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Abstract

Earthquake focal mechanism data provide information about the stress state at the origin of these
earthquakes. The inversion methods that are commonly used to infer the stress tensor from focal
mechanisms have varying complexity but always rely on a number of assumptions. We present an
iterative method built upon a classic linear stress tensor inversion that allows to relax the assumption
on shear stress magnitudes while preserving the computational simplicity of the linear problem. Every
iteration of our method computes the least-squares solution of the problem, which makes the method
fast enough to estimate the inverted parameter errors with non-parametric resampling methods such
as bootstrapping. Following previous studies, this method removes the fault plane ambiguity in focal
mechanism data by selecting the set of nodal planes that best satisfies the Mohr-Coulomb failure
criterion. We first illustrate the performance of the proposed method on synthetic and real data sets,
and then discuss the relationship between the assumption of constant shear stress magnitudes and
the presence of non-optimally oriented faults. We provide the Python package ILSI to implement
the proposed method.

1. Introduction1

The sense of motion on faults carries information on the stress state surrounding these faults.2

Field measurements of fault orientations and slip directions (slickensides) were first used to retrieve3

the stress tensor using a number of assumptions [e.g. Carey et al., 1974; Angelier, 1979; Angelier4

et al., 1982]. The cornerstone assumption of these methods is that slickensides are oriented along5

the direction of maximum shear stress resolved on the faults [the so-called Wallace-Bott assumption,6

Wallace, 1951; Bott, 1959]. Stress tensor inversion techniques were extended to the more widely avail-7

able earthquake focal mechanism data, which describe faulting from seismic observations instead of8

direct field measurements. In general, the inverse problem is non-linear and solving it requires grid-9

search or other global optimization methods [Angelier et al., 1982; Gephart and Forsyth, 1984], but10

with additional assumptions the problem can be linearized [e.g. Michael, 1984]. Both non-linear11

and linear inversion techniques suffer from the ambiguity in earthquake focal mechanism data that12

provide two possible fault planes per datum, without offering the possibility to identify the actual13

fault plane [the consequences of choosing the wrong plane are discussed at length in Michael, 1987].14

While some of the non-linear inversion methods choose the fault planes as the set of planes that15
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minimize their objective function [such as the algorithm implemented in Focal Mechanism Stress16

Inversion, FMSI, Gephart, 1990], other criteria, physics-based and independent from the objective17

function, are preferred to avoid data over-fitting. Lund and Slunga [1999] introduced the use of the18

Mohr-Coulomb failure criterion to select fault planes. In this work, we present an inversion method19

built upon the linearized problem due to Michael [1984], turning it into an iterative inversion while20

preserving the computational efficiency of the least-squares solution of a linear problem. We thus21

relax the assumption made by Michael [1984] that shear stress magnitude is constant across faults22

or, equivalently, that all faults are optimally oriented within the stress field. We also use the Mohr-23

Coulomb failure criterion to select fault planes. The proposed method is implemented by our Python24

package ILSI (Iterative Linear Stress Inversion, see Data and Resources).25

26

In Section 2, we review the previous work on the topic on stress inversion and introduce our27

method. Section 3 demonstrates the advantages of the proposed method with synthetic data sets,28

and Section 4 shows its performances on real data sets. Finally, we discuss the implications of the29

assumption on shear stress magnitudes in Section 5.30

2. Methodology31

2.1. Previous Work32

Given a fault plane with orientation described by its unitary normal n̂, the traction on the plane33

is:34

T = σn̂, (1)

where σ is the Cauchy stress tensor, and T is the traction. The normal Tn and tangential (shear) Tt35

components of the traction are:36

Tn = (σn̂ · n̂)n̂ = σnn̂ (2)

Tt = T − Tn = σn̂− (σn̂ · n̂)n̂ = τ t̂.

