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Abstract 24 

We propose a novel reconstruction method for coherent wavefields recorded by dense seismic 25 

arrays. The inherent spatio-temporal coherence in collocated time series is quantified by means 26 

of the semblance norm. Using field data recorded by the 1800-station LASSO array and realistic 27 

simulations, we demonstrate that the proposed method can reconstruct the wavefields well and 28 

produce more coherent and regularized waveform data with high signal-to-noise ratio. We 29 

further examine the effectiveness of the reconstructed and enhanced data with stacking-based 30 

seismic location. The comparison of imaging results for two synthetic and four field events 31 

demonstrates the superiority of reconstructed waveforms regarding source energy focusing and 32 

imaging resolution. Polarity-uncorrected traces of reconstructed waveforms produce high-33 

resolution source images, and the corresponding short-term average to long-term average traces 34 

yield more stable source images with lower imaging resolution, suggesting the method’s 35 

applicability to a wide range of common imaging and monitoring tasks. 36 

 37 

  38 
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1. Introduction 39 

Since the establishment of array seismology about two decades ago, seismic arrays and 40 

accompanying methods and applications have gained significant progress. Though originating 41 

from detecting nuclear explosions, seismic arrays are now utilized as a regular and even 42 

standardized tool for seismic monitoring ranging from large natural earthquakes to exploration 43 

and engineering scales (Hansen & Schmandt, 2015; K. L. Li et al., 2017; Furumura & Maeda, 44 

2021; Lei Li et al., 2022). Currently, more and more temporary and/or permanent dense arrays 45 

are deployed on regional and smaller reservoir scales to achieve high-quality earthquake 46 

catalogs, efficient seismic hazards assessment, and dynamic characterizations of related 47 

engineering activities. With densely sampled wavefields, seismic arrays have promoted the 48 

development of array-based processing techniques, such as backprojection and beamforming, 49 

and yielded more detailed reconstructions of seismic sources and subsurface structures (e.g., 50 

Rost & Thomas, 2002; Gibbons & Ringdal, 2006; Karplus & Schmandt, 2018; Zefeng Li et al., 51 

2018).  52 

 53 

Dense arrays can offer high-quality and even regularized full wavefields, which share similarities 54 

with recorded waveforms of controlled active sources in reflection seismology. Though the 55 

purposes may vary for seismic monitoring at different scales, the well-established summation-56 

based techniques, such as seismic migration, which originate from exploration seismology are 57 

becoming routinely applicable in passive seismology when the station coverage is sufficiently 58 

dense.  Dense arrays were shown to yield data that can be used for directly constructing energy 59 

images of seismic sources, even for triggered and/or induced microearthquakes with low signal-60 

to-noise ratios (SNRs) (Kao & Shan, 2004; Steiner et al., 2008; Lei Li, Tan, et al., 2020).  61 

Waveform stacking and reverse-time imaging methods are successfully applied to automatically 62 

detect and locate microseismic events monitored with sparse and dense arrays, respectively 63 

(Hansen & Schmandt, 2015; K. L. Li et al., 2017). 64 

 65 

One type of modern arrays is the extremely dense local network with a large number (Large-N) 66 

of sensors. For example, the Large-N array consisting of 5200 sensors in the City of Long Beach 67 

has been utilized to recover high-resolution 3D shear velocity structure (Lin et al., 2013) and 68 
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improve the detection capacity of earthquake monitoring networks in urban areas (Yang et al., 69 

2022). However, due to varying surface and deployment conditions and the relatively high cost 70 

of the array deployment, the data quality of dense arrays might not always be as good as 71 

expected. In this case, waveform reconstruction techniques can make use of waveform 72 

similarities across neighboring stations to enhance the data quality or estimate the response at 73 

intermediate or nearby locations where no stations had been deployed (see e.g., Chen et al., 74 

2019). Modern large-N station deployments, for the first time, promise to allow for a complete 75 

and un-aliased reconstruction of the full seismic wavefield. 76 

 77 

Building on the coherence of waveforms across neighboring stations, summation-based 78 

techniques originating in controlled-source seismology can be used for targeted and surgical data 79 

preconditioning and improved (micro-) seismic monitoring. Here we demonstrate the 80 

applicability and effectiveness of such a framework for enhanced seismic source location for the 81 

Large-N Seismic Survey in Oklahoma (LASSO; Dougherty et al., 2019). Backed up by 82 

numerical simulations it is found that noise levels can be effectively reduced and that for 83 

favorable sampling conditions, the effective number of stations can be increased manifold, 84 

thereby allowing for a targeted reconfiguration of the array for improving waveform-based event 85 

location accuracy. 86 

 87 

2. Methodology 88 

In exploration seismology, summation-based coherence analysis is known to be noise-robust and 89 

was shown to be a powerful and expressive foundation for process automation (Jäger et al., 90 

