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1. Fréchet kernels in three model parameter sets

Fréchet kernels are related to the first-order derivatives of the seismic data functional, χ.11

Assuming the perturbation of the functional as δχ, we may have (also see Tromp et al.,12
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2005)13

δχ =

∫
V

Km
δm

m
d3x =

∫
V

Kmδm d3x, (1)14

where Km or Km denotes the Fréchet kernels, and V denotes the model volume. The15

kernels applied to the perturbation of the model (δm) can be further expressed with16

respect to three different model parameterizations as (see Tromp et al., 2005; Fichtner &17

Trampert, 2011a)18

Kmδm =

Kρ

Kκ

Kµ

T δρδκ
δµ

 =

Kρ

Kλ

Kµ

T δρδλ
δµ

 =

K ′ρ
Kα

Kβ

T δρ
δα
δβ

 , (2)19

where the superscript T denotes the vector transpose. The model parameters ρ, κ and µ20

indicate the density, bulk and shear moduli. The λ and µ are the lamé parameters. The µ21

used in the two sets of model parameters is the same. The α and β are the compressional22

and shear wave speeds. The Fréchet kernels can be further expressed by a cross-correlation23

of the forward and adjoint fields as (see e.g., Tromp et al., 2005; Liu & Tromp, 2006)24 Kρ

Kκ

Kµ

 =

Kρ(s
†, s̈)

Kκ(s
†, s)

Kµ(s†, s)

 ,

Kρ

Kλ

Kµ

 =

Kρ(s
†, s̈)

Kλ(s
†, s)

Kµ(s†, s)

 ,

K ′ρ
Kα

Kβ

 =

K ′ρ(s
†, s̈)

Kα(s†, s)
Kβ(s†, s)

 . (3)25

Two approaches may be used in practice to compute the Fréchet kernels. One is the field26

storage method which first saves the forward field in space and time from the forward27

simulation, and then during the adjoint simulation, reads the corresponding time step28

of the forward wavefield into the temporary memory to conduct the calculation for the29

Fréchet kernel. During the time integration for kernels, only one step of the forward30

wavefield is read in at one time, therefore there is no need to carry the entire forward31

field in memory. The field storage method is suitable for small or local scale simulations,32

but becomes computationally prohibitive for large or global scale simulations due to the33

large amount of disk storage required and the frequent I/O calls. The second method34
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is the forward-field back-reconstruction method which trades CPU hours with storage35

requirements as it only saves a very small subsets of time steps of the forward field36

from the forward simulation, and during the adjoint simulation, reconstructs the forward37

field back in time to combine the forward and adjoint wavefield directly in memory for38

the kernel calculation. For a purely elastic kernel calculation, only the last state of the39

forward field needs to be saved as the start point for the backward reconstruction during40

the adjoint simulation (see Tromp et al., 2005; Liu & Tromp, 2006; Tromp et al., 2008).41

For the anelastic case, the parsimonious storage method (Komatitsch et al., 2016) can be42

used with one additional forward simulation to account for the attenuation for the adjoint43

source, and the forward fields are stored at selected checkpoints and recomputed during44

the adjoint simulation.45

2. Hessian kernels in three model parameter sets

We use the Hessian operator as defined by Fichtner and Trampert (2011a), which may be46

rewritten as47

H(δm1, δm2) =

∫
V

K1
mδm2 d

3x =

∫
V

(Ha + Hb + Hc)δm2d
3x, (4)48

where K1
m = Ha + Hb + Hc denotes the Hessian kernels, which can be expressed differently49

with respect to different model parameterizations.50

1. When the model is given by ρ, κ, and µ, we may have51

Ha(ρ, κ, µ) =

Kρ(s
†, δs̈)

Kκ(s
†, δs)

Kµ(s†, δs)

 ,Hb(ρ, κ, µ) =

Kρ(δs
†, s̈)

Kκ(δs
†, s)

Kµ(δs†, s)

 ,Hc(ρ, κ, µ) =

0
0
0

 . (5)52

2. When the model is given by ρ, λ, µ, we may have53

Ha(ρ, λ, µ) =

Kρ(s
†, δs̈)

Kλ(s
†, δs)

Kµ(s†, δs)

 ,Hb(ρ, λ, µ) =

Kρ(δs
†, s̈)

Kλ(δs
†, s)

Kµ(δs†, s)

 ,Hc(ρ, λ, µ) =

0
0
0

 . (6)54
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3. When the model given by ρ, α, β, we may have55

Ha(ρ, α, β) =

K ′ρ(s
†, δs̈)

