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Key Points:7

• Over Northern Hemisphere land, models predict the fractional increase of precip-8

itation extremes with warming is weaker in summer than winter9

• The winter-summer contrast is primarily driven by weakened extreme ascent in10

summer due to decreases in near-surface relative humidity11

• The winter-summer contrast is also evident in gridded observations of daily pre-12

cipitation extremes, consistent with trends in CMIP5 models13
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Abstract14

Climate models predict a distinct seasonality to future changes in daily extreme15

precipitation. In particular, models project that over land in the extratropical North-16

ern Hemisphere the summer response is substantially weaker than the winter response17

in percentage terms. Here we decompose the projected response into thermodynamic and18

dynamic contributions and show that the seasonal contrast arises due to a negative dy-19

namical contribution in northern summer due to weakened ascent, and a positive dynam-20

ical contribution and an anomalously strong thermodynamic contribution in northern21

winter. The negative dynamical contribution in northern summer is shown to relate to22

decreases in mean near-surface relative humidity with warming which suppress convec-23

tion and associated upward motion in precipitation extremes. Finally, we show that the24

winter-summer contrast is also evident in observed trends of daily precipitation extremes25

in northern midlatitudes, which provides support for the contrast found in climate-model26

simulations.27

1 Introduction28

The impacts of extreme precipitation are felt acutely across the world with con-29

sequences ranging from floods and landslides (Kirschbaum et al., 2020) to changes in ecosys-30

tems (Knapp et al., 2008). Additionally, it is now well-understood that extreme precip-31

itation events intensify overall on a global scale in response to global warming (Wehner32

et al., 2020; Kharin et al., 2013; O’Gorman, 2015). On regional scales however, the re-33

sponse of precipitation extremes to warming is uncertain, with some regions projected34

to experience changes in precipitation extremes which are much higher or lower than the35

global-mean intensification (Pfahl et al., 2017). Put together, this makes regional changes36

in extreme precipitation potentially one of the most impactful consequences of global warm-37

ing and makes understanding historical and future changes in regional extreme precip-38

itation important not only from a scientific perspective, but also for understanding the39

unequal impacts of climate change (Diffenbaugh & Burke, 2019). In addition, consid-40

ering precipitation extremes in different seasons helps to clarify physical drivers and can41

also be important for impacts.42

To understand projections of changes in precipitation extremes it is useful to de-43

compose the changes into contributions from different physical drivers. One such approach44

is to use the simple, physical scaling developed by O’Gorman and Schneider (2009) which45

relates the intensity of precipitation extremes, Pe, to the pressure vertical velocity (ωe)46

and the vertical derivative of saturation specific humidity with respect to pressure as-47

suming a moist adiabatic lapse rate (dqs

dp |θ∗),48

Pe ∼ −
{
ωe

dqs
dp

∣∣∣∣
θ∗

}
, (1)

where {·} denotes a mass-weighted vertical integral over the troposphere, ωe is evalu-
ated on the day of the extreme event, and dqs

dp |θ∗ is evaluated using the temperature Te
on the day of the extreme event. Thus, when considering a change in precipitation ex-
tremes due to global warming, δPe, we can decompose the change into a thermodynamic
contribution associated with changes in Te and a dynamic contribution associated with
changes in extreme ascent ωe,

δPe ≈ δPtherm + δPdyn. (2)

Pfahl et al. (2017) recently showed that Eq. 1 successfully captures the present-49

day pattern of Rx1day in the models and reanalysis and future changes in the models50

and thus is a good proxy for understanding and decomposing these future changes (Fig.51
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S1). They also used this scaling to decompose future regional changes in annual and sea-52

sonal maximum daily precipitation (hereafter, Rx1day) in simulations from the Coupled53

Model Intercomparison Project Phase 5, CMIP5, (Taylor et al., 2012) into thermody-54

namic and dynamic contributions. The thermodynamic contribution is positive and rel-55

atively spatially uniform, whereas the dynamic contribution varies strongly between re-56

gions and seasons and can either locally amplify or counteract the increases from the ther-57

modynamic contribution.58

The results of Pfahl et al. (2017) show a pronounced winter-summer contrast in59

the response of seasonal Rx1day. The fraction of land experiencing robust increases is60

relatively small in June-July-August (JJA), due to a negative dynamical contribution61

over land, particularly over Europe and North America. Similar results were found by62

