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Introduction  

In this supplementary material, we expand on the methods and results to complement the main 

manuscript. In Text S1, we describe how to calculate the shear and normal stresses on fractures and 
discuss the major assumptions adopted in this model. In Text S2, we elaborate on the slip cascades 

and their contribution to the global stress/strain fields, followed by an example displaying the 

iterative process in the context of normal faulting stress regime. We then show the stress evolution 
in the deterministic case where all fractures have the same frictional coefficient in Text S3. Monte 

Carlo simulation and system uncertainty analysis are detailed in Text S4. For each frictional 

coefficient distribution, finally in Text S5, simulation results in the context of reverse faulting 

regime are provided for comparison.
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Text S1. Individual Fractures, Local Frictional Slips 

Given a stress tensor 𝛔 applied remotely at the model boundary, the stress acting on any 

arbitrarily-oriented fictitious fracture plane can be resolved by transformation. The normal and 

shear stress component (𝜎n and 𝜏) on a fracture plane can be resolved with the plane’s unit normal 
and shear vector (n and s) (Davy et al., 2018): 

𝜎n = 𝐧 ∙ 𝛔 ∙ 𝐧                                                        (S1) 

𝜏 = 𝐧T ∙ 𝛔 ∙ 𝐬                                                        (S2) 

where 

𝐬 =
𝐬𝑔

|𝐬𝑔|
,  𝐬𝑔

T = 𝐧T ∙ 𝛔 ∙ (𝐈 − 𝐧⨂𝐧T)                                        (S3) 

where I is the identity matrix. Intuitively, the Mohr diagram graphically represents the initial 

stresses acting on fractures, as shown in Figure 2.  In our model, the fracture orientation is 

differentiated by the angle (θ) between the normal to the fracture and the positive hortizontal axis 

of the model’s global coordinates (Figure S1). Note that, for convenience, we only consider the 

normal vector of the upward facing fracture side, i.e., [0,180°]. 
Local stress fluctuations induced by nearby fracture interactions can be profound in a rock 

mass. However, such effect is not considered in this model. By assuming a uniform spatial 

distribution of fracture centers, i.e., no fracture clusters exist, strong fracture interactions can be 

plausibly circumvented. The mutually opposite effects of stress shielding and amplification near 
fractures tend to balance out globally, given the statistical significance of assuming uniform 

fracture orientations (Kachanov, 1992). Such assumptions have been validated by comparing the 

theoretically predicted results either with numerical simulations (Grechka and Kachanov, 2006) or 
with laboratory observations (Katz and Reches, 2004), and have been widely adopted to quantify 

the effective properties of fractured rock masses (e.g., Healy, 2008; Davy et al., 2018). 
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Text S2. More on Upscaling Slip Cascades and Iterative Time Steps  

Slip rate within a time step 

The slip rate is considered variable, which is dependent on the past slip history and stress 

state (Dieterich, 1979; Ruina, 1980, Sleep, 2006). To reflect this in the iterations, a simple linear 

relationship between fracture slip rate and shear stress difference  is proposed: 
𝑑𝐝̅

s

𝑑𝑡
= (𝜂∆𝜏)𝐬                                                       (S4a) 

𝑑𝐝̅
n

𝑑𝑡
= (𝛽 ∙ 𝜂∆𝜏)𝐧                                                  (S4b) 

where  is defined as slip rate parameter with the dimension of length/(stress·time), similar to the 
fluidity parameter of classical viscoplasticity theory (Perzyna, 1966; Napier and Malan, 1997).  

In discrete form, the relative shear and normal displacement increments can be further 

expressed as: 

∆|𝐝̅s|
𝑗

= (𝜂𝑗∆𝜏𝑗−1) ∙ ∆𝑡                                                (S5a) 

∆|𝐝̅n|
𝑗

= (𝛽 ∙ 𝜂𝑗∆𝜏𝑗−1) ∙ ∆𝑡                                            (S5b) 

where 

∆𝑡 = 𝑡𝑗 − 𝑡𝑗−1, 𝑗 = 1,2,3, …                                           (S5c) 

which implies that the updated results at the end of the previous time step (j-1) serve as the new 

input and are kept constant over the current time step (j). If frictional slip is assumed to occur 

completely and reach the final steady state at the end of each time step, the slip rate parameter j 
can be simply specified according to Eq. (3) as: 

𝜂𝑗 =
𝑎𝜋(1−𝑣𝑗−1)

2𝐺𝑗−1
                                                       (S6) 

which means that  at the jth time step is the function of the current effective elastic properties, 
qualitatively incorporating the effect of slip history to some extent although the frictional 

coefficient is kept constant.  
 

