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Abstract14

We propose a methodology for evaluating the performance of climate models based on15

the use of the Wasserstein distance. This distance provides a rigorous way to measure16

quantitatively the difference between two probability distributions. The proposed ap-17

proach is flexible and can be applied in any number of dimensions; it allows one to rank18

climate models taking into account all the moments of the distributions. Furthermore,19

by selecting the combination of climatic variables and the regions of interest, it is pos-20

sible to highlight the deficiencies of each of the models under study. The Wasserstein dis-21

tance thus enables a comprehensive evaluation of climate model skill. We apply this ap-22

proach to a selected number of physical fields, ranking the models in terms of their per-23

formance in simulating them, as well as pinpointing their weaknesses in the simulation24

of some of the selected physical fields in specific areas of the Earth.25

1 Introduction and motivation26

Advanced climate models differ in the choice of prognostic equations and in the meth-27

ods for their numerical solution, in the number of processes that are parametrized and28

the choice of the physical parametrizations, as well as in the way the models are initial-29

ized, to mention just their most important aspects. Comparing the performance of such30

models is still a major challenge for the climate modeling community (Held, 2005). Each31

model has its own strengths and weaknesses and, as a result, past reconstructions and32

future projections of climate necessarily come with model-dependent uncertainties.33

Model inadequacies result from structural errors — certain processes are incorrectly34

represented or not represented at all — as well as from parametric uncertainties, i.e., the35

use of incorrect values of physical and other parameters (Lucarini, 2013; Ghil & Lucarini,36

2020). Investigating the properties of multi-model ensembles is crucial for addressing cli-37

mate modeling errors, while auditing climate models is essential for understanding which38

ones are more skillful in answering the specific climate question under study.39

Testing model performance in order to advance climate modeling skill has led the40

community to pool its efforts within the Coupled Model Intercomparison Project (CMIP),41

which is currently in its sixth phase (Eyring, Bony, et al., 2016). Dozens of modeling groups42

have agreed by now on a concerted effort to provide numerical simulations with stan-43

dardized experimental protocols representative of specified climate forcing scenarios.44
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The issue of best practices for model performance evaluation has naturally arisen45

in this setting. Such practices have concentrated essentially on either “metrics” or di-46

agnostics. Performance metrics (Gleckler et al., 2008) have been used to rank models ac-47

cording to specific scalar indices that summarize overall performance, but the evalua-48

tion criterion on which such an index is based appears to be somewhat arbitrary so far.49

Diagnostics, on the other hand, are process-based and designed to assess specific50

features of the climate system. Eyring, Righi, et al. (2016) have conducted recently an51

effort to bring together metrics and diagnostics in a standardized framework for climate52

model evaluation. Still, it seems highly desirable to have a scalar metric that summa-53

rizes the full information associated with model performance and that does satisfy the54

mathematical axioms associated with the concept and satisfied by the usual Euclidean55

distance. These axioms are listed in Text S1 of the Supplementary Information and they56

are satisfied by the root-mean-square distance, known as an L2 metric in mathematics.57

The latter distance, though, is not appropriate for describing fully the difference between58

two distribution functions, while other metrics used in the climate sciences are not gen-59

uine distances, i.e., they do not satisfy the axioms above.60

We propose a genuine metric to assess a climate model’s skill by taking into account61

every moment of a distribution and measuring, in a much more satisfactory way, the gap62

between it and another distribution of reference than root-mean-square distance. The63

two distributions will be chosen here to describe model features, on the one hand, and64

the ”real world,” on the other, with the latter distribution being based on either raw ob-65

servations or a reanalysis thereof.66

Ghil (2015) originally proposed the idea of using the Wasserstein distance (here-67

after WD) (Kantorovich, 2006; Dobrushin, 1970) in the context of the climate sciences68

as a way to generalize the traditional concept of equilibrium climate sensitivity (Ghil &69

Lucarini, 2020) in the presence of a time-dependent forcing, such as seasonal or anthro-70

pogenic forcing. Robin et al. (2017) used the WD to compute the difference between the71

snapshot attractors of the Lorenz (1984) model for different time-dependent forcings, pro-72

viding a link between nonautonomous dynamical systems theory and optimal transport.73