In Equation (2), σn and τ are the magnitudes of the normal and shear tractions, respectively. The37

direction of shear traction is given by the unitary vector t̂. The stress tensor is often represented38

by its eigendecomposition: the principal stress directions σ̂i (eigenvectors) and the principal stresses39

σi (eigenvalues, i = 1, 2, 3). A plane that is perpendicular to σ̂i does not experience any shear, and40

is under a purely compressional traction of magnitude σi. By convention, eigenvalues are ordered41

such that σ1 is the most compressional stress, σ3 is the least compressional stress and σ2 is the inter-42

mediate stress. Note that in the earth all stresses are compressional because of lithostatic pressure,43

and extensional stresses only exist in the sense of deviatoric stresses (the stress minus the lithostatic44

pressure).45

46

Stress tensor inversion of earthquake focal mechanism data relies on two assumptions:47

- the stress tensor is homogeneous in space,48

- slip on faults occur in the direction of maximum resolved shear stress [Wallace-Bott assumption,49

Wallace, 1951; Bott, 1959].50
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An earthquake focal mechanism is a descriptor of the orientation and slip direction of a fault, based51

on the radiation pattern of seismic waves. Because of the symmetry of radiation patterns, there52

exists two fault planes with different slip directions that describe the same focal mechanism. Thus,53

each focal mechanism datum provides two fault normals n̂ and two slip directions ŝ. We describe54

later a way of solving this ambiguity, but will assume for now that the fault plane and slip direction55

are known. Based on the Wallace-Bott assumption, one seeks the stress tensor that predicts shear56

directions t̂ that best match the slip directions ŝ. This inverse problem does not provide any infor-57

mation on the absolute stress magnitudes, therefore it can only retrieve the reduced stress tensor,58

i.e. a normalized deviatoric stress tensor σ∗:59

Tr(σ∗) =
3∑

k=1

σ∗kk = 0;
∑
i,j

(σ∗ij)
2 = 1. (3)

For simplicity, hereinafter we keep using σ instead of σ∗. One can only obtain four independent60

parameters from the inverse problem: the three principal stress directions σ̂i, and the shape ratio R,61

R =
σ1 − σ2
σ1 − σ3

. (4)

This scalar quantity is a measure of the relative magnitude of the principal stresses. In terms of62

deviatoric stress, if R > 0.5, σ2 is extensional, and conversely if R < 0.5 then σ2 is compressional.63

One can think of R as describing the position of σ2 in between σ1 and σ3 on the x-axis of a Mohr64

circle (see Figure 1).65

66

For a population of faults described by their normals n̂i and their slip directions ŝi, writing67

Equation (2) for each fault and identifying the shear direction t̂i to the slip direction ŝi yields the68

following system of equations for shear tractions:69

σn̂i − (σn̂i · n̂i)n̂i = τiŝi. (5)

The inverse problem consists of finding σ such that Equation (5) is satisfied on each fault i. Un-70

fortunately, even though the left-hand side of Equation (5) is linear in σ, the right-hand side is not71

because of the shear magnitude τi. Although one cannot determine the absolute shear magnitudes,72

the relative magnitudes between faults still matter. Several strategies have be taken to solve the73

inverse problem: Angelier et al. [1982] solve the non-linear problem iteratively, and the broadly74

used method due to Gephart and Forsyth [1984] adopts a grid-search over the four independent75

parameters to minimize their angular misfit (i.e. their objective function does not depend on shear76

magnitudes). These two methods consider errors not only in the slip directions but also in the ori-77

entation of the fault normals. The other widely used method is due to Michael [1984], which stands78

out by its simplicity, and which many other methods are built upon [for example, Hardebeck and79

Michael, 2006; Mart́ınez-Garzón et al., 2014]. The author made the assumption that shear stress is80

relatively constant from fault to fault, thus assigning the shear magnitude on the right-hand side of81

Equation (5) a scalar (equal to one). We discuss the implications of the assumption on shear stress82

magnitudes in Section 5. The linear problem is:83
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In Equation (6), d is the stack of all slip vectors and G is the stack of all matrices relating84

the stress tensor elements to the direction of shear stress on the faults. Given that we can only85

retrieve the deviatoric stress tensor (see Equation (3)), the last diagonal term that does not appear86

in Equation (6) is implicitly defined by σ33 = −σ11 − σ22. The linear inverse problem defined by87

Equation (6) is usually solved in the least-squares sense, for example with the Tarantola and Valette88

formula [Tarantola and Valette, 1982]:89

m = mprior +
(
GTC−1D G+ C−1M

)−1
GTC−1D (d−Gmprior) . (7)

In Equation (7), mprior is an approximate solution known a priori, CD and CM are the covariance90

matrices modeling the prior knowledge on the data and model parameter distributions, respectively.91

If no prior knowledge on the target solution is available, then C−1M = 0 and mprior = 0. Note that92

this linear formulation only considers errors in slip directions and not in fault orientations.93

