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Abstract 8 

Uprising ground-level ozone (O3) and its regional pollution in eastern China are 9 

attracting more attention. On top of local precursor emissions and photochemistry, 10 

background ozone and long-range transport also contribute significantly to O3 11 

concentrations. To quantify the regional O3 background concentrations and its yearly 12 

and seasonal variations, multiple methods, including the principal component analysis 13 

(PCA) and the Texas Commission on Environmental Quality (TCEQ) method, were 14 

applied for a case study in Shandong (SD) province in North China, where serious O3 15 

pollution occurred frequently yet the background contributions have not been well 16 

quantified. Results derived from multiple methods show an overall consistent trend 17 

with 2018-2020 averaged regional background O3 (MDA8) of 88.9 μg/m
3
, accounting 18 

for 79.4% of total O3 in the region. From 2018-2020, the changes of regional MDA8 19 

O3 estimated by Methods 1, 2, 3, and 4 are -3.8 μg/m
3
,1.6 μg/m

3
, -5.2 μg/m

3
 and 0.9 20 

μg/m
3
, respectively. Clear seasonal variations in the regional background O3 are 21 

observed, showing a pattern of summer > spring > autumn > winter. In addition, the 22 

regional ozone contribution at coastal cities was larger than that for inland cities 23 

whereas local O3 formation gradually increased from coastal areas to inland areas. 24 

The sea-land wind contribution to O3 in the eastern coastal cities in summer was 25 

around 2.1% at the three-year average level, while the local photochemistry to O3 in 26 

the inland cities was about 29.7% during ozone season. Local photochemical 27 
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contribution to O3 in inland cities during ozone pollution episodes can reach up to 28 

55.8%.  29 

 30 

Plain Language Summary:  31 

Multiple methods including PCA with different sets of data inputs, PCA-MLR, TCEQ 32 

are applied to quantify the regional background ozone in a typical region (SD) in 33 

north China for year 2018-2020. Annual and seasonal changes of the regional 34 

background ozone are estimated. Contributions from sea-land wind circulation and 35 

local photochemical formation to ozone are also analyzed. 36 

 37 

1. Introduction 38 

Tropospheric ozone is a typical secondary pollutant, which adversely affects the 39 

public health, crop yields, and air quality [Chen et al., 2007; Schauberger et al., 2019; 40 

Suciu et al., 2017; Tai and Martin, 2017]. Additionally, O3 is the third most important 41 

greenhouse gas and thus has a significant impact on global climate change 42 

[Morgenstern et al., 2014]. A small amount of tropospheric O3 is transported from the 43 

stratosphere; it is mainly produced via photochemical reactions by precursors (NOx, 44 

VOCs, and CO) in the atmosphere. In general, at any location, the measured surface 45 

O3 is the sum of the regional background O3 and locally produced O3 [Berlin et al., 46 

2013; Nielsen-Gammon et al., 2005]. Regional background O3 refers to the amount of 47 

O3 transported into the area by large-scale winds [Langford et al., 2009; 48 

Nielsengammon et al., 2005], which mainly includes the photochemical effects of 49 

natural emissions of VOCs, NOx, and CO; long-range transport of O3 from distant 50 

pollutant sources; and O3 from stratosphere–troposphere gas exchange [Langford et 51 

al., 2009; Vingarzan, 2004].  52 

 53 

The regional background O3 concentrations considered in this work is distinct from 54 

the definitions used elsewhere: “local background O3”; “baseline O3”; 55 

“policy-relevant background (PRB) O3” and “Local background O3”, which include 56 

O3 redistributed by local circulation, originate without local anthropogenic O3 57 

precursors [Langford et al., 2009]. “Baseline O3” is defined as O3 measured at a given 58 

site in the absence of strong local emissions of anthropogenic precursors [Chan and 59 

Vet, 2010]. “PRB O3” is the O3 level in the area in absence of local anthropogenic  60 
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O3 precursors [L Zhang et al., 2011]. PRB O3 is a concept based on a model; therefore, 61 

it is distinct from other terms [McDonald-Buller et al., 2011]. 62 

 63 

O3 pollution has become increasingly prominent and has shown obvious regional 64 

pollution characteristics [Dai et al., 2021; Dang and Liao, 2019]. To prevent and 65 

control O3 pollution, it is of scientific significance is to quantify the background and 66 

local O3 contributions to clarify the limit of O3 reduction by controlling anthropogenic 67 

precursors [Vingarzan, 2004]. Regarding the concentration of regional background O3, 68 

existing research has not fully addressed this problem. The most commonly used 69 

methods for calculating regional background O3 concentrations are the background 70 

in-situ measurement, the PCA method, and the TCEQ regional background O3 71 

estimation method [WU et al., 2017]. Langford et al. were the first to use PCA to 72 

analyze the regional background O3 concentration for Texas in 2006 and identified the 73 

first principal component (explained variance of 84%) as the regional background O3 74 

concentration, which was demonstrated by the spatial distribution of load and 75 

meteorological conditions [Langford et al., 2009]. Using the same method, Liang et al. 76 

analyzed the regional background O3 in the Yangtze River Delta region in May 2016; 77 

they posited that local production had a significant contribution to the high 78 

concentrations of O3 [Liang et al., 2018]. Based on the aforementioned method, Suciu 79 

et al. innovatively inserted meteorological parameters into the PCA, restricted the 80 

regional background O3, and obtained a more reasonable result [Suciu et al., 2017]. 81 