Kα(s†, δs)
Kβ(s†, δs)

 ,Hb(ρ, α, β) =

K ′ρ(δs
†, s̈)

Kα(δs†, s)
Kβ(δs†, s)

 , (7)56

57

Hc(ρ, α, β) =

ρ−1Kα(s†, s)δα + ρ−1Kβ(s†, s)δβ
ρ−1Kα(s†, s)δρ+ α−1Kα(s†, s)δα
ρ−1Kβ(s†, s)δρ+ β−1Kβ(s†, s)δβ

 . (8)58

Eq.(5)-eq.(8) show the link between Fréchet kernels (Tromp et al., 2005) and the Hessian59

kernels (Fichtner & Trampert, 2011a) for different model parameterizations. The Hb60

practically includes two parts: one is the H
〈m〉
b which is due to the perturbation of the61

model, and the other is the H
〈s〉
b which is due to the perturbation of the adjoint source.62

The H
〈m〉
b can be given in different model parameterizations as63

H
〈m〉
b (ρ, κ, µ) =

Kρ(δs
†
m, s̈)

Kκ(δs
†
m, s)

Kµ(δs†m, s)

 , (9)64

65

H
〈m〉
b (ρ, λ, µ) =

Kρ(δs
†
m, s̈)

Kλ(δs
†
m, s)

Kβ(δs†m, s)

 , (10)66

67

H
〈m〉
b (ρ, α, β) =

K ′ρ(δs
†
m, s̈)

Kα(δs†m, s)
Kβ(δs†m, s)

 , (11)68

where δs†m indicates the approximate perturbed adjoint field due to only perturbation in69

the model. The H
〈s〉
b referred to the approximate Hessian kernels defined by Fichtner and70

Trampert (2011a), which could be also rewritten in three model parameterizations as71

H
〈s〉
b (ρ, κ, µ) =

Kρ(δs
†
s, s̈)

Kκ(δs
†
s, s)

Kµ(δs†s, s)

 , (12)72

73

H
〈s〉
b (ρ, λ, µ) =

Kρ(δs
†
s, s̈)

Kλ(δs
†
s, s)

Kβ(δs†s, s)

 , (13)74

75

H
〈s〉
b (ρ, α, β) =

K ′ρ(δs
†
s, s̈)

Kα(δs†s, s)
Kβ(δs†s, s)

 , (14)76
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where δs†s indicates the approximate perturbed adjoint field due to only perturbation in77

the adjoint source.78

2.1. Implementation

In principle, the approximate or full Hessian kernels can be computed by using ex-79

isting spectral-element packages for wavefield generation with the perturbed wavefields80

computed in advance. The challenge is to compute and use these fields on the fly81

as shown in this work. Once these fields are computed for each or incremental time82

step, the Hessian kernels can be calculated by using, e.g., the compute kernels() sub-83

routine in the SPECFEM2D/3D packages (https://geodynamics.org/cig/software/84

specfem2d/ and https://geodynamics.org/cig/software/specfem3d/), where one85

just needs to substitute the regular fields with the perturbed field as indicated in eq.(5)-86

(14). Similar to Fréchet kernel calculation for each time step, the computation of Hessian87

kernels is performed at individual time step. Since only one single time step of all fields and88

the integrated kernels are kept in memory on the fly, the use of a sub-sampled calculation89

may be unnecessary.90

3. Wavefield storage method (WSM) for computing Hessian kernels

The Hessian kernels can be computed when the required fields are determined. To compute91

the required fields, we design and use one forward simulation and three adjoint simulations92

(see Figure S10). The forward simulation is to compute and save four forward fields,93

that is s(m1), s(m2), s̈(m1), s̈(m2), where m2 = m1 + vδm. The first and second94

adjoint simulations (Adjoint simulation I) are designed to compute and save the adjoint95

fields s†s(m1) and s†m(m2). The third adjoint simulation, the last one, is a simultaneous96
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adjoint simulation and the Hessian calculation (Adjoint simulation II), where the adjoint97

simulation is to compute the adjoint field s†(m1) on the fly during the construction of98

Hessian kernels.99

3.1. Models

We use two synthetic models and take the Specfem2D package as examples. The first100

model is a homogeneous model (m1) and the second model is a perturbation model (m2 =101

m1 + vδm) relative to the homogeneous one (see Fig S9 for the compressional wave speed102

and the source and receiver geometry). We placed the scatter on the kernel path and set103

the scatter size close to the dominant wavelength to account for the perturbed fields. Both104

models are set to 800 km×360 km in the horizontal and vertical direction. For the mesher,105

we use the internal mesher of the Specfem2D package. We placed 400 elements in the106

horizontal direction and 360 elements in the vertical direction, leading to ∼ 500 m and ∼107

