇ ∧
(
x̂∇ ·

∫ η

−H

(uu) dz + ŷ∇ ·
∫ η

−H

(u v) dz

)
+∇∧

((
Qm

ρo
− ∂η

∂t

)
[u]z=η

)
, (A27)

∇∧A =
1

ρo
∇∧

(
∇ ·

∫ η

−H

Tkinetic

hor dz

)
+∇∧

((
Qm

ρo
− ∂η

∂t

)
[u]z=η

)
, (A28)
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where Tkinetic
hor = −ρo u ⊗ u is the horizontal kinetic stress tensor. The second term of657

the RHS in equation (A28) is generally very small and can be neglected (Figure 2). Thus,658

the nonlinear advection term is mainly due to Tkinetic
hor .659

To better understand the relative importance of the nonlinear advection term in660

the barotropic vorticity balances, we examine the vorticity budget equation more closely.661

Since meridional transport is primarily controlled by bottom pressure torque and non-662

linear advection at small length scales (Figures 3–4), an approximate vorticity budget663

can be written as664

β V ≈ ẑ ·

 1

ρo
∇∧ (H∇pb) +

≈∇∧A︷ ︸︸ ︷
1

ρo
∇∧

(
∇ ·

∫ η

−H

Tkinetic

hor dz

) , (A29)

Note that there are higher-order derivatives in the nonlinear advection term and bot-665

tom pressure torque. Hence, relative to β V , the right-hand side terms have a stronger666

small-scale spatial variability and relatively larger magnitudes at small length scales. As667

conjectured by Hughes (2000), the advection term and bottom pressure torque are ex-668

pected to compensate each other at small length scales, with their residual leading to669

a relatively large-scale structure in meridional transport (see Figures 3a1–3c1).670

Appendix B Diagnosing Vorticity Budget Terms in MOM6671

MOM6 is equipped with online diagnostics sufficient for an offline computation of672

individual terms in the vorticity equations (A17). We do so by making use of the online673

depth-integrated velocity budget diagnostics in MOM6. We then take the curl of these674

diagnostics to obtain the corresponding vorticity budget terms. Actual names of depth-675

integrated momentum diagnostics and the relevant calculations are shown in Table B1.676

A more detailed description of velocity and vorticity budget diagnostic calculations in677

MOM6 is available at Khatri et al. (2023).678

B1 Remapping contribution679

In GFDL-MOM6, vertically-integrated zonal and meridional velocity budgets can680

be diagnosed according to681

D × hf dudt 2d = intz CAu 2d+ intz PFu 2d+ intz u BT accel 2d

+ intz diffu 2d+
taux

ρo
− taux bot

ρo
+ remapping(u), (B1)
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Term Relevant Diagnostic Calculations

V vmo 2d/(ρo∆x), where ∆x is the zonal grid spacing and ρo = 1035 kg m−3

J(pb, H) see section B2

ẑ · (∇∧ τs) ∂x [tauy]− ∂y [taux]

ẑ · (∇∧ τb) ∂x [tauy bot]− ∂y [taux bot]

ẑ · (∇∧A) ∂x [intz rvxu 2d+ intz gKEv 2d]− ∂y [intz rvxv 2d+ intz gKEu 2d]

+ vertical remap contribution

ẑ · (∇∧ B) ∂x [intz diffv 2d]− ∂y [intz diffu 2d]

Qm wfo or PRCmE

∂tη wfo/ρo − ∂x [umo 2d/(ρo∆y)]− ∂y [vmo 2d/(ρo∆x)] (following equation (A16))

ẑ · (∇∧ Ut) ∂x [D × hf dvdt 2d]− ∂y [D × hf dudt 2d]

Table B1. Method for the computations of vorticity budget terms using depth-integrated

momentum budget diagnostics (D = H + η is the full depth of the ocean) in MOM6. The contri-

bution from remapping in ∇ ∧ A can be computed as discussed in section B1. ‘intz’ and ‘2d’ in

diagnostic names indicate vertical-integral; for example, intz diffv 2d is the vertical-integral of

diffv diagnostic. Note that hf dvdt 2d and hf dudt 2d are the depth-averaged velocity-tendency

diagnostics, thus requiring multiplication by the ocean depth, D, in ∇∧ Ut calculation.

