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This supporting information file contains an extended description of the methods that are unique 

to this study and those that partially overlap with Czuba et al. (2019) 

 

Text S1: 1.0 Extended Methods  

1.1.0 Model Development   

We developed a 2-D unsteady surface-water hydrodynamic model for the East Fork 

White River and its adjacent floodplain in HEC-RAS version 5.0.3 using the Saint Venant 

equations. The computational mesh contained a total of 187,955 cells and used a combination 

of structured and unstructured meshes. The structured computational mesh has square cells, 

each 900 m2. Breaklines were enforced along major roadways (cell spacing of ~3m), river 

banks, middle of the river (cell spacing of ~12m), and across the low head dam (cell spacing of 

~1.5m; Figure S1) producing the unstructured portion of the mesh. A spatially varied Manning’s 



roughness was applied to the mesh, based on 30 m resolution land cover data (Homer et al., 

2015),and the coefficients were chosen based on model calibration discussed in section 1.2. 

The topography data used in the model was a 1.5m digital elevation model (DEM) derived from 

light detection and ranging (lidar) data, bathymetric data, and theoretical topography for 

connectivity scenarios constructed by modifying the empirical elevation datasets. The 

topographic and bathymetric data collection and manipulation is described in section 1.1.1. 

Boundary conditions were set at three locations on the model grid: the upstream model extent of 

the East Fork White River, the upstream model extent of Sand Creek, and the downstream 

model extent of the East Fork White River (Figure S1). Our choice in boundary conditions is 

discussed in section 1.1.2.  

1.1.1 Topography and Bathymetry Data 

Topographic data used in the model consisted of a combination of empirical and 

theoretical topographic datasets. The empirical data used were constructed from a 1.5m DEM 

derived from aerial lidar flown on March 23, 2011 (http://www.indianamap.org). The lidar sensor 

could not measure topography through surface water, hence data points with water on the day 

of data acquisition were removed and replaced with a flat or sloping plane, a process called 

hydro-flattening. But the geometry of the main channel is important for the flooding processes 

we seek to understand here. We surveyed the river channel using a single-beam acoustic 

profiler measuring water depth and spatial location. The portion of the reach we surveyed is 

shown with a yellow line in figure 1. Additionally, we measured water-surface profiles with a 

real-time kinematic geographic position system (RTK-GPS) along the river during the day of 

surveying. To construct the bed-elevation surface we subtracted the depth data from the 

measured water-surface elevation data. Bed elevation data were processed into a DEM by 

taking the average depth along 30 m (approximately half the average river width) segments of 

the river centerline. The average depth along the segment was then assigned to a cross-section 

along that river segment. A triangulated irregular network was generated from the cross-

sections, averaging all cross-channel variability while maintaining down-valley pool and riffle 

sequences. River reaches without bathymetric data were lowered by 1.5m to match the overall 

slope of our measured bathymetric data.  

In addition to the actual topography, we also generated five synthetic floodplains based 

on the East Fork White River floodplain with various degrees of floodplain channel and river-

floodplain connectivity. The synthetic floodplain surfaces were generated by extracting the 

extent of the East Fork White River active floodplain at the 89-year flood of record. We then 

removed all floodplain channels from the floodplains surface by applying a Gaussian filter (Eqn. 

1) as: 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2      Eqn. 1 

where, x and y are spatial distances (meters) and σ is the standard deviation of the Gaussian 

distribution. The calculation used σ = 6 m and iterated over the active floodplain 20 times, 

creating a preliminary smoothed floodplain. The presence of the floodplain channels caused 

artificially low inter-channel areas during the spatial averaging. To overcome this, we removed 

and interpolated all portions of the active floodplain ~0.1m lower than the preliminary smoothed 

surface. This eliminated most floodplain channels and the river channel. Additionally, we 

removed all major road features in the active floodplain domain to avoid any artificial increases 



in floodplain elevation. We applied the same Gaussian filter as before to the active floodplain 

with the floodplain channels, river channel, and roads removed, thus producing a smoothed 

version of the East Fork White River floodplain that maintains long wavelength topography. The 

river channel, roads, and terraces were then added back into the smoothed floodplain 

topography creating a floodplain with a similar long wavelength topography and floodplain 

extent, but without floodplain channels (Figure 2).  

