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Summary 9 

Knowledge of crustal stress field is essential for understanding tectonics and 10 

earthquake generation. One way to estimate the crustal stress field is based on focal 11 

mechanisms of earthquakes. This study investigated focal mechanisms of ~ 110 thousand 12 

microearthquakes in Japan Islands shallower than 20 km based on the first-motion 13 

polarities picked by a simple neural network model, which was trained using two data 14 

sets: moderate to large earthquakes all over Japan and microearthquakes in two regions 15 

in Japan. The threshold of the confidence score from the neural network model was so 16 

chosen as to maximize the overall quality of focal mechanism solutions. The P- and T-17 

axes of the numerous focal mechanism solutions provide more detailed distributions of 18 

crustal stress field. For example, in Chugoku region, there exist slight differences in the 19 

trend of P-axes azimuths between the northern and southern areas are observed, 20 

corresponding to the geodetic observations in space. 21 
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1. Introduction 26 

Crustal stress field data are crucial to understand tectonics and seismic activity; 27 

however, measuring it at depths over a wide area is a challenge. Direct measurements at 28 

specific boreholes (e.g., Wu et al. 2007, Huffman et al. 2016, Brodsky et al. 2017, 29 

Townend et al. 2017) offer detailed information but only for one point. In contrast, 30 

seismology provides indirect measurements with more uncertainty but for a wide area. 31 

The focal mechanisms, which indicate the directions of fault plane and slip, indicate the 32 

orientation of the seismogenic stress. The World Stress Map (Heidbach et al. 2008, 33 

Heidbach et al. 2016, Heidbach et al. 2018) compiles this information all over the world. 34 

In the past, routinely determined moment tensor solutions were used for estimating 35 

regional stress fields (Terakawa and Matsu'ura 2010, Hardebeck 2015). However, blank 36 

areas still exist even in seismically active area such as Japan Islands. More complete 37 

knowledge of the seismogenic stress field requires focal mechanisms of microearthquakes, 38 

especially in low seismicity areas (e.g., Imanishi et al. 2011, Imanishi et al. 2012, 39 

Matsumoto et al. 2015). Comprehensive investigations of microearthquake focal 40 

mechanisms reveal the regional stress field (e.g., Iio et al. 2018, Imanishi et al. 2019). 41 

The focal mechanisms of moderate or larger earthquakes can be automatically 42 

determined using the full waveform from the local (e.g., Dreger and Helmberger 1993, 43 

Fukuyama et al. 1998) or global seismic network (e.g., Ekström et al. 2012). However, 44 

the mechanisms of small earthquakes cannot be similarly determined because of the 45 

difficulty of modeling high-frequency seismograms. We usually use the first-motion 46 

polarity: the vertical component initially goes either upward or downward. Automatic 47 

polarity-picking methods, such as one based on the sign of the first extremum after the P 48 
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arrival (Nakamura 2004, Chen and Holland 2016). Pugh et al. (2016a) proposed a 49 

Bayesian approach using the first extremum and a probability function of P arrival time. 50 

Recently, deep learning has enabled us to automatically pick the polarity (Ross et al. 2018, 51 

Hara et al. 2019). Thus, we are technically ready to investigate large number of 52 

microearthquakes. 53 

The aim of this study was to obtain the focal mechanism solutions in Japan Islands, 54 

one of the most seismically active regions in the world. The first-motion polarities were 55 

picked using a neural network model and seismic data from nationwide seismic networks. 56 

Finally, the focal mechanism solutions and spatial trends in P- and T-axes were studied. 57 

2. Training the Neural Network Model 58 

2.1. Data 59 

The training of the neural network model was performed in two stages. In the first stage, 60 

the Hi-net data of 18,000 earthquakes with P arrival and polarity data in the JMA catalog 61 

were used. Most of these earthquakes are larger than M 3 (Fig. S1). The whole data were 62 

then spatially divides into the training and validation data sets (Fig. 1a, Table 1).  63 