250 m grid-point spacing respectively for the mesher since 5 × 5 Gauss–Lobatto–Legendre108

(GLL) points for each element are used. We use a dense element mesh for the model to109

eliminate the effects of grip-point intervals to the kernel imaging since we focus on the110

computation of Hessian kernels here. A detailed resolution analysis or the use of external111

mesher tools, one can refer to Fichtner and Trampert (2011b) and Peter et al. (2011).112

The model material properties for the homogeneous model is set to density 2900 kg/m3,113

compressional wave speed α = 8000 m/s and shear wave speed β = 4800 m/s. We114

use +10% relative model perturbation to model m1 and the scatter perturbation is of115

10 km×10 km located within the path that links the source and the receiver (see Fig S9b).116

For simplicity and to show how the Hessian kernels are computed, we use a point source117
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and place it at (x, z) = (100 km,−260 km). A standard Ricker wavelet with the dominant118

frequency of 0.5 Hz is applied. So the minimum wavelengths for the P and S waves are119

16 km and 9.6 km respectively. The receiver is placed at the model surface at (x, z) =120

(600 km, 0 km). For this example, we use 10,000 time steps with dt = 0.01 s for the121

simulation. The number of time steps and the dt can be estimated by the model setup122

and the phases to be investigated.123

3.2. Forward simulation

Typically, the forward simulation includes two simulations, one for the model m1 and the124

other for model m2. Both can be performed individually or simultaneously. In the forward125

simulation, the fields computed at each time step or a incremental time step are saved for126

the two models. The seismograms for the two models are saved to compute the two adjoint127

sources f †(m1) and f †(m2). To facilitate the simulation, we run the two simulations for128

the two models simultaneously since there are sufficient memory left for each CPU. The129

use of a simultaneous simulation for the two models is convenient since there one just130

needs to input the two models and the forward fields and seismograms are computed once131

a time. In the simultaneous simulation, there are ∼ 160/100 memory and ∼ 180/100132

computational time required when compared to the use of the single simulation twice.133

The reduction in memory and computational time less than double is due to the same134

mesh database used for the simulation, excluding the two models imported externally.135

Figure S11 shows four time steps of the forward displacement fields and their perturbed136

fields computed from the two models. The perturbed forward fields are observed (see137

Figure S11i,f,c) when the forward fields pass through the scatter.138
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3.3. Adjoint simulation I

There are two adjoint simulations in the Adjoint simulation I stage (see Figure S10). The139

first adjoint simulation is to compute and save the adjoint field s†s(m1), which accounts for140

the perturbation due to the adjoint source. The adjoint source f †(m2) computed from the141

measurements for model m2 is used (see Figure S12 for a quick view), where we use the142

traveltime adjoint source (Tromp et al., 2005). Figure S13 shows four time steps of the143

adjoint fields s†(m1) and s†s(m1) and their perturbations δs†s. The time-reversed perturbed144

adjoint fields δs†s (the third column in Figure S13) are weaker than the regular adjoint145

fields (the first and the second column). The second adjoint simulation in the Adjoint146

simulation I is to compute s†m(m2), which accounts for the perturbation of the model,147

where the adjoint source f †(m1) (see Figure S12) computed from the measurements for148

model m1 is used. Figure S14 shows four time steps of the adjoint fields s†(m1) and149

s†m(m2) and the perturbed fields δs†m. The time-reversed perturbed adjoint fields are150

generated when the regular fields pass through the scatter (see Figure S14i,l).151

3.4. Adjoint adjoint II

The Adjoint simulation II is a simultaneous adjoint simulation and the Hessian kernel152

calculation, where the adjoint simulation is to compute s†(m1) on the fly, which is triggered153

by the adjoint source f †(m1). In the adjoint simulation, each time step or a skipped time154

step of the four forward fields and the two adjoint fields (the saved fields) are read into155

the temporary memory for constructing the Hessian kernels for that time step. The156

final Hessian kernels are accumulated(integrated) by previous Hessian kernels computed157

at each counted step. In the implementation, only one time step of the Hessian kernels158
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(i.e., the integrated Hessian kernels) is kept in the temporary memory until it is output159

finally. Figure S15 shows four components of the Hessian kernels: Ha, H
〈m〉
b , H