Vissio and Lucarini (2018) used the WD to evaluate the skill of a stochastic parametriza-74

tion for a fast-slow system. Please see Text S1 in the Supplementary Information for fur-75

ther background on the WD.76
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The WD will be calculated in a phase space defined by the physical fields we wish77

to take into account and it is therewith a well-suited candidate for a comprehensive and78

flexible way to evaluate a climate model’s statistical skill. A well-known WD drawback79

consists in its computational requirements, which increase dramatically with the num-80

ber of points needed to construct the distributions. In our methodology, following Vissio81

and Lucarini (2018) and Vissio (2018), these requirements are greatly reduced through82

data binning on a grid. Doing so one switches from the distance between distributions83

of points to the distance between the measures computed on the distributions themselves,84

which reduces the effective sample size for each distribution.85

The WD-based methodology helps complement and refine the existing tests already86

applied in climate modeling studies, such as the space-time ranking of model performances87

by Flato et al. (2013), with respect to the root-mean-square-error of the median of an88

ensemble, with observations used as expected values, or weighting schemes like in Knutti89

et al. (2017). Data are presented in Sec. 2, methods in Sec. 3, results in Sec. 4, and con-90

clusions in Sec. 5.91

2 Data92

The WD methodology is presented in Sec. 3. It is applied here to three climate fields:93

• Near-surface air temperature;94

• Precipitation; and95

• Sea ice cover, computed from the sea ice area fraction.96

The corresponding daily mean fields are available in the CMIP5 simulations for histor-97

ical and RCP85 forcings (Taylor et al., 2012) and they are ranked with respect to the98

distance from reference daily datasets, specifically European Centre for Medium-Range99

Weather Forecasts Re-Analysis (ERA) Interim for the temperature (Dee et al., 2011);100

Global Precipitation Climatology Project (GPCP) for the precipitation (Adler et al., 2003);101

and Ocean and Sea Ice - Satellite Application Facility (OSI-SAF) for the sea ice cover102

(EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2017). In order to fur-103

ther support the comparison and provide a benchmark, we analyzed the WD with re-104

spect to the National Center of Environmental Prediction (NCEP) Reanalysis 2 (Kanamitsu105

et al., 2002).106
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The fields are averaged on four distinct domains: (i) Global; (ii) Tropics – defined107

as the region between 30 S and 30 N; (iii) Northern extratropics: from 30 N to 90 N; and108

(iv) Arctic – used only for sea ice extent. While temperature and precipitation analy-109

ses involve a total of 30 models, taking into account sea ice extent allows to analyze just110

22 models, due to available datasets. The time range spans 18 years, from January 1st,111

1997 to December 31st, 2014. After the spatial averaging, the model datasets are obtained112

by concatenating the historical runs, from 1997 to 2005, and the RCP85 runs, from 2006113

to 2014. The acronyms of the models that participated in CMIP5 and were used here114

appear in the figures below and are given in Table S1 of Text S2 in the Supplementary115

Information.116

The samples used in the WD calculations are drawn by performing a Ulam (1964)117

discretization of the phase space involved in each separate test. To do so, a regular grid118

is superposed over all the datasets used in the test and its upper and lower limits, re-119

spectively, are fixed slightly above and below the maximum and minimum values among120

all the datasets used in it. Each dimension of the grid is then equally divided into 20 in-121

tervals; this yields 20n n-dimensional cubes, where n is the number of fields taken into122

account in the test. These 20n hypercubes provide the sample for each test. The results123

we present here are weakly sensitive to the specifics of the gridding. Nonetheless, a too124

coarse gridding removes a lot of the information we want to retain and analysis; a too125

fine gridding, instead, increases substantially the computing requirements, without mak-126

ing much statistical sense.127

In order to highlight the flexibility and reliability of the method, we are going to128

calculate the WD distances in one-, two- and three-dimensional phase space, and work129

with different field combinations averaged over distinct areas of the Earth.130

3 Wasserstein distance (WD)131

Our objective is to create a ranking of the CMIP5 IPCC models based on their skill132

to reproduce the statistical properties of selected physical quantities. The reference dis-133

tribution for these quantities is given by reanalysis and observational datasets, as explained134

in Sec. 2; their WD to these datasets (Kantorovich, 2006; Villani, 2009) is a measure of135

the models’ ability to reproduce these reference distributions. One can also describe this136
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distance as the minimum ”effort” to morph one distribution into the other (Monge, 1781).137