Tandon et al. (2018) for the CanESM2 large ensemble. By contrast, Pfahl et al. (2017)63

found a relatively strong response of precipitation extremes in the Northern Hemisphere64

(NH) extratropics for December-January-February (DJF), and climate change was found65

to induce a shift in precipitation extremes towards the cold season in this region. Marelle66

et al. (2018) also found a shift towards the cold season for many regions in both CMIP567

models and regional models from the Coordinated Regional Downscaling Experiment (CORDEX).68

Furthermore, Marelle et al. (2018) found that the CMIP5 and CORDEX models could69

reproduce most aspects of the seasonality of precipitation extremes in the current cli-70

mate when compared to gridded observations, which increases confidence in their future71

projections for changes in seasonality.72

High-resolution, regional models have also shown a stronger response of precipi-73

tation extremes to climate change in DJF than JJA in Europe (Wood & Ludwig, 2020).74

This winter-summer contrast was also found in convection-permitting simulations of the75

Mediterranean (Pichelli et al., 2021) and the Contiguous United States (Prein et al., 2017),76

which is notable since convection-permitting simulations are better able to represent short-77

duration precipitation extremes (Prein et al., 2015). Precipitation extremes in JJA are78

known to be sensitive to how convection is represented (Chan et al., 2014; Prein et al.,79

2015; Ban et al., 2015; Kooperman et al., 2014) and caution is needed for projections in80

regions and seasons with significant mesoscale convective activity, particularly for sub-81

daily extremes. This emphasizes the importance of seeking observational evidence and82

robust physical mechanisms that may support projected seasonal changes in precipita-83

tion extremes.84

Here, we focus on the winter-summer contrast in the fractional response of daily85

precipitation extremes to climate warming in the Northern Hemisphere in CMIP5 mod-86

els and gridded observations. We begin by describing the model output and observational87

data and the methods of analysis (Section 2). We then show that the winter-summer con-88

trast is primarily due to differences in the dynamical contribution between winter and89

summer, but that differences in the thermodynamic contribution also play a role, par-90

ticularly at high latitudes (Section 3). We further show that the negative dynamical con-91

tribution in summer is strongly related in terms of model scatter and spatial pattern to92

decreases in mean near-surface relative humidity over land which inhibit convection (Sec-93

tion 4). Finally, we demonstrate that the winter-summer contrast is also evident in grid-94

ded observational datasets and coupled climate models over the historical period (Sec-95

tion 5), before giving our conclusions (Section 6).96

2 Methods97

We analyse changes over 1950–2100 under the historical and RCP8.5 scenarios for98

CMIP5. All models are used that provide the required data. The scaling and decompo-99

sition based on Eq. 1 is taken from Pfahl et al. (2017), and further details can be found100

there, but we repeat the key points of the scaling analysis here. We do not use CMIP6101

output because the scaling analysis was already done for CMIP5 and because there is102
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little improvement in the simulation of daily precipitation extremes between CMIP5 and103

CMIP6 (Wehner et al., 2020).104

Daily surface precipitation was used to calculate the maximum daily precipitation105

amount (Rx1day) for DJF and JJA in each year. Daily mean temperature and vertical106

pressure velocity on all available pressure levels at the location and day of each daily-107

maximum precipitation event (Te and ωe) were then used to calculate the full extreme108

precipitation scaling following Eq. 1 by performing a vertical integral over all tropospheric109

levels with ascent (ωe < 0). To calculate the thermodynamic contribution, this anal-110

ysis is repeated but with ωe replaced with its average over all years from 1950-2100.111

To calculate the sensitivity to climate change, we first normalize Rx1day and the112

full and thermodynamic scalings by dividing by their average over the historical period113

(1950-2000). We then calculate the dynamic contribution as the difference between the114

full and thermodynamic scaling. This approach to calculating the dynamic contribution115

differs slightly from Pfahl et al. (2017), but yields similar results (e.g., compare our Fig.116

1c with their Fig. S7d). We then regress these normalized time series against global- and117

annual-mean surface temperature anomalies over 1950-2000 using the Theil-Sen estima-118

tor to produce sensitivities in units of (% K−1). This regression approach has been shown119

to provide more robust results compared to taking differences in multi-decadal means120