The TCEQ regional background O3 estimation method is simpler than PCA but has 82 

higher requirements for the number of monitoring stations, representativeness of the 83 

regional distribution, and integrity of the monitoring data [WU et al., 2017]. The 84 

TCEQ method defines the minimum MDA8 O3 for all monitoring sites in the study 85 

area as the regional background O3, and the difference between the maximum and 86 

minimum values as locally generated O3 [Nielsengammon et al., 2005]. Xue et al. 87 

used the TCEQ method to study the relative contribution of the regional background 88 

O3 and local O3 generation to O3 level in Hong Kong, and further investigated the 89 

long-term trend in regional background O3 from 2002 to 2013. They found that the 90 

regional background contribution accounted for approximately 70% of the total O3, 91 

and the increase in regional background O3 concentration was the major factor for the 92 

increase in urban O3 concentration [Xue et al., 2014]. However, the estimation of 93 

regional background O3 derived by different methods has obvious differences, causing 94 
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high uncertainties. It is of scientific significance to get an overview of the regional 95 

background O3 and understand their variations based on multiple methods.  96 

 97 

China has experienced significant O3 pollution in recent years, particularly in the 98 

North China Plain (NCP), one of the most economically developed and polluted 99 

regions [Ma et al., 2016; Sun et al., 2021]. Shandong is one of the provinces with 100 

serious O3 pollution in NCP, where the 90
th

 percentile of the annual average MDA8 101 

O3 climbed from 154 to 186 μg/m
3
 in 2015-2019 [M Zhang et al., 2021]. However, 102 

the regional background O3 concentration in the SD region has rarely been studied. In 103 

this study, taking SD province as a case study, we used multiple methods, including 104 

the PCA method, PCL-MLR method, TCEQ method and background in-situ 105 

measurement method to quantify the regional background O3 concentrations in the SD 106 

region. PCA is run twice with single variable (only MDA8 O3) and multivariable 107 

(MDA8 O3, NO2, wind direction (WD), wind speed (WS), and temperature (T)) as 108 

inputs respectively. The results of PCA analyses, TCEQ method, and background 109 

in-situ measurement were compared. On the basis of the aforementioned analysis, we 110 

estimated annual changes in the regional background O3 concentrations, their seasonal 111 

variations, and their spatial distributions in the SD region to evaluate the contributions 112 

of O3 by region and provide effective scientific and technological support for the 113 

prevention and control of O3 pollution in the SD region and can apply it to other 114 

regions. 115 

 116 

2. Methodology 117 

2.1 Data collection and preprocessing 118 

Hourly data on O3 and NO2 were collected from 96 Air Quality Monitoring Stations 119 

(AQMSs) in Shandong Province from 2018 to 2020. These data were measured by the 120 

China National Environmental Monitoring Centre (http://datacenter.mee.gov.cn). The 121 

data processing method used in this study is similar to the process reported by Chu et 122 

al. [Chu et al., 2020]. First, we deleted the missing values and zero values of site data. 123 

Second, we calculated the efficiency of the data [Shamsipour et al., 2014], sites with 124 

an efficiency lower than 90% were excluded. Thus, 66 AQMSs were selected after 125 
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data screen, which covered all cities. Third, the missing values and zero values were 126 

filled with linear interpolation to calculate O3 MDA8 [Ottosen and Kumar, 2019]. For 127 

data missing for more than 3 consecutive days, linear interpolation was not used, 128 

instead the average of the continues observational data at the remaining sites were 129 

used as replacement for such data. The spatial distribution of these sites is shown in 130 

Fig. 1. 131 

 132 

Meteorological data were extracted from the National Centers for Environmental 133 

Prediction (NCEP) final operational global analysis data files with temporal and 134 

spatial resolutions of six hours and 2.5°×2.5°, respectively 135 

(https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). A large subset of 136 

these data is available from the Physical Sciences Laboratory in its original 137 

four-times-daily format and as daily averages. Seven grids covered the SD region, and 138 

the corresponding grid meteorological data were matched to the AQMS. The 139 

meteorological data contained three elements, temperature, u-wind, and v-wind; 140 

temperature is the data for ground 2m height and both winds are at sigma level 995. 141 

2.2 PCA Method 142 

The variation in O3 concentration varies significantly over time and is influenced by 143 

the emission of local O3 precursors and by meteorological conditions [Wang et al., 144 