2.2. This Study94

We relax the assumption on constant shear stress magnitudes in Michael [1984] by iteratively95

solving for both the stress tensor elements and the shear stress magnitudes. The algorithm is:96

1. Initialize the solution:97

m(0) =
(
GTC−1D G+ C−1M

)−1
GTC−1D d(0) (8)

2. Compute shear stress magnitudes at iteration t and update the set of linear equations (i.e.98

update the estimate of the right-hand side of Equation (5)):99

τ
(t)
i = |σ(t)n̂i − (σ(t)n̂i · n̂i)n̂i|; d

(t)
i = τ

(t)
i d(0) (9)

3. Solve the updated linear inverse problem and update the stress tensor elements m(t) using the100

previous estimate m(t−1) as prior knowledge:101

m(t) = m(t−1) +
(
GTC−1D G+ C−1M

)−1
GTC−1D

(
d(t) −Gm(t−1)) . (10)

4. Repeat 2 and 3 until |τ (t) − τ (t−1)| is lower than a user-provided threshold.102
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The superscript in parenthesis is the iteration index, d(0) are the unitary slip vectors and C−1M is103

generally set to zero. C−1D can be used to give more or less weight to the observations based on their104

quality, or is equal to identity if all focal mechanisms are equally accurate. In Section 3, we show how105

this iterative procedure helps find the exact solution in synthetic examples. In this study, we use the106

outward footwall normals, and the slip direction of the hanging walls with respect to the footwalls,107

implicitly setting our stress tensor sign convention to negative compression (see Appendix Appendix108

A). The formula relating strike/dip/rake to normal and slip vectors can be found, for example, in109

Chapter 4.2 of Stein and Wysession [2009].110

111

When dealing with earthquake focal mechanism data sets, one needs to determine the fault planes112

out of the pairs of nodal planes in order to get an accurate estimate of the stress tensor [Michael,113

1987, illustrate how choosing the wrong planes impacts the solution]. We use the Mohr-Coulomb114

failure criterion to assess which planes are more likely to be the fault planes for a given stress tensor115

[Lund and Slunga, 1999]. We recall that this criterion states that a rupture occurs if the shear stress116

exceeds a critical value given by:117

τc = C + µσn, (11)

where C and µ are the cohesion and the friction on the fault, respectively. We denote the effective118

normal stress on the fault by σn, meaning that we include any pore pressure in this term. The closer119

the shear stress τ is to the critical value, the more unstable the fault is. Therefore, a measure of120

fault instability is:121

∆τ = τ − τc = τ − C − µσn = τ − µ(σn + C/µ) = τ − µσ∗n. (12)

In Equation (12), ∆τ is the instability parameter as defined in Lund and Slunga [1999]. Note that122

we included cohesion into the normal stress magnitude (σn → σ∗n). Since we do not have access to123

absolute values of stress, the cohesion is not a relevant variable in this analysis. This also means124

that ∆τ as defined here only has a meaning in a relative sense, when comparing different planes.125

Therefore, following Vavryčuk et al. [2013], Vavryčuk [2014], we express normal stresses with respect126

to the maximum compression stress σ1, and normalize the instability parameter by its value at the127

most unstable plane. The modified instability parameter I is defined as:128

I =
τ − µ(σ1 − σ)

τc − µ(σ1 − σc)
. (13)

This formula was derived assuming negative compression (i.e. σ1 < σ2 < σ3) for consistency with129

the first part of the method. τc and σc are the shear stress and normal stress magnitudes of the most130

unstable fault. The different terms of Equation (13) are defined graphically in Figure 1.131

132

The shear stress magnitudes are always assumed positive in Equation (13), however when choosing133

the fault plane out of the two nodal planes of each focal mechanism, we need to take into account the134

direction of the shear stress with respect to the slip direction. Therefore, we multiply the instability135

parameter I by the sign of the dot product between shear stress and slip:136

Ĩ = I × sign
(
ŝ · t̂
)
. (14)
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Less 
compressive

More 
compressive

Figure 1: Definition of the instability parameter [Equation (13), following Vavryčuk et al., 2013] in the Mohr space
with the negative compression convention. The red straight lines are the failure lines whose slopes are controlled by
the friction µ. The most unstable fault has coordinates (σc, τc) in the Mohr space. The σi’s are the principal stresses
ordered from most compressive to least compressive.