2001), effective data preconditioning (Höcht et al., 2009), weak wavefield separation (Schwarz, 91 

2019) and data-driven velocity inversion (Duveneck, 2004; Bauer et al. 2017, Diekmann et al., 92 

2019).We quantify spatiotemporal wavefield coherence by means of the semblance norm 𝑆 93 

(Neidell & Taner, 1971), which can be viewed as the ratio of the stack (beam) energy and the 94 

total energy considered in a data window of interest, 95 

𝑆(𝑥0, 𝑦0, 𝑡0) =
1

𝑛

∑ [∑ 𝐷(𝑥0+𝛥𝑥𝑖,𝑦0+𝛥𝑦𝑖,𝑡0+𝛥𝑡𝑖)𝑛
𝑖=1 ]

2
𝛿𝑡

∑ ∑ 𝐷2(𝑥0+𝛥𝑥𝑖,𝑦0+𝛥𝑦𝑖,𝑡0+𝛥𝑡𝑖)𝑛
𝑖=1𝛿𝑡

 ,    (1) 96 
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where 𝐷 refers to the data amplitude and (𝑥0, 𝑦0) to the reconstruction point within the array. 97 

The lateral separation of the i-th neighboring station is denoted by (𝛥𝑥𝑖 , 𝛥𝑦𝑖), and 98 

∆𝑡𝑖 =  𝑝𝑥∆𝑥𝑖 + 𝑝𝑦∆𝑦𝑖 +
1

2
(𝐻𝑥𝑥∆𝑥𝑖

2 + 2𝐻𝑥𝑦∆𝑥𝑖∆𝑦𝑖 + 𝐻𝑦𝑦∆𝑦𝑖
2)   (2) 99 

is a second-order approximation of traveltime moveout caused by an elliptical wavefront 100 

observed in the local vicinity of the considered reference location (𝑥0, 𝑦0). In this local 101 

approximation, the tilt of the wavefront is characterized by the horizontal slowness vector 102 

(𝑝𝑥, 𝑝𝑦) and wavefront curvature is governed by the elements of the Hessian of the traveltime 103 

𝐻𝑥𝑥, 𝐻𝑥𝑦, and 𝐻𝑦𝑦 (e.g., Bortfeld, 1989; Diekmann et al., 2019). In order to not mis-associate 104 

different phases, the time window 𝛿𝑡 should be chosen reasonably small and, in practice, often 105 

corresponds to the pre-dominant signal period of interest. Because 𝑆 takes only values between 0 106 

(not at all coherent) to 1 (perfectly coherent), it lends itself well for optimization. 107 

 108 

To ensure reliable convergence even for very low SNRs, we employ a differential evolution 109 

global optimizer to locally maximize 𝑆 for every considered reconstruction point (e.g., Das & 110 

Suganthan, 2011). In order to increase robustness and reduce computational costs, we further 111 

assume local spherical symmetry of the wavefront, which corresponds to coinciding Hessian 112 

components in x and y direction. As an extension of conventional beamforming (e.g., Rost & 113 

Thomas, 2002), the optimization of 𝑆 leads to a data-derived estimate of the local horizontal 114 

slowness vector of the emerging wavefront and  its curvature radius, which in turn allows for the 115 

reconstruction of the data amplitude 𝐷 via 116 

𝐷(𝑥0, 𝑦0, 𝑡0) =
1

𝑛
𝑆(𝑥0, 𝑦0, 𝑡0) ∑ 𝐷(𝑥0 + 𝛥𝑥𝑖 , 𝑦0 + 𝛥𝑦𝑖, 𝑡0 + 𝛥𝑡𝑖) 𝑛

𝑖=1 .   (3) 117 

In equation (3), weighting by the semblance has a noise-suppression effect comparable to phase-118 

weighted stacking (Schimmel & Paulssen, 1997) without leading to undesired distortions of the 119 

waveforms. For mere data enhancement purposes, coherence analysis and wavefield 120 

reconstruction is performed for every actual station location within the array, whereas a 121 

departure from the actual station geometry results in the construction of a new, imaginary station 122 

response. Thus, the technique can also be used to inter- and extrapolate fields and reconfigure the 123 

overall array geometry. 124 
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 125 

To further assess the improvement of data enhancement by the proposed framework, we test it 126 

with stacking-based seismic source location using synthetic and field waveforms from a Large-N 127 

array. Stacking-based location methods, as a modern but well-established methodology, have 128 

been widely used to automatically detect and locate seismic events at local and regional scales 129 