In the second stage, I used the P arrival time and polarity of microearthquakes in Kanto 64 

and Chugoku regions, manually picked by Geological Survey of Japan, National Institute 65 

of Advanced Industrial Science and Technology (AIST). The Kanto data were used by 66 

Imanishi et al. (2019). The spatial distributions of used events in Kanto and Chugoku 67 

regions are shown in Figs. 1b and 1c, respectively. The number of seismogram sets and 68 

earthquakes is summarized in Table 1. 69 
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In the both stages, seismograms of three components (up-down, north-south, and east-70 

west) were used. Each component had 256 samples: 156 samples before and 100 samples 71 

after P arrival. The samples are 2.56-s long, as the data were sampled at 100 Hz. Low-72 

frequency noise was removed by applying a high-pass filter at 1 Hz. I emphasized the 73 

initial portion of the P-wave by clipping seismograms at a certain threshold.  74 

Furthermore, I augmented the data four times by flipping all three components, rotating 75 

horizontal components by randomly selected angles, and time-shifting. The flipping 76 

procedure equalizes the number of positive and negative polarity data. The time shift 77 

addresses potential misalignment of data due to uncertainties in the arrival time picking. 78 

Later, I examined various values of the clipping threshold and the time-shift range. 79 

2.2. Design of the Neural Network Model 80 

Fig. 2 summarizes the neural network used in this study. The input of the neural 81 

network models is a three-component 256-sample long seismogram set where the 156th 82 

sample corresponds to the P-arrival time already picked either manually or automatically. 83 

The output comprises two scores corresponding to the upward and downward polarities. 84 

Note that, in the case of Southern California, Ross et al. (2018) classified the polarity as 85 

“Up,” “Down,” and “Unknown”; however, in this study, the “Unknown” class is not set. 86 

The data set contained many seismograms with impulsive onset but no polarity 87 

information (e.g., Fig. S2), and the lack of polarity information does not mean “Unknown” 88 

in this case. 89 

I designed a simple neural network model (Fig. 2) similar to the ones used in prior 90 

studies (Ross et al. 2018, Hara et al. 2019). The neural network model started with two 91 
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convolution layers, followed by three units composed of convolution, batch-92 

normalization (Ioffe and Szegedy 2015), and pooling layers. The models ended with two 93 

fully connected layers. The kernel size of the convolutional layers was 11. For all but the 94 

final layers, the activation function was the Rectified Linear Units (ReLU) (Nair and 95 

Hinton 2010); SoftMax function was chosen for the final layer: 96 

softmax(𝐳𝐳)𝑖𝑖 =
exp(𝑧𝑧𝑖𝑖)

∑ exp�𝑧𝑧𝑗𝑗�𝑗𝑗
, (1)  105 

where z = (z1, z2) is the output of the final layer corresponding to the positive and negative 97 

polarities, respectively. Then, the outputs are non-negative, and their summation is always 98 

1. In order to address the overfitting problem, the dropout technique (Srivastava et al. 99 

2014) was adopted: 50 % of randomly selected perceptions were muted during the 100 

training. The loss was evaluated by the negative log-likelihood function and the 101 

parameters of the neural network model were updated by back-propagating the loss 102 

(Rumelhart et al. 1986) optimized by the adaptive moment estimation (Adam) method 103 

(Kingma and Ba 2014). 104 

2.3. Result 106 

Hundred cases with randomly selected clipping thresholds in the range of 10−6 to 10−4 107 

m/s and the half-width of the time-shift ranging 0–30 samples were examined. The result 108 

was evaluated based on the loss value for the test data set. The result shows that the shorter 109 

half-width of the time-shift range, the smaller is the loss (Fig. 3a). The clipping threshold 110 

has no correlation with the loss value (Fig. 3b).  111 

Hereafter, I did not apply time-shift and used 10−5 m/s as the clipping threshold. The 112 

neural network model was trained using these values. The precision-recall curve of the 113 
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trained model is shown in Fig. 3c. 114 