Given a stress tensor σ, the fault plane that is chosen is the one that maximizes Ĩ out of the two137

nodal planes.138

139

Finally, the inversion includes the following steps:140

1. Initial guess of σ by randomly selecting sets of nodal planes.141

2. Choose the fault planes based on Ĩ.142

3. Inner loop: Iteratively run the linear inversion (Equations (8)-(10)).143

4. Repeat 2 and 3 until convergence or a user-defined maximum number of iterations.144

Ten iterations are usually sufficient to reach convergence. Even though adding these two layers145

of iterations to the linear inversion from Michael [1984] makes our algorithm slower, it is still fast146

enough to be run many times on bootstrapped data sets to infer the parameter confidence intervals147

[Efron and Tibshirani, 1986]. We use this non-parametric method to estimate uncertainties in the148

applications described in the next sections.149

150

We note that this algorithm may fail to converge in certain situations in which we observe an151

oscillatory solution. Given the stress tensor τ (i) at iteration i, the selected set of nodal planes S(i)
152

depends on the outcome of the instability criterion Ĩ(τ (i)). Inverting this set of nodal planes produces153

a new stress tensor τ (i+1) that, in turn, selects a new set of nodal planes S(i+1). The discrete nature154

of S implies that any change in the selected nodal planes translates into a sharp change in the asso-155

ciated fault normals. Because shear stress is a smooth function of the fault normal (Equation (2)), it156

also implies a sharp change in the inverted stress tensor. Despite oscillations of the solution, one can157

still use this iterative procedure to explore different possible populations of faults, and select in the158

end the stress tensor that produces the lowest residuals. Ten iterations are again usually sufficient159

to explore the candidate solutions and select the best one.160

161
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3. Synthetic Experiments162

We first test our method on synthetic data sets. The first experiment involves a stress tensor with163

northwest-southeast maximum compression, southwest-northeast least compression and vertical in-164

termediate stress, favoring right-lateral strike-slip faulting on vertical east-west faults, or left-lateral165

strike-slip on north-south faults. The shape ratio is R = 0.5. The 100 fault planes are randomly166

distributed around azimuth 110° and the dips range from 65° to 90° (see leftmost column in Figure 2).167

Rake directions are in the direction of the shear tractions determined by the stress tensor in order168

to be fully consistent with the Wallace-Bott assumption. These strikes/dips/rakes are referred to as169

the ”true fault planes” hereafter. Empirical parameter distributions are estimated by bootstrapping170

the original data set 1000 times. Confidence intervals are derived from these distributions.171

172

Inverting the true fault planes (that is, without the need of inferring the fault plane) shows that173

the linear inversion does not retrieve the correct solution when using perfect data. The true solution174

is also not within the 95% confidence interval. In contrast, our iterative method finds the true stress175

directions and shape ratio. The inability of the linear method to find the true solution on perfect data176

is due to the erroneous assumption that all shear stress magnitudes are the same. In this synthetic177

experiment, there is actually a factor seven between the largest and the smallest shear magnitude178

values (see Figure 3). Figure 3 shows that the iterative method recovers the exact shear magnitudes179

while the linear method predicts incorrect values. The low shear stress magnitudes seen in Figure 3180

are indicative of non-optimally oriented faults. We discuss in Section 5 how relaxing the assumption181

of constant shear stress magnitudes helps deal with these non-optimally oriented faults.182

183

To test the efficacy of the fault plane selection criterion, we augment the data set with the auxiliary184

planes to synthesize a focal mechanism data set, and we vary the level of noise in the strike/dip/rake185

values. Even in the noise-free setting, getting the true solution is not trivial because the true fault186

planes are unknown. We compare four methods: the linear method, the linear method with the fail-187

ure criterion, the iterative method, and the iterative method with the failure criterion. The latter is188

the method we introduced in Section 2.2, and is labeled as ”Iterative failure criterion” in the figures.189

Figure 2 summarizes the results. Both in the noise-free and the low noise case, our method is the only190

one to retrieve the true solution. All methods fail in the high noise experiment, but even then our191

method produces a shape ratio distribution that indicates that the true shape ratio is a likely solution.192