(Grigoli et al., 2013; Shi et al., 2019; Yang et al., 2022). The methods share the essence of 130 

weighted backprojection/stacking of wavefields with Kirchhoff migration (Esmersoy & Miller, 131 

1989), and the source location can be easily picked from the energy-focused image. In general, 132 

only primary phases are used due to the dominant energy, though all subsequent phases are 133 

usable in theory. Diffraction stacking (DS) is the most common operator which simply 134 

summarizes waveforms from individual stations along a theoretical traveltime moveout curve 135 

(Baker et al., 2005; Gajewski et al., 2007; Ishii et al., 2005; Kao & Shan, 2004). The formula of 136 

the DS method reads as follows, 137 

𝑀𝐷𝑆(𝑥, 𝑡𝑠) = ∑ 𝐶𝐹𝑖(𝑡)𝛿[𝑡 − (𝑡𝑠 + 𝑡𝑖,𝑥)]𝑁
𝑖=1 ,      (4) 138 

where 𝑀𝐷𝑆(𝑥, 𝑡𝑠) is the stacking value, 𝑥 denotes the source coordinates, 𝑡𝑠 denotes the source 139 

origin time, 𝐶𝐹𝑖(𝑡)  is the characteristic function (CF) of the waveform  recorded at station 𝑖, 140 

𝛿[𝑡 − (𝑡𝑠 + 𝑡𝑖,𝑥)] is the DS operator, where 𝛿 is the Dirac delta function and 𝑡𝑖,𝑥 is the theoretical 141 

travel time from station 𝑖 to the source 𝑥. Through simple mathematical derivation and testing, 142 

we know that the basic imaging patterns of DS are deformed circular arc and spherical surface 143 

intersections under general 2D and 3D models, respectively (L. Li et al., 2018). For surface 144 

monitoring, there is an inherent depth-origin time tradeoff when determining the source locations 145 

by searching for the maximum imaging values. 146 

 147 

3. Dataset 148 

The LASSO experiment, led by the USGS, is a recent and notable example of a Large-N dense 149 

array involving more than 1800 single-component nodal seismometers with 500 Hz sampling 150 

rate, covering a 25 km by 32 km area of active saltwater disposal in northern Oklahoma (Figure. 151 

1, Dougherty et al., 2019). The seismometers were buried in shallow holes along county roads 152 

with a spacing of ∼400 m, yielding a dense and regularized pattern which is ideal for wavefield 153 
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reconstruction and regularization. The LASSO array operated for nearly a month from April to 154 

May of 2016 and recorded more than 3000 events (Peña Castro et al., 2019), including the 112 155 

local events from the Oklahoma Geological Survey (OGS) earthquake catalog. Several recent 156 

studies have shown the suitability of the array for analyzing the spatiotemporal clustering of 157 

seismicity (Cochran et al., 2020), source spectral properties (Kemna et al., 2020), near-source 158 

radiation patterns (Trugman et al., 2021), and the leaking modes from ambient noise (Zhengbo 159 

Li et al., 2022). Two events from the OGS catalog beneath the array have already been used to 160 

demonstrate the effectiveness of DS-based seismic location methods at regional scale (Lei Li, 161 

Xie, et al., 2020). 162 

 163 

In this work, we use the array to investigate the performance of wavefield reconstruction and its 164 

advantages for seismic source location. We select four field events from both the OGS catalog 165 

and the extended catalog from previous studies (Dougherty et al., 2019; Peña Castro et al., 2019; 166 

Trugman et al., 2021). Two events from the OGS catalog denoted by the numbers 24021 and 167 

23183 were located near the western margin and outside of the array, respectively. The other two 168 

events from the extended catalog have a magnitude of ML 0.08 and ML 2.03 and were located 169 

near the central area of the array. In the following, we refer to these four events by ‘event 170 

24021’, ‘event 23183’, ‘event ML008’, and ‘event ML203’, respectively.  171 

 172 

To further validate the reliability of the proposed workflow, we also conduct numerical 173 

simulations to mimic the field-recorded waveforms of event 24021 and event ML203 under 174 

controlled and reproducible conditions. The finite-difference method is adopted to generate the 175 

synthetic waveforms with double-couple source mechanisms in an isotropic layered model 176 

(Rubinstein et al., 2018; L. Li et al., 2021). Real noise recorded by the LASSO array is added to 177 

the synthetic waveforms to simulate realistic conditions with varying SNR levels (see 178 

supplementary information S1).  179 

 180 
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 181 

Figure 1. The location and layout of the LASSO array. (a) the LASSO array is located in Oklahoma, North 182 