2019]. When the meteorological conditions are relatively stable, O3 concentrations are 145 

more likely to be affected by the local photochemistry [Shan et al., 2009] whereas the 146 

influence of regional transmission increases as the atmospheric diffusion conditions 147 

improve. Therefore, we used the PCA method to analyze the regional background O3 148 

concentrations by analyzing the multi-site MDA8 O3 and the single-site MDA8 O3 149 

with NO2, WD, WS, and T data at various sites in the SD region after stripping out the 150 

impact of anthropogenic emissions on the changes in O3 concentration. Then, we 151 

interpreted the results of PCA in combination with meteorological data. 152 

 153 

PCA is effective for dimensionality reduction and simplifying the system structure by 154 

converting multiple indicators into several uncorrelated comprehensive indicators 155 

(principal components) under the premise of less information loss through the 156 

correlation coefficient (or variance covariance) matrix [MURTAGH et al., 1987]. In 157 

https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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general, the first few principal components can explain most of the variance in the 158 

original variables, and the results of these principal components are used to explain 159 

the original observations [Abdul-Wahab et al., 2005]. PCA can be combined with 160 

multiple linear regression (MLR) methods, where the resolved principal components 161 

are considered as ozone sources, factor scores are considered as independent variables, 162 

and pollutant concentrations after normalization are considered as dependent variables, 163 

to predict and further determine the contribution rates of regional background O3 164 

[Jolliffe, 2005; Statheropoulos et al., 1998]. 165 

 166 

PCA was used to calculate the regional background O3 concentration. First, we 167 

assumed that all stations in the study area were affected by regional transport air 168 

masses; therefore, the principal components representing the regional background 169 

could be extracted [WU et al., 2017]. Next, using the prior methods as a reference 170 

[Langford et al., 2009; Suciu et al., 2017], we used the results of loadings and factor 171 

scores to explain which principal components represent the regional background and 172 

then inversely calculated the regional background O3 according to equation (1). This 173 

method has been widely applied in O3 regional background research [Huang et al., 174 

2021; Liang et al., 2018; Yao et al., 2021]. 175 

𝑂3 = 𝑂3 + σ（𝑂3）∑ 𝑓𝑖𝛼𝑖（𝑡）𝑁=66
𝐼                     (1) 176 

𝑂3
𝑃𝐶1 = 𝑂3 + σ（𝑂3）𝑓

1
𝛼1（𝑡）                      (2) 177 

where O3 is the mean of the MDA8 O3 at 66 sites, σ(O3) is the standard deviation 178 

of the data set, fi is the PCi variance contribution of the results of the PCA, and αi is 179 

the daily PCi amplitudes. When PC1 represents the regional background, use equation 180 

(2) to calculate 8-hour regional background O3. 181 

2.3 TCEQ Method 182 

The TCEQ method was proposed by the Texas Commission on Environmental Quality. 183 

A rural site in the upwind direction was chosen among all the monitoring sites in the 184 

study area and the O3 concentration at the site was utilized as the regional background 185 

[Langford et al., 2009; WU et al., 2017]. Nielsen-Gammon et al [Nielsengammon et 186 

al., 2005] presented a TCEQ method based on a larger air quality monitoring network , 187 

which is simpler, more reliable, and more widely adopted . This approach calculates 188 
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the highest 8-hour O3 concentration at each site and uses the lowest 8-hour O3 189 

concentration measured across all site as the regional background value. The 190 

improved TCEQ method considers data from a well-established monitoring network 191 

with good coverage in all directions in the study region, ensuring that at least one site 192 

is not affected by local emissions regardless of wind direction changes. Additionally, 193 

the difference between the highest and lowest 8-hour O3 concentrations at all the sites 194 

is defined as the O3 generated by local photochemical reactions. The daily 8-hour 195 

regional background O3 and locally generated O3 can be calculated by equation (3). 196 

𝑂3(𝑅) = 𝑂3_𝑀𝐼𝑁  197 

𝑂3(𝐿) = (𝑂3_𝑀𝐴𝑋) − (𝑂3_𝑀𝐼𝑁)            (3) 198 

where O3(R) represents the regional background O3, and O3(L) represents the locally 199 

generated O3. 200 

2.4 Experimental design 201 

We conducted three distinct PCA experiments to analyze single and multiple variables 202 

at various stations in the SD region to calculate the regional background O3 203 

concentrations. Method 1 was the most conventional approach; we used only MDA8 204 

O3 to run PCAs for the selected 66 AQMSs in the SD region in the 3 years from 2018 205 

to 2020. Method 2 considered information such as meteorological parameters and 206 

precursors (NO2, WD, WS, T) to constrain it, but fewer sites (only five) than in 207 

Method 1 were selected, and these sites were distributed in different regions of the SD 208 

region to better represent the regional characteristics. We ran five independent PCAs 209 

on five sites to extract the regional background O3 concentrations [Suciu et al., 2017]. 210 

Unlike Methods 1 (single variable, multiple sites) and 2 (multiple variables, multiple 211 

sites), Method 3 is a relatively innovative method that combines PCA with MLR, 212 

usually used for pollutant source analysis [Bian et al., 2013; Feng et al., 2020]. 213 

Method 3 includes three steps: First, to assume that regional contribution, local 214 

contribution, and other contributions such as ocean, local small air mass contribution, 215 

etc. are several sources of ozone. Second, using PCA/MLR to analyze MDA8 O3 from 216 