3. Application to Crustal Earthquakes in Japan 115 

I applied the trained model to event data of earthquakes that occurred in the period 116 

2005–2019 at depths less than 20 km within the coastline, excluding the events for which 117 

polarity information is already available in the catalog (Table 1). I used seismograms from 118 

Hi-net and the JMA seismic network with P-wave arrival times in the JMA catalog. 119 

Preprocessing was done in the same way as the training. Good results were obtained for 120 

polarity picking with high scores (Fig. 4), even in noisy cases. 121 

The focal mechanisms were determined using polarity information with scores larger 122 

than a confidence threshold and the HASH code (Hardebeck and Shearer 2002, 2008). 123 

The quality of focal mechanisms depends on the confidence threshold (Fig. 3d). If the 124 

threshold is too high, the very small number of polarity picks cannot constrain focal 125 

mechanisms well. If the threshold is lower than 0.7, the fraction of A and B ranks given 126 

by the HASH code (Hardebeck and Shearer 2008) is almost constant. I adopted a 127 

confidence threshold of 0.7. 128 

Fig. 5 shows the estimated focal mechanisms and their P- and T- axes in addition to the 129 

NIED F-net Moment Tensor solutions for reference. The focal mechanisms of 113,700 130 

events are estimated, while those of 6830 events are undetermined because the number 131 

of stations was smaller than 8. Ranks A, B, C, and D by the HASH code (Hardebeck and 132 

Shearer 2008) were given to 1060, 17890, 36958, and 50962 events, respectively. The 133 

focal mechanism solutions cover much more space than those in a routine catalog. 134 
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The obtained P- and T-axes (Figs. 5c and 5d, respectively) are well consistent with 135 

stress regimes reported in prior studies: north-south extensional stress field in Kyushu 136 

region (Matsumoto et al. 2015, Savage et al. 2016); normal faulting earthquakes in the 137 

area of Fukushima-Hamadori and northern Ibaraki prefecture (Imanishi et al. 2012). 138 

4. Discussion  139 

It may be surprising that the narrower time-shift range of the data, the better is the 140 

model performance, because the time-shifting would make the model more flexible and 141 

robust to uncertainties in arrival time picking. There are two potential reasons. One is that 142 

the arrival times in the test data were accurate because of careful review by an analyst, 143 

and therefore the time-shift was not really required. Another possible reason is the 144 

shortage of training data from microearthquakes.  145 

Determination of focal mechanisms from the first-motion polarities of P-waves picked 146 

by the trained neural network model is also important for assessing the quality of polarity 147 

picking. In this study 50.8 % of the focal mechanism solutions are ranked D or 148 

undetermined. In a study on the determination of the focal mechanisms of earthquakes in 149 

Southern California using manually picked P-wave polarity and the amplitude ratio of P 150 

and S waves (Yang et al. 2012), the results showed that 56.6 % (101,309 out of 178,899 151 

events) of the events were ranked D, comparable to the result of this study. Thus, this 152 

study yields a reasonable quality of the P-wave first-motion polarity picking, though the 153 

comparison is not simple because of many factors including the differences in the 154 

observational conditions such as the magnitude range and station density. Focal 155 

mechanism determination can be improved in several ways: introduction of P-wave 156 
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amplitude (e.g., Matsushita and Imanishi 2015, Pugh et al. 2016b) and the ratio of P- and 157 

S-wave amplitudes (Hardebeck and Shearer 2003, Yang et al. 2012), as well as the 158 

advances in the P-wave polarity picking. 159 

The quality of the focal mechanism solutions is shown by region in Fig. 3e. In particular, 160 

the quality in Hokkaido region is much worse than in other regions. The reason was 161 

examined by focusing on the number of stations. First, the quality of the focal mechanism 162 

solutions is well correlated with the number of stations (Fig. 3f). Next, the number of 163 

usable stations is smaller in Hokkaido than in other regions. This is probably because of 164 

the spatial density of seismic stations (Fig. 5e). Hence, it is more difficult to determine 165 

the focal mechanisms in Hokkaido than elsewhere.  166 

We see interesting features in the spatial distribution of the P- and T-axis azimuths (Figs. 167 