We used the smoothed floodplain (Figure 3a) and existing floodplain (Figure 3f) to 

generate four additional floodplains with different topographic connectivity between the 

floodplain channels and the river channel. We envision different floodplain-channel network 

connectivity as being related to the degree of channelization. The present floodplain surface is 

channelized with a highly integrated floodplain-channel network, and the smooth floodplain 

surface is the least channelized. We create intermediately channelized floodplains by selectively 

preserving the deepest parts of the channel network. This creates a floodplain with channel 

segments that are not connected. To do this we detrend the natural floodplain with the 

smoothed floodplain, thereby creating a normalized DEM where negative values represent 

elevations lower than the smoothed floodplain. We then use two floodplain channel masks with 

threshold values of -0.23 m and -0.84 m and remove all channel cells above the thresholds. 

This creates two surfaces that isolate and preserve only the lowest-lying floodplain channel cells 

(threshold of -0.84 m) and both low-lying and mid-elevation floodplain channels (threshold 

of -0.23 m). The two channel masks were used to extract floodplain channels from the existing 

topography and add them back to the smoothed floodplain topography. The threshold of -0.84 m 

created a floodplain with weakly connected floodplain channels (Figure 4c), and the threshold of 

-0.23 m created a floodplain with better connected floodplain channels (Figure 4e).  

Additionally, we constructed two synthetic floodplains with the same floodplain-channel 

connectivity as described above, but we also changed the strength of connections between the 

floodplain channel and the main river (Figure 3b, d). To accomplish this, all floodplain channels 

were removed from the two floodplain channel masks within 60 m (approximately two times the 

average levee width) of the river channel. This effectively removes all natural breaks in the 

levees and banks created by channels or crevasses. We created one additional floodplain 

channel mask to delineate the floodplain channels on the existing floodplain using a threshold of 

-0.15 m. The mask was used for data analysis and quantifying initial conditions.  

To quantitatively describe our six different initial conditions, we developed a metric to 

describe the connectivity within the floodplain-channel networks (hereafter down-valley 

connectivity, DVC). DVC was calculated as:  

    𝐷𝑉𝐶 =
𝐹𝐶𝐴

𝐹𝑇𝐴
× 𝐹𝐼    Eqn. 2 

where, FCA is the floodplain channel surface area (m2), FTA is the total floodplain area (m2), and 

FI is the number of floodplain segments surrounded by floodplain channels (an approximation to 

assess the number of floodplain channel connections). FCA was calculated with the floodplain 

channel masks used to extract floodplain channels (described above). FTA was measured based 

on the wetted extent of the 89-year flood (peak of record) from Czuba et al., (2019). Hence, 

larger DVC values indicate a greater number of well-connected floodplain channels across the 

floodplain. 



 Similarly, we describe the connectivity between the floodplain and main channel as river-

floodplain connectivity (RFC). RFC was computed as the coefficient of variation (standard 

deviation/mean) of the bank height within 30 m (approximately average levee width) of the river 

channel (Figure 3g). Larger RFC values represent river banks with higher topographic 

variability, hence an enhanced connection of the river channel to floodplain channels. 

 

 

Figure S1. Model setup along the East Fork White River. The inset shows an example of the 

computational grid used in the study. Note the floodplain contains a structured grid, while the river and 

roads have unstructured grids. Locations of the boundary conditions are shown with red lines.  

 

1.2 Boundary Conditions 

The upstream boundary conditions were specified along the East Fork White River and 

Sand Creek (Figure S1) as a quasi-steady state discharge entering the domain. The quasi-

steady state simulations held the discharge entering the domain constant until equilibrium was 

achieved throughout the entire domain before increasing the discharge (Figure 3h). Discharge 

entering the domain at the upstream boundaries was chosen based on modeling work by Czuba 



et al. (2019), which simulated a variety of discharges (7-day to 89-yr. recurrence interval; RI) on 

the same reach of the East Fork White River. For our modeling experiments, we used six 

different discharges ranging from 292 m3s-1 to 2,730 m3s-1 which spanned a range of floodplain 

inundation extents (Figure 3h). Discharges were specified as 90% of the flow entering the 

domain from the East Fork White River and 10% entering along Sand Creek, based on 

comparing relative drainage areas. The downstream boundary was specified along the 

downstream extent of the East Fork White River and its floodplain was set as normal depth 

(Figure S1). The computation of normal depth required a friction slope (energy grade line slope) 

which was set to 0.001 along the boundary. The six simulated discharges and six initial 

conditions created a total of 36 simulations exploring steady state discharges. Additionally, we 

ran six simulations for unsteady discharges using the smoothed and existing topography. For 

the unsteady simulations, we specified no discharge entering the domain along the Sand Creek 

boundary condition and specified a hydrograph at the upstream boundary for the East Fork 

White River. The input hydrographs were triangular shaped that had peak discharges of 292 

m3s-1, 581 m3s-1, and 1467 m3s-1, respectively. The rising limb of the floodwave increased at a 

rate of 18.7 m3s-1 per hour and the falling limb decreased at a rate of 8.2 m3s-1 per hour. The 

rates for rising and falling floodwave limb is based on a 10-year average of all rising and falling 

limbs of floodwaves at the gage in Seymour, IN (USGS, 2018; Figure 9). 

