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III. gPCE vs. TPU vs. Monte Carlo: Uncertainty Quantification (UQ) Method Comparison

generalized Polynomial Chaos Expansion (gPCE) framework is analogous to a Fourier Series Expansion
• Truncated infinite series of coefficients & orthogonal basis functions (Karhunen-Loève Expansion)

gPCE utilizes Askey basis functions (see table below, right)

• Minimized mean squared error and guaranteed to converge, for smooth functions with sufficient terms

The general gPCE procedure (see figure above):

• ICESat-2 Photon Bounce Point Geolocation Algorithm analog is used to generate solution samples, 𝒖𝒖(𝒚𝒚𝑖𝑖)

• Multivariate basis functions, 𝜳𝜳𝒋𝒋𝑖𝑖 𝒚𝒚𝑖𝑖 , evaluated, and 𝜳𝜳𝒄𝒄 = 𝒖𝒖 inverted to solve for gPCE coefficients, 𝒄𝒄

• L2 Minimization (L2M, i.e., Ordinary Least Squares) used for inversion (see V. Future Work for details)

Uncertainty Quantification:

• Inputs, 𝒚𝒚𝒊𝒊 , are intrinsically treated as stochastic by the gPCE method
• Modeled as 𝑦𝑦𝑖𝑖 = 𝑥𝑥 + 𝜔𝜔, with deterministic component, x, and stochastic component, 𝜔𝜔

Novel part of approach is concurrent modelling of deterministic components

• Allows surrogate model to be applied on the point cloud level, rather than at each lidar point.

II. generalized Polynomial Chaos Expansion
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L2 Minimization

gPCE Coeff’s solved via L2M for a reference problem
• L2M produced many ~ equal coefficients ↔ sub-optimal

L1 Minimization

L1M produced more sparse solution
• Better match for reference solution
• L1M solution used 1/3 input samples compared to L2M

V. Future Research

Optimize Sparsity of Coefficient Matrix
• Computationally optimal solution is a sparse solution of large coefficients
• Replace L2 (L2M) with L1 Minimization (L1M) for coefficient inversion
• L2M: less complex, but non-convex, NP-hard to compute, and non-unique results
• L1M: shown to be a convex, solvable in P-time, unique, and highly sparse

solutions (under certain conditions), requires smaller set of input samples (𝒚𝒚𝑖𝑖)
Computational Optimizations/Improvements
• Implementation of coefficient thresholding scheme
• Implementation of entire point-cloud analysis with point uncertainty estimates
• Test actual performance of uncertainty estimates against truth data
Advance Towards a Bathymetric LiDAR model
• Verify Topographic model computationally stability and cost
• Characterize bathymetric impact on geolocation algorithm
• Use point cloud gPCE model & UQ estimates for underwater object classification
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Differences are in computational time
• TPU, MC: costly steps executed once per data point/group of points (with �= inputs)
• gPCE: costs incurred once per point cloud (at the granule/large data segment

level); Minimal computation for each point
gPCE finds high fidelity UQ models

• Cross-variable sensitivity not truncated (as a result, sensitivity studies are built-in)
• TPU often ignores/truncates these terms

Computational cost/time lies between that of TPU and MC
• (MC is prohibitively expensive for similar model per point accuracy)

gPCE generates a joint-function/model for all input variables
• Additional statistics of interest can be found with little extra computational cost

Motivation: Most LiDARs are vulnerable to
position, pointing errors, and propagation
effects leading to projection errors on target.
While fidelity of location/ pointing solutions can
be high, determination of uncertainty remains
limited. NASA’s 2021 STV Incubation Study
Report lists vertical (horizontal, geolocation)
accuracy as an associated product parameter
for all (most) identified Science and Application
Knowledge Gaps.

Research Objectives:
• Develop gPCE method for topo-bathymetric

LiDAR Uncertainty Quantification (UQ) as an
alternative to Total Propagated Uncertainty
(TPU) & Monte Carlo (MC) UQ methods

• Quantify & compare performance of UQ
methods, in terms of computational cost &
model fidelity

• Investigate subaerial simulations as validation
to proceed with bathymetric simulation

I. Motivation and Objectives
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• Relative impact of ignoring covariances (coskewnesses, etc.) terms
• Blue through yellow terms �> 10−10 could have a significant impact if ignored (as in TPU)
• (Color indicates multivariate moment order, violet=univariate, yellow=high order co-moment)

gPCE Coefficients for Bounce Point Height
(Color Indicates Sum of Co-moment Orders Squared)

(i.e. (l,m,n)-th Order Co-moment has strength 𝑙𝑙2 +𝑚𝑚2 +𝑛𝑛2)

Potential Coefficient Significance Cut-Off Point

gPCE Coefficients for Bounce Point Height
(Color Indicates Coefficient p Value)

• gPCE found a valid expansion with a small number of coefficients
• Only ~40 of 4850 terms have a significance >1ppm
• (Color indicates coefficient polynomial order)
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IV. Topographic LiDAR Simulation Results

Variables used in this simulation are from ICESat-2 ATL02, ATL03 data, and span the Region 2 granule. Surrogate
Model Graph corresponds to a specific LiDAR bounce point in the mountains west of Boulder, CO, at ~40.0N, 105.4W.
(NOTE: The authors recognize that Pitch, Yaw do not represent real ATLAS pointing angles; in the interest of model
simplicity, Pitch, Roll, Yaw, were varied as a substitute for real pointing data, with other pointing variables held fixed.)

• gPCE Enables High Fidelity Assessment of Parameter Input-Output Relationship
• Color indicates polynomial order of coefficients in a particular variable
• Ordinate of figures represents the relative strength ⁄( 𝑐𝑐𝑖𝑖 ∑ |𝑐𝑐𝑖𝑖|) of each coefficient.

• Higher y-position indicates greater model significance

• Topographic results are presented due to instability of L2M inversion (and anticipated increased instability with Bathymetric Simulation)
• Stable bathymetric results expected with L1M inversion (see V. Future Work)

• Visualization of the gPCE Model Bounce Point Height, w.r.t. Pitch, Roll Pointing Angle
• gPCE captures nonlinearities TPU Ignores in UQ analyses
• (Ranges are kept broad for illustrative purposes)

Surrogate Model for Bounce Point Height
When varying Roll and Pitch

NOTE: Same Data is Shown
(Color Significance Changes)

*(Modified from [2])
x

Bounce 
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TPU gPCE MC

DM is identical for all methods
Deterministic Model (DM) is used

to calculate Quantity of Interest

(QoI, e.g., bounce point)

All three have 
several steps in 

common.
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