We present below a very simplified account of the theory.138

The optimal transport cost (Villani, 2009) is defined as the minimum cost to move

the set of points from one distribution to another into an n-dimensional phase space. In

the case of two discrete distributions, we write their measures µ and ν as

µ =

n∑
i=1

µiδxi , ν =

n∑
i=1

νiδyi ; (1)

here δxi
and δyi are Dirac measures associated with a pair of points (xi, yi), whose frac-

tional mass is (µi, νi), respectively, and
∑n
i=1 µi =

∑n
j=1 νj = 1. n is the number of

dimensions in the phase space in which we compute the WD. Using the definition of Eu-

clidean distance

d(µ, ν) =

[
n∑
i=1

(xi − yi)2
] 1

2

, (2)

we can write down the quadratic WD for discrete distributions:

W2(µ, ν) =

inf
γij

∑
i,j

γij [d(xi, yj)]
2


1
2

. (3)

where γij is the fraction of mass transported from xi to yj and d(xi, yj) is the Euclidean139

distance between a single pair of locations.140

We perform the Ulam discretization described in Sec. 2 — i.e. data binning on a141

grid chosen to have a resolution of 20 intervals per side, as mentioned above — that al-142

lows us shift from the distance between different distributions of points to the distance143

between the measures related to those distributions. We thus proceed to quantify to what144

extent the measure of the observations and reanalysis from Sec. 2, projected on the vari-145

ables of interest, differs from the corresponding measures for the climate models.146

The estimate of the coarse-grained probability of being in a specific grid box is given147

by the time fraction spent in that box (Ott, 1993; Strogatz, 2015). In fact, the WD does148

provide robust results even with a very coarse grid (Vissio & Lucarini, 2018; Vissio, 2018).149

Therefore, in the case at hand, the locations xi and yj will indicate the cubes’ centroids,150

while γij indicate the corresponding densities of points. To further simplify the compu-151

tations, we exclude all the grid boxes containing no points at all. Finally, we ”renormal-152

ize” the densities, dividing the value obtained by the number of grid intervals per side;153

therefore, the one-, two- and three-dimensional WDs take values between a minimum154

of 0 and a maximum equal to 1,
√

2 and
√

3, respectively.155
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Figure 1. Two-dimensional Wasserstein distance (WD) for the temperature and precipita-

tion fields, averaged over the globe (horizontal axis) and over the Tropics (vertical axis). The

acronyms of the models used are spelled out in Text S2 of the Supplementary Information.

We used a suitably modified version of the Matlab software written by G. Peyré156

— available at http://www.numerical-tours.com/matlab/optimaltransp 1 linprog/157

— to perform the calculations. The modifications include the data binning and the es-158

timation of the measures, as well as adapting to a dimension n ≥ 2.159

4 Ranking the models160

Figure 1 shows the WD calculated in the two-dimensional phase space composed161

by the temperature and precipitation fields, averaged over the whole Earth and the Trop-162

ics, for each CMIP5 model. In order to provide a benchmark, we chose to include the163

WD results between the NCEP reanalysis and the references of ERA and GPCP pre-164

sented in Sec. 2 for the two fields, respectively.165

Somewhat surprisingly, the NCEP reanalysis yields the largest values in both dis-166

tances. Thus, the average CMIP5 distance to the ERA ⊗ GPCP reference is 0.149, while167

the NCEP distance is 0.259, exceeded only by the value 0.264 given by the MIROC5 model;168

see Table S1 in the Supplementary Information for the list of models. Note that the one-169

dimensional WDs of the NCEP Reanalysis for the globally averaged temperature and170

precipitation equal 0.033 and 0.255, respectively. Given the well-known difficulties with171

simulating the very rough precipitation field by using the still fairly coarse CMIP5 mod-172
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Figure 2. One-dimensional WD for precipitation averaged over the Northern extratropics