(Fischer et al., 2014). When presenting results for the seasonal contrast (DJF-JJA), the121

sensitivities are calculated by differencing the normalized DJF and JJA time series in122

each grid box, before regressing this ‘difference’ time series against global-mean surface123

temperature anomalies for each model. Using a normalization over a reference period124

can sometimes produce statistical biases for changes in precipitation extremes (Donat125

et al., 2016; Sippel et al., 2017), but our results remain largely unchanged when using126

the full 1950-2100 period for normalization (Fig. S2).127

All analysis is performed on each model’s native grid, and then the sensitivities are128

re-gridded to a uniform 1◦x1◦ grid before calculating multi-model statistics and zonal129

means. Pfahl et al. (2017) noted previously that some models produce very low seasonal130

Rx1day at some grid points in the subtropics, which creates anomalously large extreme131

precipitation sensitivities. Thus, when calculating multi-model or zonal means we ex-132

clude grid boxes from models where the average seasonal Rx1day over the historical pe-133

riod is less than 0.5 mm day−1. Additionally, we found that the CMCC-CMS model pro-134

duced unrealistically large changes in the thermodynamic component over Pakistan and135

Afghanistan, and so for this model we exclude the region from 29.5◦ to 32.5◦ latitude136

and 60◦ to 68◦ longitude.137

We also analyse changes in seasonal Rx1day over the historical period over land138

in observations and compare them to the same period in the CMIP5 simulations (com-139

bining the historical and RCP8.5 simulations). We analyse the ‘extended’ NH winter (ND-140

JFM) and summer (MJJAS) seasons (as opposed to DJF and JJA) to improve the signal-141

to-noise ratio and use data from 1950-2017, with the time-period chosen for maximum142

overlap with the CMIP5 data. For Rx1day observations, we focus on the HadEX3 grid-143

ded dataset (Dunn et al., 2020) which has a spatial resolution of 1.25◦ x 1.875◦, but we144

also show results for the GHCNDEX observational dataset (Donat et al., 2013) which145

has a resolution of 2.5◦ x 2.5◦ in the supplement as a point of comparison. To calculate146

annual- and global-mean surface temperatures (including land and ocean) from obser-147

vations, we use the NOAA Merged Land-Ocean Surface Temperature Analysis (Vose et148

al., 2012).149

Sensitivities in % K−1 for the observations are calculated at each gridbox as de-150

scribed earlier but requiring at least 45 years of data at that grid box and normalizing151

by an average over all the years used. When analysing the winter-summer contrast (here,152

NDJFM-MJJAS) we require each grid box to have 45 years of data for both seasons in153

each year, and we normalize each time series separately before differencing and then per-154
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forming the regression. CMIP5 data are subsampled to the observations in both space155

and time. To reduce the influence of unforced variability and outliers, we then aggregate156

the sensitivities into 5◦ latitude bands and calculate the median sensitivity across each157

latitude band. We use bootstrapping to estimate the uncertainty due to inter-annual vari-158

ability and the non-uniform spatial coverage of the observations. To do this we calcu-159

late 10,000 bootstrap samples per latitude band, where each sample involves a random160

choice of both the years used in each grid box to calculate the regression, and a random161

choice of the grid boxes used to calculate the median sensitivity across the latitude band.162

We then calculate the median sensitivity for each bootstrap sample, and then the 90%163

confidence interval across samples for each latitude band. Our conclusions are largely164

insensitive to the size of the latitude bands and the number of bootstrap samples used,165

except in the tropics where larger latitude bands can obscure seasonal migrations of the166

ITCZ.167

3 Winter-Summer contrast in CMIP5168

Figure 1 shows the multi-model mean patterns of seasonal Rx1day sensitivity based169

on the scaling Eq. 1 and its decomposition into thermodynamic and dynamic compo-170

nents for DJF, JJA and DJF-JJA. As found in previous studies, the thermodynamic com-171

ponent is relatively uniform with robust agreement on the sign and the magnitude in both172

seasons. In stark contrast, the dynamic component exhibits strong regional and seasonal173

variations.174

Figure 1. Multi-model mean Rx1day sensitivity over 1950-2100 according to the scaling Eq. 1

(a,d,g) and decomposition into (b,e,h) thermodynamic and (c,f,i) dynamic components for (a-c)