 

1.3 Calibration and Validation 

We calibrated the model to the elevation-discharge rating curve developed for the USGS 

gage located near Seymour, IN (USGS, 2018; Figure 1). Model calibration was conducted by 

varying Manning’s roughness coefficients for the open water (river channel) and agricultural 

land cover classes (Homer et al., 2015). Final roughness coefficients for the open water and 

agricultural land cover classes were 0.022 and 0.025 (Table S1), respectively. The final 

calibrated roughness coefficients in our study differs from those in Czuba et al. (2019) due to 

the use of the Saint Venant equations rather than the diffusive wave equations. Comparing our 

model simulations to the elevation-discharge rating curve, we obtained a root mean squared 

error (RMSE) of 0.16 m and a mean average error (MAE) of 0.15 m. The error we obtained from 

our model simulations was within the error of the USGS field data used to compute the 

elevation-discharge rating curve (RMSE= 0.26 m, MAE = 0.18 m; Figure S2a).   

 

 

 

 

 

 

 

 

 



 

Land cover class Default n Final n 

Agricultural Vegetation 0.04 0.025 

Open Water 0.035 0.022 

Forest & Woodland 0.12 0.12 

Undifferentiated Barren Land 0.04 0.04 

Developed, Open Space 0.04 0.04 

Developed, Low Intensity 0.08 0.08 

Developed, Medium Intensity 0.1 0.1 

Developed, High Intensity 0.15 0.15 

 

Table S1. Land cover classes and their associated Manning’s Roughness coefficients (n). The 

table shows the default Manning’s Roughness coefficients (Brunner, 2016) based on land cover 

classes and our final coefficients after calibration.   

 

 

 Model validation was accomplished using surveyed high-water marks collected by the 

USGS in 2008 (Morlock et al., 2008), water-surface elevations collected during flooding in 

February, 2018, and aerial imagery of flooding collected in April, 2011 (locations shown in 

Figure 1). The 2008 high-water marks were measured using mud, drift, debris, and seed lines 

on trees, fences, buildings, and utility poles (Morlock et al., 2008) as a proxy for maximum 

water-surface elevation. The measurements corresponded to the peak of record on June 8, 

2018 with a discharge of 2,730 m3s-1. The 2018 water-surface elevations were measured on 

February 26, 2018 using RTK-GPS and corresponded to a flow of ~890 m3s-1 at the USGS gage 

in Seymour, IN. Comparing our model simulation of the existing topography to the measured 

high-water marks gave a RMSE of 0.51m and a MAE of 0.46m (Figure S3b). A comparison 

between our model simulation and direct measurements of water-surface elevations collected in 

2018 was more accurate with a RMSE of 0.17 m and a MAE of 0.12 m (Figure S3b).  

 The aerial photo of flooding (Figure S2c) was taken on April 7, 2011 at ~12:30 pm 

corresponded to a discharge of ~657 m3s-1 and a water-surface elevation of 127.7 m at the 

USGS gage in Seymour, IN. Comparing our model simulation with a discharge of ~657 m3s-1 

and a water-surface elevation of 172.9 m (at the location of the river gage) to the aerial imagery, 

the simulation slightly over-predicts the extent of inundation, but still captures the majority of 

land-water transitions (Figure S2d) in high detail.  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Model calibration and validation data.  a) Model calibration to the elevation-discharge rating 

curve, gage location is shown in Figure 1. b) Simulated vs. measured water surface elevations for high 

water marks measured from the peak record flood in June 2008 and water surface elevations from flooding 

on Feb. 26, 2018. c) Aerial photography of flooding on April 7, 2011. d) Model simulation showing transition 

of water to land as black lines corresponding to the same discharge when the image was taken.  

 

3.3 Data Analysis 

Initial model outputs from our 36 modeling experiments included water depth, depth 

averaged velocity magnitude, and 2-D (x and y directed) depth averaged velocity for each cell. 

We gridded the results at a 15-m resolution for all analysis. From the initial model outputs, we 

computed the magnitude of specific discharge (q, Eqn. 3) and a 2-D specific discharge (qx,y; 

Eqn. 4) for each grid cell in all model simulations as: 

𝑞 = �̅� ∗ ℎ      Eqn. 3 

and 

𝑞𝑥,𝑦 = 𝑣𝑥,𝑦̅̅ ̅̅ ̅ ∗ ℎ      Eqn. 4 



where, �̅� is the depth-averaged magnitude of velocity (m s-1), h is water depth (m), and 𝑣𝑥,𝑦̅̅ ̅̅ ̅ is 

the 2-D depth-averaged velocity in the x or y direction, respectively (m s-1).  