5c and 5d). For example, in Chugoku region, the P-axes strike in the east–west direction 168 

in the northern area (San-in area), whereas those strike in the NW–SE direction in the 169 

southern one (Sanyo area). The contrast in the P-axis azimuths in western Tottori was 170 

reported by Kawanishi et al. (2009). This study too shows a similar trend over the whole 171 

Chugoku region. This contrast geographically corresponds to the San-in shear zone 172 

(Meneses-Gutierrez and Nishimura 2020). A combination of this study with geodetic 173 

implications will enhance our understanding of seismotectonics. 174 

In spite of the dramatic increase in focal mechanism solutions, there are still blank areas 175 

in Japan Islands. The seismicity is quite low in such areas. Hence, this kind of study may 176 

need to be performed even for smaller earthquakes, which is a greater challenge than that 177 

tackled in the present study. Additional campaign seismic observations may improve the 178 

focal mechanism solutions of very small earthquakes. In addition, combining these 179 
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observations with various observations including geological, geographical, and 180 

geodetical ones will improve our understanding of the crustal stress field and its origin. 181 

5. Conclusions 182 

In this study, the focal mechanisms of small to microearthquakes are estimated for 183 

better understanding of the crustal stress fields in Japan Islands. The focal mechanisms 184 

were derived using the P-wave first-motion polarities picked by a neural network model 185 

that takes three-component seismograms with P arrival times as the input. The focal 186 

mechanisms of almost all microearthquakes over the whole of Japan Islands were 187 

successfully determined. The focal mechanism solutions are generally consistent with the 188 

stress regime on a large scale. The slight but clear differences in the P-axis azimuths in 189 

the northern and southern parts of Chugoku region are consistent with the geodetic 190 

observations for this region. The results of this study will be useful for revealing the 191 

crustal stress field, and thus, for assessing the past and current tectonic activities and 192 

future earthquake generation. 193 

Acknowledgements 194 

I thank Kazutoshi Imanishi and Reiken Matsushita for providing phase data for 195 

microearthquakes in Kanto and Chugoku regions in Japan. I also thank the NIED, 196 

especially Takanori Matsuzawa, for helping me prepare the large seismic data set. I used 197 

seismic data from NIED Hi-net (National Research Institute for Earth Science and 198 

Disaster Resilience 2020) and JMA available at http://www.hinet.bosai.go.jp/?LANG=en 199 

(last accessed on 25 March 2020), the phase data from JMA Unified Earthquake Catalog, 200 

available at http://www.data.jma.go.jp/svd/eqev/data/bulletin/eqdoc_e.html (last 201 



Confidential Manuscript to Geophysical Journal International 

11 

 

accessed on 25 March 2020) and http://www.hinet.bosai.go.jp/?LANG=en (last accessed 202 

on 25 March 2020), and the moment tensor solutions by NIED F-net project (Fukuyama 203 

et al. 1998) available at http://www.fnet.bosai.go.jp/top.php?LANG=en (last accessed on 204 

25 March 2020). The data analyses in this study were performed using PyTorch (Paszke 205 

et al. 2019), ObsPy (Beyreuther et al. 2010, Megies et al. 2011, Krischer et al. 2015), 206 

HASH (Hardebeck and Shearer 2002, 2008), and HASHpy (Williams 2014). I used 207 

Generic Mapping Tools (Wessel et al. 2013) for generating Figs. 1, 3, 5, and S1, and 208 

Matplotlib (Hunter 2007) for Figs. 4 and S2. This work was supported by Mitsubishi 209 