Non-Interaction Approximation (NIA) 

In addition, the Non-Interaction Approximation (NIA) is adopted at the end of the jth time 

step to calculate the eventual global strain by summing the contribution of all fractures slips. NIA 
originally assumes that any new fracture is surrounded by an undamaged elastic medium. Here we 

hypothesize that, within the jth time step, all critical fractures slip in an unchanged, homogeneous 

effective medium, which are the average properties updated at the end of the (j-1)th time step. 
 

An example of iterative process 

At the beginning of each time step, the elastic matrix strain m is first estimated according 
to Hooke’s law under the plane strain condition: 

𝛆𝑚 = [
𝜀1

𝑚

𝜀3
𝑚] =

1−𝑣

2𝐺
[

1 −𝑣 (1 − 𝑣)⁄

−𝑣 (1 − 𝑣)⁄ 1
] [

𝜎1

𝜎3
]                            (S7) 

The relative displacement increments of each critical fracture within the time step are 
obtained based on Eq. (S5), Eq. (S6), and NIA, which are related to the global strain increments by 

Eq. (4) and further summed up to quantify the eventual additional strain tensortotal, j: 

∆𝛆total = [
∆𝜀1

∆𝜀3
]                                                       (S8) 

Taking compression as positive, 3 is always negative due to the fracture-induced dilation 
in the direction of the minor principal stress (σ3). In the context of normal faulting stress regime, in 

which horizontal strain h 3 at boundary is maintained constant, the hortizontal strain of the 

elastic matrix 𝜀3
𝑚 needs to increase to accommodate 3, which is self-regulated by σ3 increase. 
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Treating the model as an effective medium and invoking Hooke’s law, we have the strain 

response at the jth time step as: 

𝜀3,𝑗 =
1−𝑣𝑗−1

2𝐺𝑗−1
(

−𝑣𝑗−1

1−𝑣𝑗−1
𝜎1,𝑗−1 + (𝜎3,𝑗−1 − ∆𝜎3,𝑗)) + ∆𝜀3,𝑗 = 𝜀3,0                 (S9) 

which further gives: 

∆𝜎3,𝑗 =
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀3,𝑗                                                    (S10) 

and 

𝜎3,𝑗 = 𝜎3,𝑗−1 − ∆𝜎3,𝑗 = 𝜎3,𝑗−1 −
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀3,𝑗                             (S11) 

It implies a monotonic increase of σ3 after each time step given a dilational 3, j. 

Accordingly, the updated strain 1, j can be calculated by: 

𝜀1,𝑗 = 𝜀1,𝑗−1 +
𝑣𝑗−1

2𝐺𝑗−1
∆𝜎3,𝑗 + ∆𝜀1,𝑗                                     (S12) 

where the second right-hand term reflects the Poisson effect induced by the increase of σ3 and the 

third term is the slip-contributed strain increase. It should be noted that, the vertical stress is always 

constant in the normal faulting regime, i.e., 𝜎𝑣 = 𝜎1,0 = 𝜎1,1 = ⋯ = 𝜎11,𝑗−1 = 𝜎11,𝑗 . With the 

updated global stress and strain at the boundary, effective elastic parameters (Gj-1 and νj-1) are 
updated by solving equations in Eq. (S7) at the end of the jth time step, acting as the input of the 

(j+1)th time step. 

In addition to Figure 3b, more detailed information about the iterative process for frictional 

coefficient distribution N(0.6, 0.052) can be found in Figure S2. The temporal variations of the slip 
rate parameter, slip rate, and shear stress difference of the most critical fracture show that the drastic 

rate of change in the first 1,000 time steps. The number of critical fractures within each time step 

further shows that it decreases rapidly from initially about 4,300 to 3 at around the 900th time step, 
explaining the slow growth of mechanical parameters during the subsequent tens of thousands of 

time steps as shown in Figure 3b. We also present the stochastic cases with frictional coefficient 

distribution (1) normal distribution N(0.8, 0.062) and (2) Weibull distribution (scale parameter  = 
0.8 and shape parameter k = 10) in Figure S3 and Figure S4, respectively, where the first two 

iterations and the complete stress evolution process are included. As with the case specified in 
Figure 2, it confirms that the stochastic treatment of frictional coefficient is able to enable the model 

with local stress heterogeneity. 
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Text S3. Stress evolution for the deterministic case 