66 AQMSs, the PC factor score derived from PCA as independent variable and the 217 

standardization result of the mean value of all sites is used as a dependent variable to 218 

predict the contribution rate of different sources. Finally, regional background O3 was 219 
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estimated based on the regional contribution rates and factor scores.  220 

 221 

Simultaneously, regional background O3 was calculated using the TCEQ method, 222 

which is named as Method 4 in this study. However, considering the influence of the 223 

MDA8 O3 minimum data and location of specific sites on the results, we first found 224 

the frequency distribution of the sites with the smallest MDA8 O3 values and found 225 

that one site had the smallest MDA8 value among all the sites on 377 days over 3 226 

years, and it could not adequately capture regional transport air masses due to its 227 

location in the urban; thus, this site was removed. Second, the remaining data were 228 

cleaned using a phase-line approach, deleting outliers higher than Q3 + 1.5(Q3-Q1) or 229 

less than Q1-1.5(Q3-Q1) from the MDA8 O3 sub-dataset on every day of every month 230 

(Q1 and Q3 represent the first and third quartiles, respectively) [Mousavinezhad et al., 231 

2021; Yin et al., 2019]. Moreover, to evaluate the reliability of the results of the four 232 

distinct methods, the regional background O3 was calculated through the different 233 

methods and compared with the observations at Yangkou station, Qingdao （the 234 

location is shown by the purple star in Fig 1）, which was defined as a background site  235 

(https://www.mee.gov.cn/gkml/hbb/bwj/201204/t20120401_250935.htm). Specific 236 

information for each method is presented in Table 1. 237 

 238 

Table1. Summary of parameters for methods of calculating regional background O3. 239 

Approach Areas Input Parameters 

Method 1 (PCA) 66 AQMS in the SD region MDA8 O3 

Method 2 (PCA) 5 AQMS sites in the SD region MDA8 O3, NO2, WD, WS, T 

Method 3 (PCL/MLR) 66 AQMS in the SD region MDA8 O3 

Method 4 (TCEQ) 65AQMS in the SD region MDA8 O3 

 240 

3. Results and discussions 241 

3.1 Regional and local contributions to MDA8 O3 (Method 1-PCA) 242 

After cleaning the data of all AQMSs in the SD region from 2018 to 2020, 66 sites 243 

fulfilled the data-quality requirements. We ran three independent PCAs on the MDA8 244 

O3 at these sites per year, and only the components with eigenvalues greater than 1 245 
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were judged as the main components. The results of this analysis are summarized in 246 

Table 2. The PCA resulted in four components for MDA8 O3 over 3 years: the first 247 

principal component could explain the highest percentage of the variance of O3, 248 

nearly 80%, and the cumulative variance of the four principal components reached 249 

more than 90%.  250 

 251 

A notable clustering phenomenon was observed when we mapped the principal 252 

component loadings for each site in Fig. 1 to reveal its spatial distribution 253 

characteristics. Different colors represent different principal components, and the 254 

coefficients ranging from -1 to +1 represent the mean contribution of each component 255 

to each site during 2018-2020. The length of the column represents the size of the 256 

load, with the upward direction corresponding to positive values and the downward to 257 

negative values. The amplitude (scores) and loadings jointly determine the daily 258 

increase or decrease in the O3 concentration at a certain site. The loading coefficient 259 

and amplitude with the same positive and negative mean that the O3 concentration at 260 

the site increases, and vice versa, the O3 concentration at the site decreases. By 261 

comparing the spatial and temporal information provided by the scores and loadings 262 

with meteorological data such as wind and temperature, we could infer the potential 263 

physical and chemical processes. 264 

 265 

The spatial distribution of loadings is shown in Fig. 1, where the loadings of the first 266 

principal component (PC1) were all positive. Loadings associated with each principal 267 

component using Method 1 are presented in Table S1. The loadings range from +0.63 268 

to +0.97 and PC1 averagely accounts for 77.8% of the variance at each of the 66 sites. 269 

The widespread cluster of PC1 suggests that the O3 and PC1 values at the sites were 270 

mostly controlled by the regional background O3. This interpretation is supported by 271 

Fig. 2, which compares the PC1 amplitudes against the NCEP winds. For PC1, the 272 

spatial load coefficients of all sites were positive; according to the vector scatter plot 273 

of PC1 amplitude and wind speed, the principal components on O3 pollution days 274 

were positive as well, indicating that PC1 contributed positively to the O3 275 

concentration at all sites. PC1 represents the regional background, and the southerly 276 

wind prevails on the day when the O3 exceeds the ambient air quality standards of 277 

China (160 μg/m
3
). 278 

 279 



10 

 