Foundation and AIST EDGE Runners project. In this work, the computation facility of 210 

the AI Bridging Cloud Infrastructure (ABCI) maintained by AIST was employed. 211 

References 212 

Amante, C. & Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: 213 

Procedures, Data Sources and Analysis. in NOAA Technical Memorandum 214 

NESDIS NGDC-24National Geophysical Data Center, NOAA, 215 

doi:10.7289/V5C8276M. 216 

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. & Wassermann, J., 2010. 217 

ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530-533, 218 

doi:10.1785/gssrl.81.3.530. 219 

Brodsky, E.E., Saffer, D., Fulton, P., Chester, F., Conin, M., Huffman, K., Moore, J.C. & 220 

Wu, H.-Y., 2017. The postearthquake stress state on the Tohoku megathrust as 221 

constrained by reanalysis of the JFAST breakout data, Geophys. Res. Lett., 44, 222 

8294-8302, doi:10.1002/2017gl074027. 223 

Chen, C. & Holland, A.A., 2016. PhasePApy: A Robust Pure Python Package for 224 



Confidential Manuscript to Geophysical Journal International 

12 

 

Automatic Identification of Seismic Phases, Seismol. Res. Lett., 87, 1384-1396, 225 

doi:10.1785/0220160019. 226 

Dreger, D.S. & Helmberger, D.V., 1993. Determination of source parameters at regional 227 

distances with three-component sparse network data, J. Geophys. Res., 98, 8107-228 

8125, doi:10.1029/93JB00023. 229 

Ekström, G., Nettles, M. & Dziewoński, A.M., 2012. The global CMT project 2004–230 

2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Plant. Inter., 231 

200–201, 1-9, doi:10.1016/j.pepi.2012.04.002. 232 

Fukuyama, E., Ishida, M., Dreger, D.S. & Kawai, H., 1998. Automated seismic moment 233 

tensor determination by using on-line broadband seismic waveforms, Zisin 2nd 234 

Ser., 51, 149-156, doi:10.4294/zisin1948.51.1_149. (in Japanese with English 235 

abstract) 236 

Hara, S., Fukahata, Y. & Iio, Y., 2019. P-wave first-motion polarity determination of 237 

waveform data in western Japan using deep learning, Earth Planets Space, 71, 238 

127, doi:10.1186/s40623-019-1111-x. 239 

Hardebeck, J.L., 2015. Stress orientations in subduction zones and the strength of 240 

subduction megathrust faults, Science, 349, 1213-1216, 241 

doi:10.1126/science.aac5625. 242 

Hardebeck, J.L. & Shearer, P.M., 2002. A new method for determining first-motion focal 243 

mechanisms, Bull. Seismol. Soc. Am., 92, 2264-2276. 244 

Hardebeck, J.L. & Shearer, P.M., 2003. Using S/P amplitude ratios to constrain the focal 245 

mechanisms of small earthquakes, Bull. Seismol. Soc. Am., 93, 2434-2444. 246 

Hardebeck, J.L. & Shearer, P.M., 2008. HASH: A FORTRAN program for computing 247 

earthquake first-motion focal mechanisms – v1.2 –. 248 



Confidential Manuscript to Geophysical Journal International 

13 

 

Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, 249 

M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.-L. & Zoback, M., 2018. The 250 

World Stress Map database release 2016: Crustal stress pattern across scales, 251 

Tectonophysics, 744, 484-498, doi:10.1016/j.tecto.2018.07.007. 252 

Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M. & Team, W., 2016. World Stress Map 253 

Database Release 2016. in GFZ Data Services, doi:10.5880/WSM.2016.001. 254 

Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. & Müller, B., 2008. The 255 

World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008. 256 

Huffman, K.A., Saffer, D.M. & Dugan, B., 2016. In situ stress magnitude and rock 257 

strength in the Nankai accretionary complex: a novel approach using paired 258 

constraints from downhole data in two wells, Earth Planets Space, 68, 123, 259 

doi:10.1186/s40623-016-0491-4. 260 

Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90-95, 261 

doi:10.1109/MCSE.2007.55. 262 

Iio, Y., Kishimoto, S., Nakao, S., Miura, T., Yoneda, I., Sawada, M. & Katao, H., 2018. 263 