For comparison, uniform frictional coefficient is assigned to all fractures while the model 

configuration remains the same. In Figure S5a-d, the first two iterations suggest a deterministic 

stress evolution process for the deterministic case. In other words, the equivalent frictional strength 
of the model is doubtlessly 0.6. At the beginning of each time step, all fractures lying above the 

frictional failure envelope are critical, which is not the case in the stochastic systems as shown in 

Figure 2 (or Figure S3 and Figure S4). In addition, shear stresses of all critical fractures will drop 
onto the single frictional failure line, i.e., frictional resistance. Due to the absence of heterogeneity, 

the deterministic system takes only 98 time steps to reach the final frictional equilibrium, as shown 

in Figure S5e. This gives a quantitative interpretation of the classic notion of frictional equilibrium 

and also confirms that the very control of the most critical fracture on the global stress state. 
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Text S4. Monte Carlo simulation, system uncertain analysis 

Whether a fracture is critical or not depends on its frictional coefficient and orientation 

with respect to the global stress field. As both parameters are randomly generated in each 

experimentation, it is imperative to examine the uncertainty associated with this stochastic model. 
To this end, we run 10,000 Monte Carlo simulations to repeat the iterative process. Primarily, we 

quantify the probability of the frictional coefficient and orientation of the most critical fracture, to 

see if it stays invariant to support our conclusions.  
For each simulation, the frictional coefficient and orientation of the fractures are randomly 

generated according to the respective distribution. We apply the same initial stress difference (h = 

1,0 = 100 MPa > v = 3,0 = 20 MPa) in the normal faulting scenario (shown in Figure 4). It is then 

able to identify the most critical fracture by determining the largest shear stress difference . 
Figure S6 shows the distributions of the frictional coefficient and orientation of the most critical 
fracture in different cases. In Figure S6a-c, we confirm that the frictional coefficient of the most 

critical fracture falls at the lower end of its distribution. With regard to the orientation, the most 

critical fracture orients approximately at an angle of 60 or 120 to the global horizontal axis, as 
shown in Figure S6d-f. In addition, the uncertainty of both parameters increases as the system 

becomes more heterogeneous. It should be noted that the final Mohr circle is not necessary tangent 
to the frictional failure envelope in the stochastic case. As an end-member, the frictional coefficient 

and orientation of the most critical fracture in the deterministic case are also deterministic (Figure 

S5). Since frictional coefficient distribution is used as a proxy of system heterogeneity, it is 
concluded that the global response also has remarkable uncertainty which depends largely on the 

intrinsic heterogeneity. In the context of normal faulting stress regime, such uncertainty can be 

represented by distributed frictional failure envelope, or more quantitatively, by the probability 
density function of effective minor principal stress σ3 determined at the end of each simulation, as 

shown in Figure 4. 
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Text S5. Stress evolution in the context of reverse faulting stress regime 

For each distribution, we also experimented the model in the context of reverse faulting 

regime. To facilitate comparison, we set the same starting stress difference (h = 1,0 = 100 MPa > 

v = 3,0 = 20 MPa). We maintain the boundary condition of constant vertical stress and constant 
lateral strain. Based on the expressions in the normal faulting case, we can obtain similar 

derivations simply by switching the numeric subscripts ‘1’ and ‘3’ of each term in Eq. (S11), which 

gives: 

𝜎1,𝑗 = 𝜎1,𝑗−1 − ∆𝜎1,𝑗 = 𝜎1,𝑗−1 −
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀1,𝑗                                 (S13) 

Note that, 1, j is positive due to compression in this scenario. Therefore, σ1 will decrease and the 

updated strain 3, j can be calculated by: 

𝜀3,𝑗 = 𝜀3,𝑗−1 +
𝑣𝑗−1

2𝐺𝑗−1
∆𝜎1,𝑗 + ∆𝜀3,𝑗                                         (S14) 

Figure S7-S9 show the first two iterations and the whole stress evolution process for 

frictional coefficient distribution (1) normal distribution N(0.8, 0.062), (2) normal distribution N(0.6, 
0.052), and (3) Weibull distribution (λ = 0.8, k = 10), respectively. As expected, lateral stress σ1, j 

decreases to allow for the reduction of stress difference due to frictional slip. The final stress 

difference is smaller than that of the normal faulting scenario, for any distribution, and it takes 
much more time steps reach the final frictional equilibrium. We further note that, for each 

distribution, the frictional equilibrium in both stress regimes is bounded by the same equivalent 

frictional strength. This reveals that the equivalent frictional strength of the model is independent 
of the applied boundary conditions, but characteristic of the stochastic nature of the fractures therein. 