193

We do the same exercise with a second synthetic data set in which the dominant faulting style is194

oblique strike-slip with a normal component, and the shape ratio is R = 0.7. The 100 fault planes are195

randomly distributed around azimuth 110° and the dips range from 20° to 65° (see leftmost column196

in Figure 4). Similar conclusions as for the first experiment can be drawn. The linear method fails197

to retrieve the true solution when inverting data from the true fault planes, which again is explained198

by the misfit between the predicted shear stress magnitudes and the true ones (cf. right panels199

of Figure 3). Our method is also the only one to find the true solution in the noise free and low200

noise cases. However, the confidence intervals and the shape ratio distribution show that there exists201

another group of solutions, significantly different from the true solution, that explain this data set202

well (see the multiples lobes in the stereonets, and the bimodal distribution of the shape ratios in203
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Figure 2: Synthetic experiment 1. The true stress tensor (leftmost column, middle row, large black symbols) promotes
right-lateral strike-slip faulting on east-west oriented vertical faults. The shape ratio is 0.50. The fault orientations
are randomly chosen from a range of parameters that is physically sensible given the stress state (see text), and the
rakes are chosen such that slip is along the maximum shear stress direction. a, e, i: Data set with only the 100 true
fault planes. b, f, j: Noise free data set with both the fault planes and their auxiliary planes. c, g, k: Data set with
noisy fault planes with strikes/dips/rakes perturbed by random values in [−3°; +3°], and their auxiliary planes. d,
h, i: Data set with noisy fault planes with strikes/dips/rakes perturbed by random values in [−10°; +10°], and their
auxiliary planes. a, b, c, d: Fault planes (black lines) and auxiliary planes (grey lines). e, f, g, h: Lower hemisphere,
equal area stereographic projections of the principal stress axes and their 95% confidence intervals (CI) estimated
from 1000 bootstrap resamplings: solid lines = σ1 CI, dashed lines = σ2 CI, dot-dashed lines = σ3 CI. The legend
shows the inverted shape ratios R, and the mean angle |∆θ| between the predicted shear directions on the true fault
planes and the true slip directions. Circles, squares and triangles are the most compressive (σ1), intermediate (σ2)
and least compressive (σ3) stresses, respectively. i, j, k, l: The distributions of shape ratios from the 1000 bootstrap
resamplings. The vertical black line indices the true shape ratio. The proposed method is labeled ”Iterative failure
criterion” and is shaded for clarity.

Figure 4). In the high noise scenario, all methods produce solutions that are off the true solution,204

but our method’s solution is the closest and, more importantly, it is the only method that captures205

the true solution inside its 95% confidence interval.206

207
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Figure 3: Predicted shear stress magnitudes. a, c: Synthetic experiment 1. b, d: Synthetic experiment 2. The linear
inversion does not predict the relative shear stress magnitudes correctly, but our iterative procedure retrieves the true
values.

4. Real Data Applications208

4.1. Case Study 1: Central Crete209

We now test our method on real data sets. The first application is on the Central Crete data set210

of field measurements from Angelier [1979], which was also used by Michael [1984] as a test for their211

linear method. In this data set the true fault planes are known since they were measured in the field212

(see left panel of Figure 5). The inversion results from the linear and the iterative methods are shown213

in Figure 5. The linear method finds a solution that is similar to the one shown in Michael [1984],214

and the iterative method produces a solution that is closer to the one in Angelier [1979]. Note that215

in the original publications, the authors use another definition of the shape ratio: Φ = 1 − R. The216

measure of misfit |∆θ| shown in Figure 5 is the mean angle between predicted and observed shear217

traction (using the Wallace-Bott assumption). The values of |∆θ| obtained here are similar to those218

presented in Angelier [1979] and Michael [1984].219

220

The large azimuthal uncertainty on σ2 and σ3 in both methods is a physical consequence of the221

stress state (see Figure 5 middle panel). In this tectonic setting, the two horizontal stresses σ2 and σ3222

have close values (R ≈ 1, uniaxial deviatoric compression). Therefore, the horizontal component of223

the shear traction is always much smaller than the vertical component, and the predicted shear direc-224
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Figure 4: Synthetic experiment 2. The true stress tensor (e) promotes right-lateral oblique strike-slip faulting with a
normal faulting component on east-west oriented faults. The shape ratio is 0.70. Same legend as Figure 2.

tions show little sensitivity to the directions of the horizontal principal stresses. Thus, the azimuths225

of σ2 and σ3 are only weakly constrained by this data set. We note that the confidence intervals226

estimated in Michael [1984] based on gaussian statistics are smaller than those presented in Figure 5,227

and failed to capture the physical lack of constraint over the directions σ2 and σ3 [also discussed in228