The positive loadings of PC2 are distributed in the coastal area, which shows that PC2 280 

contributes significantly to the stations in the coastal area and is largely influenced by 281 

the sea and land breezes. Based on the relationship between PC2 scores and 282 

meteorological variables, the influence of WS and WD on PC2 was analyzed. On the 283 

monthly scale, PC2 scores were low in the high O3 season, which was related to air 284 

mass transportation in the eastern coastal area. Therefore, we interpreted that PC2 285 

represented mainly the land-sea breeze circulation. The spatial distributions of PC3 286 

and PC4 with positive loadings also showed an obvious feature: PC3 was mainly 287 

distributed in the northern region of the SD region, and PC4 was low in the central 288 

region and high on the east and west sides. Thus, PC3 and PC4 might be affected 289 

mostly by the local photochemistry. Based on the temporal variation in PC3 and PC4 290 

scores and their relationship with meteorological variables (Fig. S2-3), there is no 291 

clear characteristic that may be influenced by either specific meteorology or regional 292 

transportation, it is therefore named as contributions from local generation.  293 

 294 

Table2. Results of PCA Analysis (Method 1). 295 

 2018 2019 2020 

PC Eigenvalues 
Variance 

Contribution 

Cumulativ

e Variance 
Eigenvalues 

Variance 

Contribution 

Cumulative 

Variance 
Eigenvalues 

Variance 

Contribution 

Cumulative 

Variance 

PC1 50.99 72.26 72.26 54.09 81.95 81.95 52.26 79.18 79.18 

PC2 5.68 8.60 85.87 4.22 6.40 88.35 4.67 7.07 86.25 

PC3 1.98 3.00 88.87 1.66 2.52 90.87 2.39 3.62 89.87 

PC4 1.10 1.67 90.54 1.005 1.52 92.39 1.16 1.76 91.63 

 296 
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297 

  298 

Figure 1. Spatial distribution of component coefficients (loadings) for PC1, PC2, PC3, 299 

and PC4 for 2020. Column length represents the size of the loading. Specific 300 

information of the loadings values for 2018-2019 and 2020 can be found in Table S1. 301 

And the purple star marks the location of the background site (Yangkou). 302 

 303 



12 

 

 304 

Figure 2. Scatterplots of correlations between PC1 amplitudes and mean NCEP 305 

reanalysis winds. Solid diamonds represent O3 clean conditions (O3<160μg/m
3
); open 306 

diamonds represent O3 polluted conditions. (a)-(c) represent 2018-2020, respectively. 307 

 308 

Based on the spatial distribution of the sites in Fig. 1 (d), four sites (Weihai: SDFX; 309 

Weifang: HTJCZ; Zibo: DFHGC; Liaocheng: QZF) with relatively complete data 310 

were selected and marked on the map. The O3 season (April-September) was used to 311 

illustrate the changes from inland to coastal areas. The difference between the 312 

measurements and the regional background O3 represents the local contribution, 313 

which includes not only locally produced O3 but also the O3 in air transported to the 314 

site by local circulation. As shown in Fig. 3, the local contribution increases as the 315 

distance from the coast increases from Weihai to Liaocheng; this was expected based 316 
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on the gradient created by land-sea breeze circulation (PC2). In summer, the PC2 317 

amplitude was mostly negative (Fig. S1), and the local contribution to Weihai 318 

becomes negative when O3 from the ocean is transported to this region. In April, May, 319 

and September, PC2 was generally positive, and the local contribution increased in 320 

Weihai. 321 

 322 

Figure 3. Daily 8-h maximum O3 measured at Liaocheng (a), Zibo (b), Weifang (c), 323 

Weihai (d), compared with the regional background O3 from inland to coast derived 324 

from PCA. The thin orange line represents the O3 regional background, and the thick 325 

green line represents the O3 concentration in the city. The dotted line represents the 326 

local contribution defined as the difference between the measurements and the 327 

regional background O3. 328 

 329 

In addition to the differences in local contributions from inland to coastal cities, the 330 

contribution of sea-land winds to coastal cities and locally generated O3 in inland 331 

cities were further explored. Fig. 3 shows that the coastal areas are usually affected by 332 
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sea-land wind from June to August. Therefore, we considered the impact of sea-land 333 

wind to O3 in coastal cities from June to August during 2018-2020, and the ozone 334 

concentration affected by sea-land wind is calculated using equation (1). Its 335 

contribution is calculated using the average value of ozone concentration in coastal 336 

cities, and the results show that the contribution of sea-land wind to coastal cities in 337 

the past three years was 3.3%, 1.8%, 1.3%, respectively. Ozone pollution days during 338 

the ozone season (April-September) were chosen to illustrate the contribution of local 339 

generation to O3 in inland cities. Results indicate that the local generation of O3 340 

during ozone season in 2018, 2019 and 2020 was 35.5%, 29.0%, and 24.7%, 341 

respectively, while during O3 pollution days, the contribution of local formation 342 

increased to 50.3%, 43.9%, 55.8%, in the year 2018, 2019, and 2020, respectively. 343 