Extremely weak fault planes: An estimate of focal mechanisms from stationary 264 

seismic activity in the San'in district, Japan, Tectonophysics, 723, 136-148, 265 

doi:10.1016/j.tecto.2017.12.007. 266 

Imanishi, K., Ando, R. & Kuwahara, Y., 2012. Unusual shallow normal-faulting 267 

earthquake sequence in compressional northeast Japan activated after the 2011 off 268 

the Pacific coast of Tohoku earthquake, Geophys. Res. Lett., 39, L09306, 269 

doi:10.1029/2012GL051491. 270 

Imanishi, K., Kuwahara, Y., Takeda, T., Mizuno, T., Ito, H., Ito, K., Wada, H. & Haryu, 271 

Y., 2011. Depth-dependent stress field in and around the Atotsugawa fault, central 272 



Confidential Manuscript to Geophysical Journal International 

14 

 

Japan, deduced from microearthquake focal mechanisms: Evidence for localized 273 

aseismic deformation in the downward extension of the fault, J. Geophys. Res., 274 

116, B01305, doi:10.1029/2010JB007900. 275 

Imanishi, K., Uchide, T., Ohtani, M., Matsushita, R. & Nakai, M., 2019. Construction of 276 

the crustal stress map in the Kanto region, central Japan, Bull. Geol. Surv. Jpn., 277 

70, 273-298. (in Japanese with English abstract) 278 

Ioffe, S. & Szegedy, C., 2015. Batch normalization: accelerating deep network training 279 

by reducing internal covariate shift. in ArXiv e-prints. 280 

Kawanishi, R., Iio, Y., Yukutake, Y., Shibutani, T. & Katao, H., 2009. Local stress 281 

concentration in the seismic belt along the Japan Sea coast inferred from precise 282 

focal mechanisms: Implications for the stress accumulation process on intraplate 283 

earthquake faults, J. Geophys. Res. Solid Earth, 114, doi:10.1029/2008jb005765. 284 

Kingma, D.P. & Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint 285 

arXiv:1412.6980. 286 

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C. & 287 

Wassermann, J., 2015. ObsPy: a bridge for seismology into the scientific Python 288 

ecosystem, Comput. Sci. Discov., 8, doi:10.1088/1749-4699/8/1/014003. 289 

Matsumoto, S., Nakao, S., Ohkura, T., Miyazaki, M., Shimizu, H., Abe, Y., Inoue, H., 290 

Nakamoto, M., Yoshikawa, S. & Yamashita, Y., 2015. Spatial heterogeneities in 291 

tectonic stress in Kyushu, Japan and their relation to a major shear zone, Earth 292 

Planets Space, 67, 172, doi:10.1186/s40623-015-0342-8. 293 

Matsushita, R. & Imanishi, K., 2015. Stress fields in and around metropolitan Osaka, 294 

Japan, deduced from microearthquake focal mechanisms, Tectonophysics, 642, 295 

46-57, doi:10.1016/j.tecto.2014.12.011. 296 



Confidential Manuscript to Geophysical Journal International 

15 

 

Megies, T., Beyreuther, M., Barsch, R., Krischer, L. & Wassermann, J., 2011. ObsPy – 297 

What can it do for data centers and observatories?, Ann. Geophys., 54, 12, 298 

doi:10.4401/ag-4838. 299 

Meneses-Gutierrez, A. & Nishimura, T., 2020. Inelastic deformation zone in the lower 300 

crust for the San-in Shear Zone, Southwest Japan, as observed by a dense GNSS 301 

network, Earth Planets Space, 72, 10, doi:10.1186/s40623-020-1138-z. 302 

Nair, V. & Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann 303 

machines. in 27th International Conference on Machine Learning (ICML-10), pp. 304 