Michael, 1987]. This emphasizes the importance of better estimates of confidence intervals, such as229

via non-parametric methods. With this data set, the stress tensors inverted with the linear and the230

iterative methods both give shear stress magnitudes that are narrowly distributed around 0.5 (see231

rightmost panel of Figure 5), which explains why the linear method and the underlying assumption232

of constant shear stress magnitude do well.233

234

4.2. Case Study 2: Western North Anatolian Fault235

The second application is on a data set of focal mechanisms from the western North Anatolian236

Fault Zone, compiled in Poyraz et al. [2015]. The authors subdivided the data set into the 1999237

Mw7.6 Izmit earthquake and its aftershocks (Izmit data set, 20 focal mechanisms, cf. bottom left238
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Figure 5: Inversion of the central Crete data set from Angelier [1979]. a: Fault plane orientations. b: Principal stress
directions of the inverted stress tensor with the linear method due to Michael [1984] (blue symbols) and the iterative
method introduced in Section 2.2. In the original publication, Angelier [1979] find similar stress directions and a shape
ratio of R = 0.93. The 95% confidence intervals (CI) derived from 1000 bootstrapped data sets are shown: solid lines
= σ1 CI, dashed lines = σ2 CI, dot-dashed lines = σ3 CI. c: Empirical shape ratio distributions estimated from the
bootstrap resampling. d: Distribution of shear stress magnitudes resolved on the fault planes.

panel of Figure 6), and earthquakes recorded a decade later (DANA data set, 41 focal mechanisms,239

cf. top left panel of Figure 6). They inverted both data sets with the non-linear method FMSI240

[Gephart, 1990] to estimate the stress tensor in the two time periods. The FMSI solutions from241

Poyraz et al. [2015] and the solutions obtained with the linear and the proposed iterative methods242

are presented in Figure 6.243

244

In both cases, the iterative linear and failure criterion method produced solutions that are consis-245

tent with the FMSI solutions. On the DANA data set, all three methods agree well on the directions246

of the principal stresses, however the linear method yields a shape ratio (R = 0.33) that is signif-247

icantly smaller than the value reported in Poyraz et al. [2015] (R = 0.45) and the solution of the248

iterative method (R = 0.54). The shape ratio of the regional stress tensor in the western North249

Anatolian Fault Zone, around the Izmit rupture, is usually estimated to be R ≈ 0.5 [e.g. Kiratzi,250

2002; Pınar et al., 2010]. The proposed method gives the lowest measure of angular misfit |∆θ|,251

although this criterion does not allow a fair comparison with the FMSI solution since FMSI is not252

designed to minimize |∆θ|, as it also considers errors in the orientation of the fault plane itself.253

254

Uncertainties and inconsistencies between methods are larger for the Izmit data set, partly due255

to the low number of events (20 focal mechanisms). The low shape ratios, R = 0.18 with the linear256

method and R = 0.38 with the iterative method, indicate that σ1 and σ2 are close in magnitude.257

Therefore, similarly to the reason given in Section 4.1, we observe poorly constrained maximum and258

intermediate compression axes. The low values of shape ratio inverted for this data set reflect the259

mixture of strike-slip and normal faulting (transtensional regime) that followed the Izmit earthquake260

[e.g. Bohnhoff et al., 2006; Pınar et al., 2010]. Our method still produced a solution that is consistent261

with the FMSI solution, and the lowest |∆θ|. Here, the FMSI solution displays a surprisingly large262
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Figure 6: Inversion of the North Anatolian Fault data set from Poyraz et al. [2015]. a, b, c, d: Focal mechanisms
from the DANA data set [Dense Array for North Anatolia DANA , 2012]. e, f, g, h: Focal mechanisms from the
1999-08-17 Mw7.6 Izmit earthquake and some of its aftershocks. Columns are the same as in Figure 5. The measure of
misfit |∆θ| and the shear stress magnitudes (right panel) were computed on the fault planes selected by the instability
parameter (Equations (13) and (14)).

|∆θ|, which we speculate could be due to discrepancies between the nodal planes selected by their263

inversion and our failure criterion used to select the planes on which |∆θ| was computed.264