〈s〉
b , and160

Hc computed in this simulation. The four components individually with respect to the161

density can be computed when used ä(m1) and ä(m2). Only two forward and two adjoint162

fields need to be stored if without considering the density kernels.163

Figure S16 shows the conventional Fréchet kernels, where only the Kα component is164

observed well since only the P phase on the seismograms is used for the adjoint source165

calculation. Figure S17 shows the full Hessian kernels investigated for the same P phase.166

The full Hessian kernels are obtained by summing the Ha, H
〈m〉
b , H

〈s〉
b , and Hc components167

together, which includes the approximate Hessian kernels H
〈s〉
b (see second row in Fig-168

ure S15). The computation of full Hessian kernels includes the computation of Fréchet169

kernels as required by the Hc calculation. The disk space required for the WSM approach170

is big even for the 2D example, it takes about 400 GB disk space to store the required fields171

even if without considering the density perturbation for the density kernel calculation.172
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s
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k(x,tk)

k(x,t1)

Boundary Fréchet

Figure S1. Forward simulation (green rectangle) and the simultaneous backward and adjoint

simulation (blue rectangles) for computing the Fréchet kernels. The forward simulation is started

from the first time step t1 and ended at the last time step tn. The absorbing boundary field

b(x, tk) of each time step tk and the last state field s(x, tn) are stored in the forward simulation.

The backward simulation takes the last state field as a start point and reconstructed the forward

field backward in time. In each time step, the absorbing boundary field b(x, tk) is re-injected

into the backward simulation to reconstruct the forward fields (called backward fields here).

The adjoint simulation is started from the time-reversed adjoint source from the receivers. The

Fréchet kernels at each time step or at a sub-sampled time step are constructed on the fly based

upon the backward and adjoint fields. If each time step is used, the kernels are summed at each

time step until the final step as Km =
∑n

k=1 K(x, tk)δt, where δt is time interval in the simulation.
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Figure S2. Simultaneous backward and adjoint simulation in the Multi-SEM, where five SEM

solvers are coupled and used (see the five arrows within the three rectangles). Group A: two

SEM solvers are coupled and used under the same mesh database, where one solver is used for

the backward simulation and the other solver is used for the adjoint simulation. This is similar

to the adjoint simulation in the computation of Fréchet kernels. Group A is designed to compute

the backward and adjoint fields for model m1. One the right side, Group B adopts two SEM

solvers to compute the backward and adjoint fields for the the perturbed model m2. Engine C

is one solver engine designed to compute the adjoint field due to the perturbation of the adjoint

source f †(m2). The simulation in Engine C is the same as the adjoint simulation of Group A

except the source term. Since all the fields are computed on the fly for each designed time step

(each time step or a skipping time step), the perturbed fields to be used in the calculation of

Hessian kernels can be determined, e.g., by the first-order finite-difference approximation.
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Figure S3. Four selected time steps of the five wavefields computed by Multi-SEM. (a) The

forward fields recorded at times 30 s, 50 s, 70 s, and 90 s for model m1. (b) The adjoint fields

for the same model but recorded at reversed times of T-90 s, T-70 s, T-50 s, and T-30 s, where

T = 100 s in this example. (c) The adjoint fields generated by the adjoint source computed

from the measurements for m2. (d) and (e) show the similar simulation as (a) and (b) but for

the perturbed model m2, instead of m1. (b) and (e) looks similarly due to the use of the same

adjoint source but they are different after the adjoint fields traveling through the scatter.
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Figure S4. A few time steps of selected perturbed fields computed on the fly using the

first-order finite-difference approximation. (a) Perturbed forward fields. (b) Perturbed adjoint

fields due to the perturbation of the adjoint source. (c) Perturbed adjoint fields due to the

perturbation of the model. The perturbed fields, e.g., generated around the red arrows are due

to the perturbations either from the model or from the adjoint source.
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Figure S5. Two-component seismograms registered at the three stations (a,c,e) and their

associated adjoint source (b,d,f) computed for the first P wave peak (green rectangles). This

example uses the homogeneous model and the traveltime adjoint source.
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Figure S6. Two-component seismograms registered at the three stations (a,c,e) and their

associated adjoint source (b,d,f) computed for the first P wave peak (green rectangles). This

example uses the perturbed model with three scatters and the traveltime adjoint source.
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Figure S7. The differences between Figure S6 and Figure S5 (i.e., Figure S6 - Figure S5),

which is designed to see the differences in terms of seismograms and adjoint sources due to the

perturbation of the model.
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Database******.bin

absorb_elastic_bottom******.bin

absorb_elastic_left******.bin
absorb_elastic_right******.bin

absorb_elastic_bottom_m2_******.bin

absorb_elastic_left_m2_******.bin
absorb_elastic_right_m2******.bin

Figure S8. Some important files output from the forward simulation and the simultaneous