807-814, Haifa, Israel. 305 

Nakamura, M., 2004. Automatic determination of focal mechanism solutions using initial 306 

motion polarities of P and S waves, Phys. Earth Plant. Inter., 146, 531-549, 307 

doi:10.1016/j.pepi.2004.05.009. 308 

National Research Institute for Earth Science and Disaster Resilience, 2020. NIED Hi-309 

net, ed National Research Institute for Earth Science and Disaster Resilience. 310 

doi:10.17598/NIED.0003. 311 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., 312 

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, 313 

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S., 2019. 314 

PyTorch: An imperative style, high-performance deep learning library. in 315 

Advances in Neural Information Processing Systems, pp. 8024-8035Curran 316 

Associates, Inc. 317 

Pugh, D.J., White, R.S. & Christie, P.A.F., 2016a. Automatic Bayesian polarity 318 

determination, Geophys. J. Int., 206, 275-291, doi:10.1093/gji/ggw146. 319 

Pugh, D.J., White, R.S. & Christie, P.A.F., 2016b. A Bayesian method for microseismic 320 



Confidential Manuscript to Geophysical Journal International 

16 

 

source inversion, Geophys. J. Int., doi:10.1093/gji/ggw186. 321 

Ross, Z.E., Meier, M.-A. & Hauksson, E., 2018. P wave arrival picking and first-motion 322 

polarity determination with deep learning, J. Geophys. Res. Solid Earth, 123, 323 

5120-5129, doi:10.1029/2017JB015251. 324 

Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning representations by back-325 

propagating errors, Nature, 323, 533-536, doi:10.1038/323533a0. 326 

Savage, M.K., Aoki, Y., Unglert, K., Ohkura, T., Umakoshi, K., Shimizu, H., Iguchi, M., 327 

Tameguri, T., Ohminato, T. & Mori, J., 2016. Stress, strain rate and anisotropy in 328 

Kyushu, Japan, Earth Planet. Sci. Lett., 439, 129-142, 329 

doi:10.1016/j.epsl.2016.01.005. 330 

Shearer, P.M., Prieto, G.A. & Hauksson, E., 2006. Comprehensive analysis of earthquake 331 

source spectra in Southern California, J. Geophys. Res., 111, B06303, 332 

doi:10.1029/2005JB003979. 333 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R., 2014. 334 

Dropout: a simple way to prevent neural networks from overfitting, J. Mach. 335 

Learn. Res., 15, 1929-1958. 336 

Terakawa, T. & Matsu'ura, M., 2010. The 3-D tectonic stress fields in and around Japan 337 

inverted from centroid moment tensor data of seismic events, Tectonics, 29, 338 

TC6008, doi:10.1029/2009TC002626. 339 

Townend, J., Sutherland, R., Toy, V.G., Doan, M.-L., Célérier, B., Massiot, C., Coussens, 340 

J., Jeppson, T., Janku-Capova, L., Remaud, L., Upton, P., Schmitt, D.R., Pezard, 341 

P., Williams, J., Allen, M.J., Baratin, L.-M., Barth, N., Becroft, L., Boese, C.M., 342 

Boulton, C., Broderick, N., Carpenter, B., Chamberlain, C.J., Cooper, A., Coutts, 343 

A., Cox, S.C., Craw, L., Eccles, J.D., Faulkner, D., Grieve, J., Grochowski, J., 344 



Confidential Manuscript to Geophysical Journal International 

17 

 

Gulley, A., Hartog, A., Henry, G., Howarth, J., Jacobs, K., Kato, N., Keys, S., 345 

Kirilova, M., Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, 346 

D., Mariani, E., Mathewson, L., Melosh, B., Menzies, C., Moore, J., Morales, L., 347 

Mori, H., Niemeijer, A., Nishikawa, O., Nitsch, O., Paris, J., Prior, D.J., Sauer, K., 348 