265

5. Discussion on Shear Stress Magnitudes266

On the North Anatolian data sets, the inverted stress tensors predict shear stress magnitudes267

that span a large range of values (cf. rightmost column of Figure 6), similarly to what we saw in268

the synthetic experiments (Figure 3). This shows that data sets where fault orientations are not269

consistent with constant shear stress do occur in practice, even though it might seem to contradict270
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basic physical arguments at first. Michael [1984] justified the assumption of constant shear stress271

with the Mohr-Coulomb failure criterion (Equation (13), with cohesion C = 0): given that normal272

stress is mostly controlled by the lithostatic stress, it has no reason to vary significantly with the fault273

orientation. Following this reasoning, the only variable left for explaining a wide range of shear stress274

magnitudes, as shown in Figures 3 and 6, is the coefficient of friction µ at the time of failure, which275

was shown to exhibit little variation in rock samples [0.6-0.85, Byerlee, 1978]. However, the previous276

arguments disregard the importance of pore fluid pressure on controlling the effective normal stress277

at play in the Mohr-Coulomb failure criterion [Faulkner et al., 2006], and the fact that real faults278

might have coefficients of friction as low as 0.2 due to various reasons, such as the presence of weak279

minerals or rock fabric [Collettini et al., 2009].280

281

The wide distribution of shear stress magnitudes (in particular, the low values) is indicative of282

the presence of non-optimally oriented faults in the inverted average stress tensor. Rupture on these283

non-optimally oriented faults can be explained by weakness due to low friction coefficient or high284

pore fluid pressure, or by heterogeneities in the stress field (e.g. interactions between faults). In285

fact, interactions between applied stress and resulting structures develop local heterogeneities in the286

stress field, which can lead to the appearance of complex structures [e.g. Riedel shears, Dresen,287

1991]. In the latter case, fault misorientation is an artifact of the assumption of uniform stress field.288

Either for real (weak faults) or artificial (invalidity of the uniform stress assumption) reasons, these289

non-optimally oriented faults are found in data sets in general. By iteratively inverting for the shear290

stress magnitudes (see Equations (8)-(10)), our method learns to identify these non-optimally oriented291

faults and adjusts the right-hand side of Equation (5) accordingly (d
(t)
i = τ

(t)
i d(0), cf. Equation (9))292

in order to achieve low residuals (d−Gm)2 on these faults. Under the assumption of constant shear293

stress magnitude, the linear method is forced to find a solution that produces neither a good solution294

on the optimally oriented faults nor on the non-optimally oriented faults (see left column of Figure 2)295

as a consequence of the least-squares criterion. The identification of non-optimally oriented faults296

combined with bootstrap resampling is likely to produce more realistic estimates of uncertainties due297

to violations of the uniform stress assumption than the linear method.298

6. Summary and Concluding Remarks299

In Section 2.1, we introduced the stress tensor inversion problem and presented the underlying300

assumptions and drawbacks. In Section 2.2, we introduced an iterative inversion method built upon301

the linear inversion due to Michael [1984], and described how to combine it with a Mohr-Coulomb302

failure criterion [e.g. Lund and Slunga, 1999; Vavryčuk et al., 2013] to deal with focal mechanism303

data sets where the true fault planes are generally unknown. We used synthetic examples (Section 3)304

to demonstrate the efficacy of our method, its advantages with respect to the linear inversion, and305

its potential to estimate confidence intervals with the bootstrap resampling method [Efron and Tib-306

shirani, 1986]. We then validated the proposed method on real data sets (Section 4).307

308

The first data set was constituted of field measurements from Central Crete and was inverted in309

Angelier [1979] and Michael [1984], with which we showed that the proposed method gave consistent310

results, and more accurate confidence intervals. The second data set was made of focal mechanisms311
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from earthquakes located along the western section of the North Anatolian Fault Zone. We compared312

our method against the results presented in Poyraz et al. [2015] that were obtained with the FMSI313

software that is considered the state-of-the-art stress inversion method [Gephart and Forsyth, 1984;314

Gephart, 1990]. We showed that the solution produced by our method was in good agreement with315

the FMSI solution, whereas the linear method gave stress tensors with significantly different shape316

ratios.317

318

Finally, in Section 5, we discussed the implications of the assumption of constant shear stress319

magnitudes. We explained that relaxing the assumption on shear stress magnitudes helps our method320

deal with non-optimally oriented faults that are either symptomatic of stress heterogeneity (i.e. viola-321

tions of the uniform stress assumption) or of fault weakness. Therefore, we believe that the inversion322

method proposed here produces accurate solutions, is easy to implement, and is fast enough to allow323

accurate estimates of uncertainties with non-parametric methods, such the bootstrap resampling324

method.325

326

The stress inversion method introduced in this article can be implemented using our Python327

package ILSI (see Data and Resources).328

Data and Resources329

The first case study uses the Central Crete data set published in Angelier [1979] (their Table 1),330

and the second case study uses the North Anatolian data set published in Poyraz et al. [2015] (their331