D × hf dvdt 2d = intz CAv 2d+ intz PFv 2d+ intz v BT accel 2d

+ intz diffv 2d+
tauy

ρo
− tauy bot

ρo
+ remapping(v). (B2)

Except for the last term on the RHS in equations (B1-B2), the rest of the terms682

are names of the MOM6 diagnostics corresponding to vertical-integrals of terms in equa-683

tion (A1). hf dudt 2d and hf dvdt 2d are the depth-averaged velocity-tendency diag-684

nostics, intz CAu 2d and intz CAv 2d are the diagnostics for the vertical-integral of (f+685

ζ)ẑ∧u+∇K, intz PFu 2d+ intz u BT accel 2d and intz PFv 2d+ intz v BT accel 2d686

are the diagnostics for the vertical-integral of ∇p/ρo, intz diffu 2d is the diagnostic687

for the vertical-integral of F (horz diff), taux and tauy are the surface wind stress diagnos-688

tics, and taux bot and tauy bot are the bottom friction diagnostics. The remapping terms689
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correspond to w(ṙ) ∂zu, which are not available to be saved as online diagnostics in the690

currrent version of MOM6. Thus, the remapping terms are diagnosed offline as a resid-691

ual in the velocity budget equations (B1-B2). Refer to the online documentation, mom6-692

analysiscookbook.readthedocs.io/en/latest/notebooks/Closing momentum budget.html,693

for full details of momentum diagnostics in MOM6 model.694

To compute the contribution of the remapping terms in the vorticity budget, we695

calculate the curl of the depth-integrated remapping terms diagnosed as residuals from696

the depth-integrated velocity budget diagnostics. We found that the contribution of the697

remapping term to the barotropic vorticity budget is minimal, and the vorticity budget698

closes well even without accounting for the remapping term. This result suggests that699

the remapping term is not a significant factor in the present analyses.700

B2 Bottom pressure torque calculation701

From the development in equations (A14-A16), we are required to use the follow-702

ing identity to derive the barotropic vorticity equation (A17).703

ẑ ·
(
∇∧

[
f ẑ ∧

∫ η

−H

udz

])
= β V + f

Qm

ρo
− f∂tη. (B3)

Generally, the expression on the LHS in equation (B3) results in significant cancellation704

between the zonal and meridional gradients in the curl operation and the small resid-705

ual is equal to β V (plus small contributions from nonzero Qm and ∂tη). However, the706

analytical result in equation (B3) need not hold in an ocean model, which solves for ve-707

locity on a discretized grid. On the MOM6 native grid, cancellation between the zonal708

and meridional gradients in ∇ ∧
[
f ẑ ∧

∫ η

−H
udz

]
does not occur as expected and the709

residual, which is due to numerical errors, is at least two orders of magnitudes larger than710

β V + f Qm

ρo
− f∂tη (see Figures B1a-B1c).711

These numerical errors can lead to spurious forces in vorticity balances and cor-712

rupt bottom pressure torques (Styles et al., 2022). These spurious signals arise due to713

the handling of the Coriolis acceleration and the representation of bathymetry in energy714

and enstrophy conserving schemes on a discrete C-grid (Arakawa & Lamb, 1981). As a715

result, a C-grid model does not satisfy discrete versions of the Leibniz’s rule, which is716

used in equation (A13), leading to spurious forces in vorticity balances. MOM6 is dis-717

cretized using a C-grid and employs a vertical Lagrangian-remap method on a hybrid718

z∗−isopycnal vertical coordinate to simulate the ocean state (Adcroft et al., 2019; Griffies719
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et al., 2020). Hence, bottom pressure torque diagnosed in MOM6 is expected to suffer720

from these spurious forces (Waldman & Giordani, 2023; Styles et al., 2022). To diagnose721

physically relevant signals in bottom pressure torque, we need to account for these nu-722