(from 30 N to 90 N) on the horizontal axis and over the Tropics (from 30 S to 30 N on the verti-

cal axis).

els (Neelin et al., 2013; Mehran et al., 2014), it is natural to assume that both the ERA173

and NCEP reanalyses are mostly inadequate in representing the statistics of precipita-174

tion. The great discrepancy in WD between the distribution of reference and the NCEP175

Reanalysis points to the overall accuracy reached by CMIP5 simulations when dealing176

with global averages of temperatures and precipitation.177

We evaluate next the problems still encountered by CMIP5 models in reproduc-178

ing key aspects of tropical dynamics (Tian & Dong, 2020). Averaging the data over the179

Tropics, we obtain the ranking on the vertical axis in Fig. 1. The large values of the WD180

distances equal on average 0.173, excluding the NCEP Reanalysis, and underline the poorer181

CMIP5 model performances in this region. With few exceptions, the models seem less182

reliable in the Tropics, where three of the models do exceed the NCEP Reanalysis dis-183

tance.184

Focusing on the relative performance of temperature and precipitation in the Trop-185

ics vs the Northern Hemisphere extratropics (30 N–90 N), Figs. 2 and 3 illustrate one-186

dimensional WDs computed in the former vs the latter region. Using the diagonal line187

indicating equal values for the two distances as a reference, we can easily check in Fig. 2188

that, for all CMIP5 models, the precipitation field is less well reproduced in the Trop-189

ics than in the extratropics: it is well known that it is extremely challenging to repro-190
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Figure 3. Same as Fig. 2 but for the temperature field.

duce accurately the statistics of by-and-large convection-driven precipitation, since the191

choice of the parametrization schemes and their tuning plays an essential role. The sit-192

uation for the temperature field is similar but less uniformly so: while in Fig. 2 all the193

results cluster above the diagonal but roughly below WD ' 0.2, the scatter in Fig. 3194

is larger, with some results below the diagonal and some between 0.2 / WD / 0.3.195

Figure 4 shows the scatter diagram of one-dimensional WDs for the precipitation196

in the Tropics vs the WDs of sea ice extent in the Arctic. Arctic sea ice cover is a very197

important indicator of the state of both hydrosphere and cryosphere, as well as of their198

mutual coupling; it is overestimated in CMIP5 models during the winter and spring sea-199

sons (Randall et al., 2007; Flato et al., 2013).200

Figure 4 demonstrates that the sea ice cover in the models is closer to the obser-201

vations than the tropical precipitation in 12 CMIP5 models out of the 22 examined. Nev-202

ertheless, 7 models better describe tropical precipitation than sea ice extent in the Arc-203

tic, while 3 models have a similar — and relatively low — WD for both fields. This test204

indicates that a correct representation of the statistics of these two fields is still quite205

challenging across the spectrum of climate models at the present time.206

We compare next the performance of the CMIP5 models with respect to three dif-207

ferent rankings. First, the three-dimensional WD is computed taking into account three208

physical quantities: globally averaged temperature and precipitation, along with sea ice209
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Figure 4. One-dimensional WDs of average precipitation in the Tropics vs the average sea ice

extent in the Arctic.

extent in the Arctic. Note that, to ease the interpretation of Fig. 5, the models are listed210

on the vertical axis according to the rank provided by this methodology.211

The model ranking introduced herein is further compared with the rankings based212

on the first two moments of the distribution of reference. For each of the three physi-213

cal quantities above, we compute the normalized mean, taking the absolute value of the214

difference between the mean of the distribution of the model field and that of the ref-215

erence field, and dividing this difference by the standard deviation of the distribution216

of reference. The three means for the three fields are then averaged and the same pro-217

cedure is repeated for the normalized standard deviation.218

We can see that the models’ performance is quite different depending on the rank-219

ing being used. As an example, we focus on the BCC-CSM1.1 and BCC-CSM1.1-m mod-220

els. The ranking based on the mean shows a rather good performance for both, with po-221