Table 2).332

333

The Python package ILSI, available at https://github.com/ebeauce/ILSI, implements the334

method proposed here and provides tutorial scripts to reproduce our figures (version 1.0.0, last335

accessed July 2021).336
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Appendix A. Stress Tensor Sign Convention403

Let us consider a stress tensor with northwest/southeast maximum compression and south-404

west/northeast minimum compression, and intermediate compression in the vertical direction (see405

Figure A.7). The direction of the principal stresses σ̂i (i=1 maximum compression, i=3 minimum406

compression) are, in the (x, y, z)=(north, west, upward) coordinate system:407

σ̂1 =

− 1√
2

− 1√
2

0

 , σ̂2 =

0
0
1

 , σ̂3 =

− 1√
2

1√
2

0

 . (A.1)

The eigendecomposition of the stress tensor σ is:408

σ = V ΣV T , (A.2)

where V is the matrix of column eigenvectors, and Σ is the diagonal matrix of eigenvalues (σ1, σ2,409

σ3):410

V =

− 1√
2

0 − 1√
2

− 1√
2

0 1√
2

0 1 0

 ; Σ =

σ1 0 0
0 σ2 0
0 0 σ3

 . (A.3)

We parameterize the stress tensor by:411

σ1 = ±1, σ2 = ±(1− 2R), σ3 = ∓1, R =
σ1 − σ2
σ1 − σ3

. (A.4)

In Equation (A.4), the upper and lower signs hold for the compression positive convention and the412

tension positive convention, respectively. The parameter R is called the shape ratio, it characterizes413

the relative magnitudes of the principal stresses. The compression positive (cp) and tension positive414

(tp) stress tensors are:415

σcp/tp = V Σcp/tpV T . (A.5)

We consider the outward normal of the northern wall or, equivalently, the inward normal of the416

southern wall:417

n̂ =

−1
0
0

 . (A.6)

The unitary slip of the southern wall with respect to the northern wall is (right-lateral, the southern418

wall moves to the west):419

d̂ =

 0
+1
0

 . (A.7)
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Figure A.7: East-west right-lateral strike-slip fault under northwest-southeast maximum compression and southwest-
northeast minimum compression. The intermediate stress is vertical.

Appendix A.1. Compression Positive420

σcp = V ΣcpV T =

 0 +1 0
+1 0 0
0 0 0

 (A.8)

Compression is positive when defining the elements of the stress tensor for inward pointing nor-421

mals. Therefore, the normal defined by Equation (A.6) is the inward normal of the southern wall,422

and σcpn̂ gives the traction on the southern wall:423

t(n̂) = σcpn̂ =

 0
−1
0

 . (A.9)

The traction on the southern wall is −1ŷ, i.e. it points in the east direction, which is opposite to424

the direction of motion of the southern wall with respect to the northern wall.425

Appendix A.2. Tension Positive426

σtp = V ΣtpV T =

 0 −1 0
−1 0 0
0 0 0

 (A.10)

Tension is positive when defining the elements of the stress tensor for outward pointing normals427

(common definition of the Cauchy stress tensor in physics). Therefore, the normal defined by Equa-428

tion (A.6) is the outward normal of the northern wall, and σtpn̂ gives the traction on the northern429
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wall:430

t(n̂) = σtpn̂ =

 0
+1
0

 . (A.11)

The traction on the southern wall is +1ŷ, i.e. it points in the west direction, which is the direction431

of motion of the southern wall with respect to the northern wall.432

Appendix A.3. Implications for the Stress Tensor Inversion433

This simple example shows that, given the coordinate system we chose (x, y, z = north, west,434

upward), outward pointing normals of the footwalls and slip directions of the hanging walls with435

respect to footwalls are consistent with the tension positive convention. The inward pointing normals436

of the hanging walls and slip directions of the footwall with respect to hanging walls are consistent437

with the compression positive convention.438
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