To assess the flooding extent in each of our modeling simulations, we produced water 

masks from our depth data. Water masks were constructed by converting the gridded depth 

data into polygons and merging the depth polygons into a single polygon representing the 

wetted extent of the floodplain. The wetted extent polygons were then used to compute the 

percent of the floodplain that was inundated. Additionally, water masks were used to compute 

the number and area of hydrologic islands in the domain. Hydrologic islands are defined as dry 

areas surrounded by water.  

We measured the average flooding depth, velocity magnitude, and specific discharge 

magnitude in the river channel, entire floodplain, and floodplain channels. This was 

accomplished using a polygon mask of the river channel, entire floodplain extent, and floodplain 

channel masks used to generate the initial conditions (section 3.2.1). Averages and standard 

deviations were computed as the mean and standard deviations for a half-Gaussian distribution 

for all cells within the extent of a polygon. Trend significance of the results were evaluated using 

a F-test.  

We computed an average lateral exchange of surface water between the river channel 

and floodplain for each steady state model run. Lateral exchange was measured perpendicular 

to lines situated parallel and positioned 30 m (approximate levee width) from the river banks. 

The lines were discretized into 90 m long segments and the average qx and qy were calculated 

over each 90m line segment. Between vertices, along the 90 m line segment, we used vector 

decomposition to solve for the magnitude of specific discharge perpendicular to each line 

segment (qp, m s-1), where positive qp values indicate a flux into the river channel and negative 

values indicate a flux into the floodplain. The average lateral exchange for each side of this river 

(𝑞𝑒𝑥
𝐿,𝑅̅̅ ̅̅ ̅, L is river left and R is river right) is calculated as: 

    𝑞𝑒𝑥
𝐿,𝑅̅̅ ̅̅ ̅ = (∑ |𝑞𝑗

𝐿,𝑅|𝑗 𝑑𝑗
𝐿,𝑅)

1

𝐷𝐿,𝑅     Eqn. 5 

where, 𝑑𝑗
𝐿,𝑅 (meters) is the length of individual line segment j and  𝐷𝐿,𝑅 (meters) is the total 

distance of all line segments along a given side of the river. The absolute value was taken to 

account for all flux between the river channel and floodplain. Whereas if the absolute value was 

not taken, we would compute a net flux between the river and floodplain giving a value of ~0, as 

flow entering the river and exiting the river would negate each other. The lateral exchange 

through the left and right side of the river were added together and normalized by the average 

specific discharge in the river channel (𝑞𝑟̅̅ ̅) to produce normalized unitless river-floodplain 

exchange (qex; Eqn. 6).  

    𝑞𝑒𝑥 =
𝑞𝑒𝑥

𝐿̅̅ ̅̅ ̅+𝑞𝑒𝑥
𝑅̅̅ ̅̅ ̅

𝑞𝑟̅̅ ̅
        Eqn. 6 

 To assess the unit residence time of water in the floodplain, we used a defined network 

of simulated flow paths that were manually traced by Czuba et al. (2019) in the upper portion of 

our domain. Flow paths were delineated by systematically increasing discharge, and all new 

flow paths were traced for each increase in flow. In total, there were 23,211 paths mapped with 

a cumulative distance of ~1,050 km (Figure S3). Average flow velocity (vi; m s-1) was calculated 



for each line segment that existed in the wetted extent of each model simulation. A length-

averaged velocity (𝑣𝑓̅̅ ̅; m s-1) in the floodplain over all the line segments was computed as: 

     𝑣𝑓̅̅ ̅ =
(∑ 𝑣𝑖𝑙𝑖)

𝐿
      Eqn. 7 

where, li is the length of a line segment and L is the length of the total active flow paths. A 

residence time per unit length of floodplain (tf; s m-1) was calculated as the inverse of vf, which 

describes the time water spends along a certain length scale. Additionally, we calculated a 

residence time per unit length for the river (tc; s m-1) by taking the inverse of the average 

magnitude of velocity in the river channel. We normalized unit residence time (tr) by the 

residence time in the river, creating a unitless residence time in the system as: 

𝑡𝑟 =
𝑡𝑓

𝑡𝑐
       Eqn. 8 

 

 

 

Figure S3. Flow paths for unit residence time calculation. The yellow lines show the flow paths delineated 

by Czuba et al. (2019), used to compute the average unit residence time in the floodplain. The portion of 

the domain for which the analysis was performed is shown in red and the entire model domain is shown in 

black. 