sitions 7 and 10, respectively; nevertheless, they occupy positions 16 and 21 in the WD222

ranking. The latter low positions are due to their bad performances when it comes to223

standard deviation, where the two come last.224

The reverse instance is also clear by looking at those models that, while perform-225

ing well in terms of variability, occupy lower rankings based on the WD due to their poor226

performance in the mean; see, for instance, the case of MPI-ESM-MR, with position 1227
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Figure 5. Comparing 22 CMIP5 models (vertical axis) vs their positions in the ranking (hor-

izontal axis): (a) three-dimensional WD – heavy blue ‘+’ sign; (b) mean WD – red filled square;

and (c) standard deviation of WDs – yellow filled square. See text for explanations. See Tables

S2-S4 in Supplementary Information for detailed results.

in the standard deviation, 8 in WD, and 15 in the mean. The WD score accounts for the228

information carried by the whole distribution — i.e., by the mean, standard deviation229

and higher moments — and clearly balances out the first and second moment thereof.230

A more peculiar instance is provided by HadGEM2-CC and HadGEM2-ES, which231

rank in this order for both the mean (17th and 19th) and the standard deviation (14th232

and 15th), but in the reverse order in the WD ranking (18th and 15th). This apparent233

paradox could be due to the presence of nontrivial second-order correlations between the234

variables or from the effect of higher moments of the distributions.235

Note that, for the 18-year time interval studied herein (1997–2014), the results ob-236

tained applying the WD approach in three-dimensional phase space are not very differ-237

ent from those given by averaging the three corresponding one-dimensional distances.238

This agreement is due to the unimodality of the distributions taken into account and things239

would be different, for instance, if one were studying a paleoclimate setting that includes240

bimodality of the sea ice cover but not of the temperature field. In any case, the full ap-241

plication of the multi-dimensional WD leads to more robust results, as all correlations242

between the variables are taken into consideration.243
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5 Conclusions244

We have proposed a new methodology to study the performance of climate mod-245

els based on the computation of the Wasserstein distance (WD) between the multidi-246

mensional distributions of suitably chosen climatic fields of reference datasets and those247

of the models of interest. This method takes into account all the moments of the distri-248

butions and it is, therefore, more informative and more robust than ranking methods based249

on means or variances alone. The methodology is flexible as it allows one to consider sev-250

eral variables at the same time; it thus has the potential of disentangling the effect of251

the correlation between different climatic quantities.252

The proposed methodology has been proven to be effective in pointing to climate253

modeling problems related to the representation of quantities like precipitation or sea254

ice extent over limited areas, such as the Tropics and the Arctic, respectively; see again255

Figs. 2 and 3. Furthermore, this methodology can be applied to studying model perfor-256

mance for a given climatic variable over different spatial domains, as seen in Figs. 1–4,257

as well as relative model performance for different fields, as seen in Fig. 4. This flexibil-258

ity can help guide attempts at model improvements by providing robust diagnostics of259

the least well simulated field — temperature, precipitation or sea ice extent — or region,260

namely either hemisphere, the Tropics or the Arctic.261

Such a method, taking into account the whole distribution of the statistics and not262

just one representative number, like its mean or standard deviation, is complementary263

to those already in use, allowing for a deeper understanding of the models’ performance264

and the reasons behind their inadequacies. Unlike most evaluation methods for climate265

models used so far (Flato et al., 2013), this approach does not rely on correlations, vari-266

ances or mean square errors, and thus it does not focus only on standard measures of267

variability; rather, it shows quantitatively if a model does a good job in reproducing the268

desired statistics — including every moment of the distributions — and, more impor-269

tantly, it allows one to compare several different fields at the same time, checking quan-270

titatively differences in the aforementioned statistics among different models and fields.271

Throughout the paper, we have shown the application of this approach to differ-272

ent physical fields, providing a ranking of CMIP5 models for specific sets of fields, as well273

as a way to highlight model weaknesses to help focus the honing of climate models. Get-274

–12–



manuscript submitted to Geophysical Research Letters

ting more reliable models will lead to better simulations and, therefore, to more accu-275

rate climate predictions.276
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