America; (b) the station layout of the array, the small circles denote the positions of the ~1800 stations, the single 183 

large circle denotes the local aperture of 5 km that is mainly discussed in this work; (c) the discretization of the 184 

reconstruction grid is 500 m in x and y direction (trace density maps for  apertures of 3 km and 7 km can be found in 185 

Figure S1). The reference point (x, y) = (0, 0) corresponds to x= 579000 and y= 4051000 in the UTM coordinate 186 

system. (d) Temporal snapshots of the raw waveform data recorded for events ML008, 24021, ML203, and 23183 187 

(from left to right), respectively. (e) Semblance estimated locally on the regular grid. The green markers denote the 188 

cataloged epicenter locations. 189 

 190 
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4. Results 191 

4.1 Waveform Coherence Analysis 192 

Wavefield snapshots of events recorded with the LASSO array indicate that the dense station 193 

coverage allows to infer the directionality and curvature of wavefronts. Despite the favorable 194 

station configuration, however, waveform coherence is either compromised by the presence of 195 

noise sources, or by coda complexity indicating the presence of structure-related secondary 196 

sources in the near subsurface. In Figure 1(d), such snapshots are displayed for events ML008, 197 

24021, ML203, and 23183, respectively. While for very small magnitudes, the primary signal 198 

threatens to drown in the ambient noise field (compare e.g., event ML008), stronger events allow 199 

for the discrimination of different phases, independent of whether the sources were located 200 

directly underneath or outside of the array. Figure 1(e) shows the distribution of waveform 201 

coherence, represented by the semblance coefficient (equation (1)) evaluated on a dense regular 202 

grid with an increment of 500 m in x and y direction, respectively. For all four considered events, 203 

first arrivals appear as prominent coherent signatures that follow the primary wavefront 204 

traversing the LASSO array. A comparison with the raw waveform data displayed in (d) 205 

indicates that especially later-arriving phases of lower amplitude become more easily 206 

recognizable in the positive-definite semblance map (e). The semblance can be directly utilized 207 

to enhance the waveform consistency and SNR (compare Figures S2-S5). Accompanying the 208 

regular semblance grid are fields of local estimates of the horizontal slope vector (𝑝𝑥, 𝑝𝑦) as a 209 

by-product of the optimization procedure. The estimated slope and semblance fields allow for a 210 

multitude of applications, including but not limited to wavefront-tomographic inversion 211 

(Diekmann, et al. 2019). 212 

 213 

First and foremost, following equation (3), these quantities enable the reconstruction of the 214 

recorded seismic waveforms by performing coherence-weighted local directional summation 215 

(averaging) within circular apertures of 5 km radius. Following this strategy, folds of up to 90 216 

can be reached in the central parts of the array and a natural tapering occurs once the spatial grid 217 

leaves the array (compare Figure 1(c)). In Figure 2, results of coherent wavefield reconstruction 218 

of event ML203 on the 500 x 500 m spatial grid are compared with the respective raw waveform 219 

data that went into the analysis. To more systematically investigate the noise suppression 220 
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performance of the method, three realistic synthetic reproductions of the event are shown 221 

alongside the field data recordings and their reconstruction. The three synthetic versions of 222 

ML203 are characterized by different noise levels, covering the noise-free case and SNRs of ~1 223 

and less than 1, respectively. For all three synthetic realizations and the original field data, the 224 

reconstruction preserves coherent energy and suppresses incoherent noise, resulting in cleaner, 225 

more continuous, and more resolved datasets that can subsequently be used for improved source 226 

imaging. Although this is not fully verified yet, in the field data case, circular shapes in the 227 

northern part of the primary wavefront (compare the fourth column in Figure 2(b)) might 228 

indicate the presence of a secondary source – possibly related to distinct lateral change in 229 

structure – that could have been excited by event ML203. 230 

 231 

 232 

Figure 2. Coherent wavefield reconstruction performed on the same 500 m x 500 m spatially regular grid as for the 233 

semblance optimization, whose results are displayed in Figure 2(b). Displayed are 4 different versions of event 234 

ML203 – noise-free synthetics, synthetics with SNR ~1, synthetics with SNR <1, and the actual field data 235 

recordings (from left to right). Like in Figure 2, the cataloged event location and the station locations in (b) are 236 

denoted by a green marker and black dots, respectively. Results for all the four field events using different apertures 237 

and time series plots can be found in Figures S3, S4 and S5). 238 
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 239 