Savage, M.K., Schleicher, A., Shigematsu, N., Taylor-Offord, S., Teagle, D., 349 

Tobin, H., Valdez, R., Weaver, K., Wiersberg, T. & Zimmer, M., 2017. 350 

Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-351 

Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage 352 

Zone, Geochem. Geophys. Geosyst., 18, 4709-4732, doi:10.1002/2017GC007202. 353 

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J. & Wobbe, F., 2013. Generic Mapping 354 

Tools: Improved Version Released, EOS, 94, 409-410, 355 

doi:10.1002/2013eo450001. 356 

Williams, M.C., 2014. HASHpy, doi:10.5281/zenodo.9808. 357 

Wu, H.-Y., Ma, K.-F., Zoback, M., Boness, N., Ito, H., Hung, J.-H. & Hickman, S., 2007. 358 

Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as 359 

observed from geophysical logs, Geophys. Res. Lett., 34, 360 

doi:10.1029/2006gl028050. 361 

Yang, W., Hauksson, E. & Shearer, P.M., 2012. Computing a large refined catalog of focal 362 

mechanisms for southern California (1981–2010): Temporal stability of the style 363 

of faulting, Bull. Seismol. Soc. Am., 102, 1179-1194, doi:10.1785/0120110311. 364 

 365 

  366 



Confidential Manuscript to Geophysical Journal International 

18 

 

Tables 367 

Table 1 368 

Numbers of seismograms and earthquakes contained in data sets. 369 

Region Type of Data Set Seismogram Sets Earthquakes 

All Japan Training 279,483 17,402 
Validation 7,666 598 

Kanto 
Training 12,814 1,262 
Validation 784 56 
Test 1,483 113 

Chugoku 
Training 63,359 2,259 
Validation 7,674 322 
Test 12,838 595 

All Japan Application 1,930,132 113,700 
  370 
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Figures 371 

 372 

Fig. 1 373 

Distribution of the epicentres of the earthquakes used for training (red), validation 374 

(green), and testing (blue) of the neural network model. Topography is from ETOPO1 375 

(Amante and Eakins 2009).   376 
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 377 

Fig. 2 378 

Design of the neural network model. Numbers on the right indicate the number of 379 

channels and samples. “ConvBN,” “Conv BNP,” and “FC” denote convolution and batch 380 

normalization layers; convolution, batch normalization, and pooling layers; and fully 381 

connected layers, respectively.   382 
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Fig. 3 384 

Summary of the results. Here, (a) and (b) show the loss function values as functions of 385 

the time-shift range and the clipping threshold, respectively. (c) Precision-recall curve of 386 

the trained model for the test data set. Circles correspond to every 0.05 units of the 387 

confidence thresholds. (d) Bar graphs of the rank of focal mechanism solutions as a 388 

function of the confidence threshold. (e) Bar graphs of the rank of focal mechanism 389 

solutions for the whole of Japan and eight regions. Here a model with a confidence 390 

threshold of 0.7 was used. (f) Bar graphs as a function of the number of stations. (g) 391 

Histograms of events as a function of the number of stations. The black line and gray 392 

shaded region indicate the values for Hokkaido and other regions, respectively.   393 
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 394 

Fig. 4 395 

Examples of polarities picked by the neural network model with confidence scores of 396 

(a) 0.95 and (b) 0.70. Seismograms with negative polarities are flipped. If correctly picked, 397 

the first motion looks positive in this figure. Light and dark colors are alternatively for 398 

convenience.   399 
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 400 

Fig. 5 401 

(a) Moment tensor solutions of earthquakes in 2006-2019 by NIED F-net Project 402 

(Fukuyama et al. 1998), for reference. (b) Focal mechanism solutions in this study. 403 

Solutions ranked A–C (Hardebeck and Shearer 2008) are colored according to focal 404 
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mechanism types (Shearer et al. 2006). Solution ranked D are shown by gray beach balls. 405 

(c) Azimuths of the P-axes of the estimated focal mechanism solutions ranked A – C and 406 

with less than 30° of plunge. Colors indicate the azimuths. (d) Azimuths of the T-axes. (e) 407 

Station distribution. 408 
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