 344 

As shown in Fig. 4, the seasonal variations in the regional background O3 showed the 345 

characteristic pattern of summer > spring > autumn > winter from 2018 to 2020. The 346 

regional background O3 ranged from 60 to 152μg/m
3
. In terms of interannual 347 

variation, the regional background O3 decreased slightly in spring and summer during 348 

the 3 years and increased slightly in autumn and winter. The regional background O3 349 

during the Spring, Summer, Autumn, and Winter changed by -11, -8, +3, and +2 350 

μg/m
3
, respectively from 2018 to 2020.  351 

 352 

Figure 4. Regional background O3 in different seasons of 2018-2020 (Method 353 

1-PCA). 354 

 355 

0

50

100

150

200

250

300

Sum Aut Win

P
C

1
_

O
3
(μ

g
/m

3
)

 2018

 2019

 2020

Spr

Season



15 

 

3.2 Regional and local contributions to MDA8 O3 (Method 2-PCA) 356 

Method 2 differs from Method 1 because it uses only MDA8 O3, considers both O3 357 

precursors (NO2) and meteorological variables (WS, WD, and T), and selects fewer 358 

sites (five sites). Additionally, site distribution is required, data must be complete. 359 

Data from five sites were used for the analysis: Zibo, Qingdao, Taian, Weihai, and 360 

Binzhou. PCA was performed on the five parameters: MDA8 O3, daily mean NO2, 361 

WD, WS, and T for the five sites from 2018 to 2020; the meteorological data sources 362 

were the daily mean data from the NCEP reanalysis data. The results of the PCA are 363 

shown in Table 3, where two components with eigenvalues greater than 1 were 364 

extracted for each site, and the eigenvalues of PCs from each site were similar; the 365 

mean value was approximately 1.6. The first component explained approximately 40% 366 

of the variance in the original variables, and the second component explained 367 

approximately 25% of the variance, indicating that both PCs were important in 368 

explaining the original variables. 369 

 370 

Table 3. Results of PCA Analysis (Method 2). 371 

City PC Eigenvalue 
Variance 

Contribution 

Cumulative 

Variance 

Zibo 
PC1 2.324 46.475 46.475 

PC2 1.106 22.122 68.597 

Qingdao 
PC1 2.071 41.420 41.420 

PC2 1.170 23.405 64.825 

Taian 
PC1 2.390 47.796 47.794 

PC2 1.140 22.810 70.604 

Weihai 
PC1 1.835 36.692 36.679 

PC2 1.275 25.508 62.201 

Binzhou 
PC1 2.155 43.092 43.092 

PC2 1.224 24.486 67.579 

 372 

We infer the meaning of the components by considering the relationship between each 373 

principal component loading (absolute values greater than or equal to 0.5) and the 374 

variables. From the loadings of the two principal components at each site (Table 4), a 375 

clear pattern emerges: for each site, PC1 has high loadings on the factors O3, NO2, 376 

and T, reflecting the chemical generation process, and PC2 at all sites had larger 377 

values on the factors WD and WS, reflecting the physical transport process. We used 378 
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Weihai as an example: PC1 scores increased with O3 and T, whereas NO2 decreased 379 

(Fig. S4), which reflects NO2 depletion and describes the chemistry, possibly local O3 380 

production. PC2 scores did not have a significant relationship with T and they 381 

increased with WS (Fig. S5), which reflects regional transport effects. Thus, further 382 

evidence suggests that PC1 and PC2 were primarily associated with chemical 383 

processes and physical processes, respectively. 384 

 385 

Table 4. Loading or correlations of components with variables at each site by Method 386 

2.  387 

City 

PC1 PC2 

O3 NO2 T WD WS O3 NO2 T WD WS 

μg/m
3
 μg/m

3
 ℃ ° m/s μg/m

3
 μg/m

3
 ℃ ° m/s 

Zibo 0.916 -0.674 0.881 0.498 0.081 0.091 0.403 0.014 0.490 -0.834 

Qingdao 0.775 -0.582 0.900 0.561 -0.087 0.213 0.596 -0.005 0.199 -0.854 

Taian 0.892 -0.726 0.922 0.443 0.139 0.142 0.426 0.036 0.581 -0.775 

Weihai 0.731 -0.210 0.807 0.662 -0.409 0.031 -0.854 0.112 0.009 0.729 

Binzhou 0.922 -0.488 0.909 0.484 0.075 0.087 0.695 -0.050 0.704 -0.486 

 388 

Finally, based on the PCA results, referring to the method of Suciu et al. [Suciu et al., 389 

2017], the PC scores for regional background O3 were substituted as the mean of PC2 390 

scores at each site, the PC scores for local contributions were replaced by the mean of 391 

PC1 scores at the site, and the cumulative contribution of the PCs was replaced by the 392 

results of the standardization of each component. Based on this calculation method, 393 

the regional background O3 was back-calculated, and the results are shown in Fig. 5. 394 

Compared with other methods, there was no significant seasonal trend, and the 395 

regional background O3 was approximately 110 μg/m
3
 for each month, this result will 396 

be compared with previous studies. 397 
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 398 

Figure 5. Regional background O3 in the seasons of 2018-2020 (Method 2-PCA). 399 

3.3 Regional and local contributions to MDA8 O3 (Method 3-PCA/MLR) 400 

PCA/MLR (Method 3), as a relatively novel method, uses the idea of source 401 

resolution and continues to use MLR to estimate the O3 regional background based on 402 

the results of Method 1 (PC1 represents the regional background). Using the factor 403 

score of Method 1 as the independent variable, and the standardized results of the 404 

mean MDA8 O3 of 66 AQMS sites in the SD region as the dependent variable, after 405 