merical errors. In some cases, it may be possible to disentangle physical and spurious723

contributions to vorticity budget terms offline from the knowledge of horizontal veloc-724

ities and the model grid scale factors in C-grid models. For example, Waldman and Gior-725

dani (2023) proposed a method for diagnosing vorticity budget terms in NEMO ocean726

model; however, the method does not resolve all numerical issues.727

In the present study, we take an alternative approach by making use of the terms728

leading to a closed momentum budget at every grid point. Thus, if we compute the curls729

of depth-integrated velocity budget diagnostics, the resultant vorticity budget also closes730

at every grid point. This closure implies that the sum of numerical errors present in in-731

dividual vorticity budget terms, diagnosed using the discrete curl operations, must van-732

ish at every grid point. Similar to numerical errors in ∇∧
[
f ẑ ∧

∫ η

−H
u dz

]
, we observe733

unrealistic large signals in −∇∧
[

1
ρo

∫ η

−H
∇p dz

]
(Figure B1d). We hypothesize that these734

large signals are mostly numerical errors due to discretization. Fortunately, the Corio-735

lis acceleration and pressure gradient acceleration are discretized in a consistent man-736

ner, so that numerical errors in their curls are roughly equal in magnitude and largely737

cancel (see Figures B1a, B1d, B1e).738

We make an assumption that spurious signals are only present separately in the739

curls of depth-integrated Coriolis acceleration and pressure gradient terms. To obtain740

physically realistic magnitudes and spatial structure of bottom pressure torque, we then741

use the following equation742

J(pb, H)

ρo
= ẑ ·

(
−∇ ∧

[
1

ρo

∫ η

−H

∇p dz

])
+ẑ ·

(
−∇ ∧

[
f ẑ ∧

∫ η

−H

udz

])
+β V +f

Qm

ρo
−f∂tη,

(B4)

which leads to the following diagnostic equation (see equations (B1-B2) for the descrip-743

tion of diagnostics)744

J(pb, H)

ρo
= ∂x [intz PFv 2d+ intz v BT accel 2d]− ∂y [intz PFu 2d+ intz u BT accel 2d]

+ ∂x [intz CAv 2d− intz rvxu 2d− intz gKEv 2d]

− ∂y [intz CAu 2d− intz rvxv 2d− intz gKEu 2d]

+
β

ρo∆x
× vmo 2d+

f

ρo
× wfo− f∂tη. (B5)
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Since the sum of the last four terms on the RHS in equation (B4) vanishes (see equa-745

tion B3), the analytical expression (B4) computes the curl of the depth-integrated pres-746

sure gradient terms, which is bottom pressure torque. By using the diagnostic approach747

of equation (B5), we eliminate the spurious signals in bottom pressure torque because748

numerical errors in the first two terms on the RHS in equation (B5) cancel out.749

The spatial structure and magnitudes of diagnosed bottom pressure torque (Fig-750

ure B1f) agree well with results from Le Corre et al. (2020) (see their Figure 7b), who751

used a terrain following vertical coordinate C-grid model (which is partially immune to752

the numerical issues identified by Styles et al. (2022) and Waldman and Giordani (2023)).753

Furthermore, there is a fair consistency between the present results and bottom pres-754

sure torque diagnosed using B-grid model outputs (Hughes & De Cuevas, 2001; Yeager,755

2015), which also do not suffer from numerical issues present in C-grid models (Styles756

et al., 2022).757

Our diagnostic approach assumes that numerical errors in −∇∧
[
f ẑ ∧

∫ η

−H
udz

]
758

and −∇∧
[

1
ρo

∫ η

−H
∇p dz

]
are exactly equal in magnitude and opposite in sign, which759

need not be true in general. Numerical errors may also be present in nonlinear advec-760

tion, bottom stress, and horizontal friction in the barotropic vorticity budget. However,761

accelerations from the pressure gradient and Coriolis appearing in the velocity equation762

are at least two orders of magnitude larger than the rest of the terms (Figure B2). There-763

fore, it is safe to assume that numerical errors are contained in pressure gradient and Cori-764