backward and adjoint simulation in the Multi-SEM package. The left column shows the files

output from the forward simulation. The first row shows the meshing database which includes

the internal model to be replaced by the two external models before the main time loop in the

simultaneous backward and adjoint simulation. The second row shows the absorbing boundary

fields, where the shadow part indicates files output for the perturbed model m2. The third and

forth rows show the seismograms registered at the receivers and the last state of the forward

field. These files output in the forward simulation will be used in the simultaneous backward and

adjoint simulation. The right column shows the key files output in the simultaneous backward

and adjoint simulation, including the Fréchet kernels, the approximate Hessian kernels (’Hbs’),

and the full Hessian kernels (’Habc’), etc. In the right column, the top part shows for the (ρ, κ,

µ) parameter set and the bottom part shows for the (ρ, α, β) parameter set.
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Figure S9. Homogeneous model (a) and the perturbed model with one scatter (b) for compres-

sional wave speed α, where S indicate the source location and R denotes the receiver location.

Relative model perturbation for the scatter is set to +10% for the α and β over the homogeneous

model.

Figure S10. A workflow illuminating the computation of the Hessian kernels by the required

forward and adjoint fields. The first step (Forward simulation) is to compute and save the forward

fields, the second step (Adjoint simulation I) is to compute and save the two adjoint fields. The

last step (Adjoint simulation II) is to compute one adjoint field s†(m1) on the fly, and read

one time step of the saved four or six fields into the temporary memory for the computation of

Hessian kernels. The case for the four fields is to compute the Hessian kernels without density

perturbation consideration. The f†(m1) and f†(m2) denote the two adjoint sources computed

from the measurements of the two models, which are used to generate the adjoint fields.
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Figure S11. Four time steps of the two forward fields s(m1) and s(m2) and their perturbations

δs due to the scatter. The first column shows the forward fields s(m1) for m1. The second

column shows the forward fields s(m2) for m2. For simplicity, we omit the time dependencies.

The perturbed wavefields are computed by using the wavefield subtraction, i.e., s(m2) - s(m1).
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Figure S12. Waveforms and traveltime adjoint sources computed for model m1 and m2.

Narrow phase-shifted (Ricker) waveforms are observed due to an illumination for the entire time

period. The first row (a) shows the x components for the two models. For simplicity, only the P

wave (within the time window) is used for computing the adjoint source (see the rectangle window

left up). The second row shows the z components for the two models. For the two modes, we

also compute the waveform difference (second column) and the adjoint source difference (fourth

column) to see the wave difference in magnitude due to the perturbation of the model.
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Figure S13. Four time steps of the adjoint fields s†(m1) and s†s(m1) and their perturbations

δs†s. The first column shows the adjoint field s†(m1) for model m1. The second column shows the

adjoint field s†s(m1) for the same model m1. The third column shows their associated perturbed

fields δs†s computed by the wavefield subtraction.
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Figure S14. Four time steps of the adjoint fields s†(m1) and s†m(m2) and their perturbations

δs†m. The first column shows the adjoint field s†(m1) for model m1. The second column shows the

adjoint field s†m(m2) for model m2. The third column shows their perturbed fields δs†m computed

by the wavefield subtraction.
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Figure S15. Four components of the Hessian kernels with respect to the model given in ρ, α,

and β. The top first row shows the Ha component with respect to the three models parameters.

Only the Ha,α is well observed since only the P phase is used for the adjoint source calculation.

The second rows shows the H
〈s〉
b component, which is approximate Hessian kernels due to the

perturbation of the adjoint source to the adjoint field. The third row shows the H
〈m〉
b component

which is due to the perturbation of the model for the adjoint field. The bottom row shows the

Hc component. Only the kernels for Hc,r1 and Hc,r2 are observed since the Kβ equals to zero.

The ri (where i = 1, 2, 3) indicates the three rows in the Hc expression. The full Hessian kernels

are obtained by summing the four components together.
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Figure S16. Three components of the Fréchet kernels for the homogeneous model. Only

the Kα is well observed since only the P phase is used in the adjoint source calculation. Some

artefacts observed near the source and receiver in the Kρ and Kβ components.
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Figure S17. The Hessian kernels with respect to the model parameters ρ, α, and β. The

figure is a summation of each row of Figure S15. Significant differences are observed between

the full Hessian kernels and the approximate Hessian kernels as well as the Fréchet kernels (see

Fig S15 to Fig S17). The different color is due to the minimum and maximum color values set

for the kernels.
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