MLR processing, the contribution proportions of the 2018-2020 O3 regional 406 

background were obtained as follows: 60.2%, 57.3%, and 57.3%, which show a 407 

decreasing trend; the O3 regional background was then calculated using equation (10) 408 

of Bian et al.[Bian et al., 2013], and the results are shown in Fig. 6. The seasonal 409 

pattern of regional background O3 remained consistent with that of Method 1, but the 410 

annual variation varied slightly by the season, especially in summer, for which there 411 

was a decreasing trend from year to year. 412 
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 413 

Figure 6. Regional background O3 in the seasons of 2018-2020 (Method 414 

3-PCA/MLR). 415 

3.4 Regional and local contributions to MDA8 O3 (Method 4-TCEQ) 416 

The TCEQ method was used to estimate the regional background O3 in the SD region. 417 

Because the lowest MDA8 O3 at the AQMS selected by the TCEQ method represents 418 

the regional background value, to reduce the inaccuracy caused by the site, the 419 

distribution of the minimum MDA8 O3 at all sites was calculated. Fig. 7 shows the 420 

regional background O3 for the seasons from 2018-2020, and a characteristic pattern 421 

of summer > spring > autumn > winter can be observed, which is consistent with the 422 

pattern of results resolved by the PCA, ranging from 20 to 173 μg/m
3
. In addition, 423 

summer and autumn show a trend of increasing and then decreasing, and the other 424 

two seasons show the opposite pattern, which is slightly different from that of the 425 

PCA, but overall, they all show a slightly increasing trend. 426 
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 427 

Figure 7. Regional background O3 in the seasons of 2018-2020 (Method 4-TCEQ). 428 

 429 

To further illustrate the contribution of regional background O3 to coastal and inland 430 

cities in different years and seasons, the mean MDA8 O3 was calculated for all 431 

AQMSs in coastal and inland cities in the SD region, and the ratio of the regional 432 

background O3 to the mean MDA8 O3 was defined to reflect the magnitude of the 433 

contribution of the regional background to O3 concentration. As shown in Table 5, the 434 

contribution of the regional background to the coast is higher than that inland, which 435 

is consistent with the conclusion in PCA Method 1 that the local contribution from the 436 

coast to the inland is increasing. Regarding interannual variability, the regional 437 

contribution of O3 to both showed an increasing trend, and for seasonal variability, it 438 

decreased sequentially in spring, summer, autumn, and winter. 439 

 440 

Table 5. Contribution of regional background O3 to coastal and inland cities in the 441 

seasons of 2018-2020. 442 

Season 
Coastal cities Inland cities 

2018 2019 2020 2018 2019 2020 

Spring 65.1% 66.8% 72.0% 62.2% 63.6% 67.1% 

Summer 57.6% 61.9% 63.7% 47.0% 52.2% 55.6% 

Autumn 43.1% 54.7% 45.4% 42.8% 54.2% 44.0% 

Winter 41.8% 43.2% 52.7% 41.3% 41.9% 51.1% 

 443 
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3.5 Comparisons among multiple methods 444 

Due to the differences in the principles used to estimate the regional background O3 445 

concentrations, there were differences in the calculated results. In general, the results 446 

of Methods 1 and 2 were approximately 40 μg/m
3
 larger than those of Method 3 and 447 

the TCEQ. For Method 3, this difference was mainly because after the MLR process, 448 

the resulting regional contribution decreased, only about 60%, therefore, the results 449 

were smaller when further estimating the regional background O3. In the TCEQ 450 

method, the lowest MDA8 O3 was selected to represent the regional background, and 451 

the selected site may be influenced by urban sites that do not capture the regional 452 

background well and are therefore lower in magnitude compared with Methods 1 and 453 

2.  454 

 455 

As shown by the prior analysis of the results, the seasonal trends of the regional 456 

background O3 were generally consistent for the three methods, with a clear monthly 457 

variation characteristic, except for Method 2, which adds meteorological parameters 458 

as constraints and has a smooth trend. This phenomenon may be because Method 2 459 

considers the meteorological factors of the station, indicating that the main component 460 

of the regional background value has almost no relationship with temperature. 461 

Therefore, there is no obvious monthly variation trend. The results of each method for 462 

interannual variability are presented in Table 6. Because Methods 1 and 3 use 463 

different analysis methods for the same dataset, the annual trends for both are 464 

consistent, showing a slight decrease of 3.8 μg/m
3
 and 5.2 μg/m

3
 for each of the three 465 

years. The results of Method 2, the TCEQ method, and the background sites show a 466 

consistent pattern of increasing and then decreasing, but overall, the values increase 467 

by 1.6 μg/m
3
, 0.9 μg/m

3
, and 14.7 μg/m

3
, respectively, over the 3 years. The annual 468 

pattern of change for each method varied, but in general, there was an increase over 469 

the 3 years. Additionally, to reduce the error of a single method, the average value of 470 

the aforementioned results is expressed as the regional background O3 in the SD 471 

region in the past 3 years, which were 89.2 μg/m
3
, 89.8 μg/m

3
 and 87.6 μg/m

3
, 472 

respectively, and the three-year average value is 88.9 μg/m
3
 473 

 474 

Table 6. Comparison of all approaches in this study and the literature. 475 

Method 2018 2019 2020 Average 
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AVE SD AVE SD AVE SD AVE SD 