DJF, (d-f) JJA and (e-i) DJF minus JJA, the winter-summer contrast. Stippling indicates where

at least 90% of the models agree on the sign of the change.
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The NH extratropics show a strongly positive DJF-JJA contrast especially over land175

(Fig. 1g). Over this region, the DJF response (Fig. 1a) is amplified by a positive con-176

tribution from the dynamics (Fig. 1c) and a relatively strong thermodynamic contribu-177

tion particularly at high latitudes (Fig. 1b). On the other hand, the response during JJA178

is ‘muted’, with much less multi-model agreement and with some regions (particularly179

Europe and the continental United States) exhibiting close to no change or even neg-180

ative responses of extreme precipitation to warming (Fig. 1d). This weak JJA response181

arises predominantly due to the strongly negative dynamical component (Fig. 1f) which182

cancels out the robust, positive increase due to the thermodynamic component (Fig. 1e).183

The combination of the amplified response in DJF and the very weak response in JJA184

leads to the strong DJF-JJA difference in the response, particularly over NH midlati-185

tude land. The dynamical contribution is responsible most of the DJF-JJA difference,186

as illustrated by the similarity between in Fig. 1g and i, but seasonal differences in the187

thermodynamic contribution also play a role (Fig. 1h).188

Figure 2. Zonal-means of the changes over 1950-2100 according to the scaling and its decom-

position into thermodynamic and dynamic components for (a) DJF, (b) JJA and (c) DJF-JJA.

Lines indicate multi-model means and shading shows the 90% model range. Panels (d,e,f) show

the same results but for over land only.

Zonal-mean changes in the scaling decomposition are shown over both land and ocean189

and over land only (Fig. 2). The thermodynamic contribution is larger at higher lati-190

tudes (e.g., Fig. 2a,d) and is partly responsible for the DJF-JJA contrast at NH mid-191

dle and high latitudes (Fig. 2c,f), implying a stronger thermodynamic contribution in192

winter than summer. A stronger thermodynamic contribution is expected for the lower193

temperatures in winter and at higher latitudes because percentage increases in dqs
dp |θ∗ with194

increasing temperature are larger at lower temperatures (O’Gorman & Schneider, 2009).195

Arctic amplification of surface warming could also play a role, but the stronger thermo-196

dynamic contribution at higher (and colder) latitudes is also found to occur even when197

a globally uniform surface warming is imposed (O’Gorman et al., 2021).198

In the tropics, the zonal-mean results in Fig. 2 are consistent with amplification199

of precipitation extremes along the ITCZ region, which moves seasonally. This leads to200

a southward shift in precipitation extremes when considering the seasonal contrast (Fig.201
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2c,f) because the ITCZ occurs further south in DJF than in JJA. These shifts are driven202

by the dynamical component as demonstrated by the similarity between the changes in203

the full scaling and the dynamic contribution in the tropics (gray and orange lines in Fig.204

2c,f).205

We have presented results in terms of percentage changes in (% K−1) as opposed206

to absolute changes (mm day−1 K−1) because it is useful to consider the change in each207

season relative to what is expected for that season and because previous studies have also208

focused on percentage changes which are easier to relate to physical processes. Absolute209

changes also show a seasonal contrast for much of NH midlatitude land but not for some210

parts of Asia (Fig. S3g) or for zonal-mean quantities (Fig. S4f ), because the thermo-211

dynamic contribution offsets the dynamical contribution when considering absolute changes.212

Thus, one additional advantage of considering percentage changes is that it provides a213

strong zonal-mean signal to look for in the observational record (Section 5).214

4 Physical mechanism of the negative dynamical contribution in sum-215

mer216

Dynamical weakening of precipitation extremes during JJA is a large contributor217

to the DJF-JJA contrast in the extratropical NH particularly over land (Figs. 1f and 2e).218

Physically then, what mechanisms could be responsible for this dynamical weakening?219

Tandon et al. (2018) tackled this question using a three-term approximation of the QG-220

ω equation and found the weakening of extreme ascent was related to increases in the221

horizontal length scale of extreme ascent. However, Li and O’Gorman (2020) numeri-222

cally inverted the QG-ω equation in extreme precipitation events and found that changes223

in eddy length were less important when all terms were retained in the QG-ω equation,224

although they did not separately analyse extremes in JJA.225

Here we investigate an alternative, simpler explanation in terms of changes in the226

near-surface relative humidity (RH2m). Decreases in RH2m over land are expected with227

global-warming because of the land-ocean warming contrast (Byrne & O’Gorman, 2016,228