4.2 Stacking-based Seismic Source Images  240 

 In the following, we consider P-waves only when stacking the source energy using equation (3), 241 

since only vertical components are available in field data and the P-wave, as the primary phase, 242 

is not contaminated by subsequent phases.  243 

Figure 3 shows the source imaging results of STA/LTA traces for the synthetic and field event 244 

ML203, directly corresponding to Figure 2. The relatively large number of stations in this dense 245 

array can tolerate a certain amount of noise, while the reconstructed waveforms produce higher 246 

imaging resolution even though the raw waveforms are contaminated by high-level noise. As 247 

observed and discussed in Section 4.1, the reconstructed waveforms exhibit a higher coherence 248 

and SNR, which naturally produce stacking-based source images with more coherent energy 249 

concentration and higher imaging resolution. The horizontal locations are basically consistent 250 

with reference values from the catalog and/or previous studies (indicated as white circles). The 251 

slightly biased depth locations are mainly resulting from the combined effects of velocity 252 

uncertainty and the inherent depth-origin time tradeoff. The dense surface array also yields 253 

higher imaging resolution in the horizontal direction than in the depth direction.  254 

 255 

 256 

Figure 4 shows the source imaging results of raw waveforms for the two controlled simulations 257 

of events ML203 and 24021. After wavefield reconstruction, the imaging results show only few 258 

and comparably weak secondary peaks and fewer artifacts. The improvements in Figure 4(a) 259 

indicate that while trace summation carried out during reconstruction leads to decreased noise 260 

levels not only in the reconstructed domain, but also in the subsequently formed image. Figure 261 

4(b) on the other hand illustrates the positive impact the regularizing and interpolating 262 

capabilities of the reconstruction have on waveform-based high-resolution source imaging. In 263 

summary, the reconstructed waveforms from this dense array enable high-resolution source 264 

images with polarity-uncorrected waveforms.  265 
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 266 

Figure 3. The source imaging results of STA/LTA traces for the synthetic and field event ML203. The left column 267 

corresponds to the result of using unreconstructed waveforms, and the right column images result from the use of 268 

wavefield reconstruction. (a) to (c) correspond to results gained with realistic synthetic waveforms with different 269 

noise levels applied, (d) shows the results of the field event ML203. Reference locations from the catalog and/or 270 

previous studies are indicated by a circle. 271 
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 272 

 273 

Figure 4. The source imaging results of raw traces for the synthetic event ML203 (a) and synthetic event 24021 (b). 274 

The left column corresponds to the result of unreconstructed waveforms, and the right column images made use of 275 

wavefield reconstruction. Real locations are indicated as white circles. Whereas in (a), severe noise contamination of 276 

the raw data leads to a strong noise footprint in the image, the strong artifacts in the raw-data image in (b) result 277 

from insufficient spatial sampling of the LASSO array in the vicinity of the source.  278 

 279 

Compared with polarity-uncorrected raw traces, the corresponding stacked values are smeared 280 

more severely and the imaging resolution is lower for STA/LTA traces mainly due to the lower 281 

waveform resolution (compare Figures S6 and S7). Since the STA/LTA function further 282 

improves the SNR by flattening the waveforms and suppressing phase information, the 283 

respective imaging profiles are cleaner but exhibit stronger footprints surrounding the source 284 

area. It is worth noting that using original polarity-uncorrected waveforms to stack the source 285 

energy involves the possibility of blurring the inferred source locations. Alternatively, with more 286 

coherent and regular waveform records, we can obtain reliable source images and location 287 

estimates with even fewer traces, and thus, help to lower computational demands for source 288 
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location and other subsequent processing tasks. More discussion on the method and results can 289 

be found in supplementary information S2. 290 

5. Conclusions 291 

We proposed a novel reconstruction method for coherent seismic wavefields with dense arrays. 292 

The spatiotemporal wavefield coherence embedded in the dense seismic array is quantified and 293 

utilized to reconstruct the wavefields. The summation-based techniques enable the method 294 

adapted to weak events with low SNRs. Application to both realistic and field seismic events 295 

recorded by the dense LASSO array in Oklahoma reveals improved SNR, data coherence and 296 

regularity. Results of events at different locations demonstrate the applicability of the proposed 297 

method in waveform reconstruction to general source distributions. To further examine the 298 

merits of the proposed method, we tested the reconstructed waveforms using stacking-based 299 

location and compared the imaging results with those of unreconstructed waveforms. 300 

Reconstructed waveforms produce better location results accounting for the SNR and resolution 301 

of the images, due to their higher SNRs and data coherence than unreconstructed waveforms.  302 

 303 
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