Method 1 

(PCA) 
113.1 45.9 112.6 49.6 109.3 43.5 111.7 46.4 

Method 2 

(PCA) 
108.0 10.5 110.2 10.5 109.6 10.3 109.3 10.5 

Method 3 

(PCL/MLR) 
69.7 45.8 67.6 42.0 64.6 36.6 67.3 41.7 

Method 4 

(TCEQ) 
66.1 31.2 68.8 31.9 67.0 29.3 67.3 30.8 

Average 89.2 42.3 89.8 42.5 87.6 39.1 88.9 10.5 

Background 

site 
91.5 35.1 104.1 39.6 106.2 34.3 100.6 37.0 

a 
AVE represents the average value of a method for a given year; 

b 
SD represents the 476 

standard deviation of a method for a given year. 477 

3.6 Comparisons with previous studies 478 

Fig.8 summarizes the regional background O3 concentrations reported in previous 479 

studies estimated by different methods for various regions. The results of several 480 

methods are within reasonable limits based on comparisons with other studies. We 481 

compared the results of this study with other studies, such as those of Liang et al. 482 

[Liang et al., 2018] in the YRD region, Huang et al. [Huang et al., 2021] in Shanghai, 483 

Xue et al. [Xue et al., 2014] in Hong Kong, Berlin et al. [Berlin et al., 2013] and 484 

Suciu et al. [Suciu et al., 2017] in the Houston–Galveston–Brazoria (HGB) region, 485 

and Souri et al. [Souri et al., 2016] in the Houston. Method 2 is referenced in Suciu's 486 

Method 2， from our results, PC2 represents the regional background, which differs 487 

from the results of Suciu [Suciu et al., 2017], and the seasonal variation in regional 488 

background O3 is not significant but remains similar in the magnitude of the 489 

background values. Compared with the results of Berlin et al[Berlin et al., 2013], the 490 

region background O3 calculated by the same PCA method is slightly larger than that 491 

of TCEQ, roughly 20 μg/m
3
. Our results are significantly lower than those of Souri et 492 

al.[Souri et al., 2016], who focused on the regional background O3 at different wind 493 

directions and showed that the regional background O3 were greatest at east-northeast 494 

winds. The results of Liang et al. and Huang et al. do not express specific regional 495 

background O3 concentrations, but they report ranges of 68.8 to 154.7 μg/m
3
 and 496 

66.38 to 219.83 μg/m
3
, respectively, and the maximum values are higher than the 497 
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overall average value because both study periods are in the O3 season. 498 

 499 

Figure 8. Comparison between this study and other research  [Berlin et al., 2013; 500 

Huang et al., 2021; Liang et al., 2018; Souri et al., 2016; Suciu et al., 2017].  501 

4. Conclusions 502 

Three PCA methods with differernet parameters and a TCEQ method was used to 503 

estimate the regional background O3 concentrations in the SD region, where ozone 504 

pollution is severe in recent years. The regional background O3 calculated using 505 

different PCA and TCEQ methods did not differ significantly and showed an overall 506 

consistent trend. Method 1 is the most commonly used method for resolving regional 507 

background O3 using PCA and produces the highest O3 concentration. Method 2 508 

incorporates NO2 and meteorological parameters as constraints and yields a flat 509 

monthly trend. Method 3 combines PCA with MLR and resolves relatively smaller O3 510 

background concentrations, which makes it close to the result of the TCEQ. Based on 511 

the results of the four methods and background sites, the three-year regional 512 

background O3 showed an overall increasing trend, and the three-year average values 513 

for Method1, 2, 3, 4 and background in-situ measurement were 111.7±46.4μg/m
3
, 514 

109.3 ± 10.5μg/m
3
, 67.3 ± 41.7μg/m

3
, 67.3 ± 30.8μg/m

3
, 100.6 ± 37.0μg/m

3
, 515 

respectively. There was a clear seasonal pattern of regional O3 background, with high 516 

values in spring and summer and low values in autumn and winter. Furthermore, the 517 

regional background O3 differs spatially with the eastern coastal area seeing more 518 

influences from the marine environment. The concentration of locally generated O3 519 

gradually increased from coastal to inland cities while the opposite is observed for 520 

regional ozone contribution. Uncertainties exist in terms of estimating the regional 521 



23 

 

background O3 concentrations. Additional factors can also be considered for 522 

multivariate analysis, such as adding constraints on the precursor (e.g., VOC) and 523 

additional relevant meteorological variables (e.g., solar radiation, relative humidity). 524 

Further research is necessary to reduce these uncertainties. 525 
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