2018) and decreases in stomatal conductance (Cao et al., 2010; Berg et al., 2016). Al-229

though relative humidity does not appear explicitly in Eq. 1, decreases in relative hu-230

midity can inhibit convection and the associated upward motion ωe in precipitation ex-231

tremes, implying a negative dynamical contribution under climate change. Previous work232

has already shown that decreases in relative humidity cause an increase in convective in-233

hibition that is particularly large over NH land in JJA (Chen et al., 2020), and here we234

show this is linked to the dynamical contribution to changes in precipitation extremes.235

In Fig. 3 we compare the sensitivities of seasonal-mean RH2m and the dynamical236

component of precipitation extremes during JJA for climate change over 1950-2100. The237

sensitivity of RH2m is defined using regression analogously to the sensitivity of precip-238

itation extremes and normalized by the 1950-2000 mean. There is strong agreement be-239

tween the spatial pattern of the change in RH2m and the dynamical contribution (Fig.240

3a,b), with the models agreeing robustly on strong decreases in relative humidity and241

a negative dynamical component over similar regions of the globe (see also Figs. S5 and242

S6 for individual models). Furthermore, Fig. 3c shows that models with a stronger de-243

crease in JJA RH2m also tend to have a stronger negative dynamical contribution when244

averaged over NH midlatitude land. In NH DJF, there is not a connection between changes245

in RH2m and the dynamical contribution (Fig. S7), which we hypothesize is because win-246

tertime daily precipitation extremes are controlled to a greater extent by large-scale dy-247

namics as compared to the strongly convective extremes in summer.248

The relationship between changes in mean relative humidity and the negative dy-249

namical contribution to changes in extreme precipitation in JJA is notable in that it links250

changes in a mean quantity to changes in an extreme statistic. Such a link is potentially251
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Figure 3. Sensitivity for JJA over 1950-2100 of (a) seasonal-mean near-surface relative hu-

midity and (b) the dynamical contribution to changes in precipitation extremes. Results are

shown for the 12 models that archived RH2m and for which the dynamical component was calcu-

lated. Stippling indicates where 10 out the 12 models agree on the sign of the sensitivity. Panel

(c) shows a scatter plot of the median sensitivities across land grid boxes in the latitude band

40-70◦N for each model.

very useful since mean quantities can be easier to observationally constrain than extremes.252

The mechanism we propose is only valid over land where the negative dynamical con-253

tribution is strongest, and other factors such as a general weakening of the extratrop-254

ical storm track in NH JJA (O’Gorman, 2010; Gertler & O’Gorman, 2019), poleward ex-255

pansion of the Hadley cells (Pfahl et al., 2017), or other aspects of the large-scale dy-256

namics (Tandon et al., 2018) may also play a role.257

5 Observed and modelled trends over the historical period258

Given the difficulty in correctly representing convection in models, we next turn259

our attention to gridded observations of precipitation extremes. Figure 4 shows the sen-260

sitivity of daily precipitation extremes from HadEX3 observations and CMIP5 models261

to warming over 1950-2017 for boreal extended winter (NDJFM) and summer (MJJAS),262

and the seasonal contrast (NDJFM-MJJAS). The results are expressed as medians over263

5◦ latitude bands (see Methods). For the NH extratropics, the observed sensitivities are264

positive in both NDJFM and MJJAS, and there is a clear winter-summer contrast with265

higher sensitivities in NDJFM than MJJAS (Fig.4a,b,c). The seasonal contrast is also266

evident when looking at maps of the sensitivities, but as expected there is considerable267

noise when considering sensitivities for a period of this length in individual gridboxes268

(Fig.S8 a,b,c). The NH extratropical winter-summer contrast is also present in the CMIP5269

models over the same historical period (Fig.4 d,e,f).270

We next quantify the NH midlatitude response by averaging the sensitivities be-271

tween 30-70◦N with area-weighting. For the observations, the mean NH sensitivity is 11.6272