In addition, the deterministic case in reverse faulting regime is shown in Figure S10. As with the 

stochastic cases, it takes much more time steps to reach the final frictional equilibrium than the 

normal faulting scenario. 
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Figure S1. Uniform distribution of fracture orientation, which is defined schematically in the 

inset. 
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Figure S2. Evolution of slip rate parameter, slip rate, and shear stress difference of the most critical 

fracture, and critical fracture number in each time step in the stochastic case specified in Figure 2. 
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Figure S3. Stochastic case with normally distributed frictional coefficient N(0.8, 0.062) in normal 

faulting stress regime: a-d Identification of critical fractures and stress evolution in the first two 

iterations. For each time step, critical fractures are identified at its beginning, which are marked as 

red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 
according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 

is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 
plotted as a solid blue line. Gray colormap is also shown with color scaled to time step. The total 

number of time steps is 18,780. 
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Figure S4. Stochastic system with frictional coefficient following Weibull distribution (λ = 0.8, k 

= 10) in normal faulting stress regime: a-d Identification of critical fractures and stress evolution 
in the first two iterations. For each time step, critical fractures are identified at its beginning, which 

are marked as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture 

is colored according to its frictional coefficient. e Complete process of stress evolution. Red circle 
represents the resolved stress state surrounding the most critical fracture at each time step, while 

green circle is its frictional resistance. As a reference, the frictional coefficient of the most critical 

fracture is plotted as a solid magenta line. Gray colormap is also shown with color scaled to time 
step. The total number of time steps is 27,513. 
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Figure S5. Deterministic case with equal frictional coefficient (0.6) in normal faulting stress regime: 
a-d Identification of critical fractures and stress evolution in the first two iterations. For each time 

step, critical fractures are identified at its beginning, which are marked as red dot on the Mohr 

diagram. After frictional slip, all critical fractures are represented as red dots on the frictional failure 
line (black dashed line). e Complete process of stress evolution. Red circle represents the resolved 

stress state surrounding the most critical fracture at each time step, while green circle is its frictional 

resistance. Gray colormap is shown with color scaled to time step. The total number of time steps 
is 98. 
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Figure S6. Probability density function of the (a-c) frictional coefficient and (d-f) orientation of 

the most critical fracture based on 10,000 calculations for each frictional coefficient distribution, 

using Monte Carlo method. The color gradient of each bin in (a-c) is scaled to its probability. 
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Figure S7. Stochastic system with normally distributed frictional coefficient N(0.6, 0.052) in 
reverse faulting stress regime: a-d Identification of critical fractures and stress evolution in the first 

two iterations. For each time step, critical fractures are identified at its beginning, which are marked 

as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 
according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 

is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 

plotted as a solid red line. Gray colormap is also shown with color scaled to time step. The total 
number of time steps is 40,302. 
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Figure S8. Stochastic system with normally distributed frictional coefficient N(0.8, 0.062) in 

reverse faulting stress regime: a-d Identification of critical fractures and stress evolution in the first 
two iterations. For each time step, critical fractures are identified at its beginning, which are marked 

as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 

according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 
is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 

plotted as a solid blue line. Gray colormap is also shown with color scaled to time step. The total 

number of time steps is 61,273. 
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Figure S9. Stochastic system with frictional coefficient following Weibull distribution (λ = 0.8, k 

= 10) in reverse faulting stress regime: a-d Identification of critical fractures and stress evolution 

in the first two iterations. For each time step, critical fractures are identified at its beginning, which 
are marked as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture 

is colored according to its frictional coefficient. e Complete process of stress evolution. Red circle 

represents the resolved stress state surrounding the most critical fracture at each time step, while 
green circle is its frictional resistance. As a reference, the frictional coefficient of the most critical 

fracture is plotted as a solid red line. Gray colormap is also shown with color scaled to time step. 

The total number of time steps is 52,114. 
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Figure S10. Deterministic case with equal frictional coefficient (0.6) in reverse faulting stress 

regime: a-d Identification of critical fractures and stress evolution in the first two iterations. For 
each time step, critical fractures are identified at its beginning, which are marked as red dot on the 

Mohr diagram. After frictional slip, all critical fractures are represented as red dots on the frictional 

failure line (black dashed line). e Complete process of stress evolution. Red circle represents the 
resolved stress state surrounding the most critical fracture at each time step, while green circle is 

its frictional resistance. Gray colormap is shown with color scaled to time step. The total number 

of time steps is 282. 