olis acceleration, with the diagnostic approach of equation (B5) being a practical diag-765

nostic method.766

Appendix C Coarse-graining and Vorticity Budget Magnitudes767

To assess the impact of coarse-graining on the actual magnitudes of vorticity bud-768

get terms, the zonally-averaged profiles of {|Fℓ|} are examined. As seen in Figure C1,769

the zonal-mean absolute values of the vorticity budget terms are largest in the South-770

ern Ocean (between 40◦S and 60◦S) followed by oceanic regions at 50◦N–70◦N latitude771

bands. {|Fℓ|} values of coarse-grained fields for 200 km coarse-graining scale are five-ten772

times larger than {|Fℓ|} values for 1000 km coarse-graining scale. In the zonal average,773

β V , bottom pressure torque, and nonlinear advection term are of the largest magnitudes.774
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Figure B1. Time-mean (1958–2017) of (a) Vertical component of the curl of depth-integrated

planetary vorticity advection, −∇ ∧
[
f ẑ ∧

∫ η

−H
udz

]
, in model diagnostics (terms in second

and third lines on the RHS in equation B5) (b) β V + f Qm/ρo − f∂tη (c) sum of fields shown

in panels a and b (d) Vertical component of the the curl of depth-integrated pressure gradient,

−∇∧
[

1
ρo

∫ η

−H
∇p dz

]
, in model diagnostics (terms in the first line on the RHS in equation B5) (e)

sum of fields shown in panels a and d (f) sum of fields shown in panels c and d to compute bot-

tom pressure torque. No coarse-graining (or regridding) was applied and the plotted diagnostics

are on the model native grid (units are in m s−2). However, for a better visualization, plotted

diagnostics were smoothed by averaging over neighboring four grid points to remove grid-scale

noise (used GCM-Filters package Loose et al., 2022).
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Figure B2. Time-mean (1958–2017) model diagnostics for (a) Depth-integrated pressure

gradient term, − 1
ρo

∫ η

−H
∇p dz, (b) Depth-integrated Coriolis advection, −f ẑ ∧

∫ η

−H
udz, (c)

Depth-integrated nonlienar advection, A, (d) Bottom friction term, −τb/ρo, (e) Depth-integrated

horizontal diffusion term, B. Left and right panels are for the zonal and meridional velocity diag-

nostics (units are in m2 s−2), respectively.
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Figure C1. Latitude vs zonal-mean absolute vorticity budget magnitudes, {|Fℓ|} (units are in

m s−2), of vorticity budget terms as a function of coarse-graining scale. Note that ẑ· is omitted

in the legends.

With increasing coarse-graining scale, the nonlinear advection term becomes much smaller775

and β V is mainly balanced by bottom pressure torque.776

Appendix D Sensitivity of Vorticity Balances to the Filtering Method777

To test the dependence of vorticity balances on the shape of filter kernel and fil-778

tering algorithm, we spatially filter the vorticity budget terms with a Gaussian kernel779

using GCM-Filters package (Loose et al., 2022), which employs a diffusion-based filter-780

ing scheme (Grooms et al., 2021), and repeat the analysis shown in section 3.1. In con-781

trast to the fixed-kernel approach that we used in coarse-graining, GCM-Filters mod-782

ifies the shape of the Gaussian kernel near land-sea boundaries (Grooms et al., 2021).783

Nevertheless, the spatial maps of filtered vorticity terms in Figure D1 look similar to maps784

shown in Figure 3 and the overall conclusions about vorticity balances remain the same.785
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Figure D1. Vorticity budget analysis for the North Atlantic Ocean (a-g) Time-mean (1958–

2017, indicated with overbars) spatial maps of filtered barotropic vorticity budget terms (used

GCM-Filters package, units are in m s−2) as a function of filter scale; (h) Normalized magnitudes

of the absolute budget terms (see equation 6) at different filter scales (in degree). {|Fℓ|} is com-

puted for the region bounded between 30◦N–70◦N and 80◦W–0◦W. Note that ẑ· is omitted in

panel titles and legends.
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