% K−1 for NDJFM, 5.6 % K−1 for MJJAS, and 7.2 % K−1 for the winter-summer con-273
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Figure 4. The sensitivity of Rx1day to warming over 1950-2017 in NDJFM (a,d), MJJAS

(b,e) and DFJM-MJJAS (c,f) for the HadEX3 dataset (a,b,c) and CMIP5 simulations subsam-

pled to the HadEX3 dataset (d,e,f). Solid lines show the median sensitivity across the 5◦ latitude

band. Dashed lines show the 90% confidence interval for HadEX3 and 90% of the model spread

for CMIP5. The total number of grid-boxes included in each latitude band is also shown (g,h,i)

which is the same for both the observations and the simulations.

trast. For the CMIP5 models over the same period, the multimodel-mean sensitivity and274

full model range are 7.0 % K−1 (4.7 to 10.8 % K−1) for NDJFM, 4.4% K−1 (2.1 to 9.1275

% K−1) for MJJAS, and 2.4 % K−1 (-0.6 to 8.4 % K−1) for NDJFM-MJJAS. Thus, while276

the models and observations show similar sensitivities during NH summer, none of the277

models capture the very strong observed sensitivity for NH winter. As a result, while the278

observed winter-summer contrast lies within the model range, the multimodel-mean value279

is lower than the observations. Most but not all models (15/18) give a positive winter-280

summer contrast for this period consistent with the observations.281

GHCNDEX has a coarser spatial resolution and fewer grid boxes with data com-282

pared to HadEX3, particularly in the tropics (Fig. S8), but we find similar changes in283

seasonal Rx1day over the Northern Hemisphere, which strengthens our confidence in the284

results (Figs. S8 and S9). Similar results are also found when the CMIP5 data are not285

subsampled to the observations (Figure S10), which suggests that missing grid points286

in the observations are not affecting our conclusions. The robust presence of the winter-287

summer contrast in observed trends over the historical period supports the contrast found288

in earlier sections.289
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6 Conclusions290

In this study we have demonstrated that CMIP5 models project a robust seasonal291

contrast in the response of precipitation extremes to warming over the extratropical North-292

ern Hemisphere, with considerably stronger percentage changes in winter than summer.293

We have also shown that this winter-summer contrast is evident in gridded observations294

over the historical period which strengthens our confidence in the future projections. CMIP5295

simulations over the historical period also show a winter-summer contrast that occurs296

in 15/18 models, and the model range includes the observed value of this contrast.297

Furthermore, we have used a simple, physical scaling to help explain the cause of298

the winter-summer contrast in changes in precipitation extremes. The contrast is pri-299

marily caused by the dynamical contribution (related to changes in extreme ascent) with300

a weakly positive dynamical contribution in DJF and a strongly negative dynamical con-301

tribution in JJA. The negative dynamical contribution in JJA is strongest over land, and302

we argue it is linked to strong decreases in near-surface relative humidity over land, which303

increase convective inhibition and impedes the associated upward motion in precipita-304

tion extremes. This mechanism is supported by a match between the spatial pattern and305

intermodel scatter of changes in relative humidity and the dynamical contribution.306

The thermodynamic contribution to changes in precipitation extremes also helps307

to amplify the response in winter over summer, particularly over high latitudes and this308

is because the thermodynamic contribution is larger at lower temperatures when con-309

sidering percentage changes. We have focused on percentage seasonal changes because310

they may be more relevant for impacts in a given season and to better connect with phys-311

ical mechanisms. If absolute rather than percentage changes in precipitation extremes312

are considered, the thermodynamic contribution is larger in summer than winter, and313

this offsets the winter-summer contrast in the dynamic contribution, although the con-314

trast is still evident over much of NH midlatitude land (Fig. S3).315

Future work could build on our observational analysis by performing a formal de-316

tection and attribution analysis of the seasonal difference in trends of precipitation ex-317

tremes. Future work could also build more understanding of the positive dynamical con-318

tribution in NH winter, and further investigate the link between changes in near-surface319

relative humidity and precipitation extremes using idealized experiments in convection-320

permitting models. Given the potential importance of decreases in relative humidity over321

land for convection and precipitation extremes, it would be helpful to develop an emer-322

gent constraint for the magnitude of the expected decrease, although this may be dif-323

ficult to the extent that it depends both on the land-ocean warming contrast and CO2324

through physiological effects.325
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