References
Anger, C. D., Moshupi, M. C., Wallis, D. D., Murphree, J. S., Brace, L. H., & Shepherd, G. G. (1978). Detached auroral arcs in the trough region. Journal of Geophysical Research , 83(A6), 2683–2689. https://doi.org/10.1029/JA083iA06p02683
Angelopoulos, V. et al. (2019), The Space Physics Environment Data Analysis System (SPEDAS). Space Science Review , 215. https://doi.org/10.1007/s11214-018-0576-4.
Alexeyev, V., Ievenko, I., & Parnikov, S. (2009). Occurrence rate of SAR arcs during the 23rd solar activity cycle. Advances in Space Research , 44 , 524–527. https://doi.org/10.1016/j.asr.2009.04.024
Archer, W. E., Gallardo-Lacourt, B., Perry, G. W., St-Maurice, J.-P., Buchert, S. C., & Donovan, E. F. (2019). Steve: The optical signature of intense subauroral ion drifts. Geophysical Research Letters ,46 , 6279–6286. https://doi.org/10.1029/2019GL082687
Barbier, D. (1958). The auroral activity at low latitudes. Annals of Geophysics , 1, 4334–4355.
Chu, X., Malaspina, D., Gallardo-Lacourt, B., Liang, J., Andersson, L., Ma, Q., et al (2019), Identifying STEVE’s Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground.Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082789
Cornwall, J. M., Coroniti, F. V., & Thorne, R. M. (1971), Unified theory of SAR arc formation at the plasmapause. Journal of Geophysical Research , 76, 4428–4445. https://doi.org/10.1029/JA076i019p04428
Cole, K. (1965), Stable auroral red arcs, sinks for energy of Dst main phase. Journal of Geophysical Research , 70, 1689–1706, doi:10.1029/JZ070i007p01689.
Figueiredo, S., T. Karlsson, and G. T. Marklund (2004), Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution, Annales Geophysicae , 22, 923–934
Frey, H. U. (2007). Localized aurora beyond the auroral oval.Reviews of Geophysics, 45(1), 1003. https://doi.org/10.1029/2005RG000174
Gallardo-Lacourt, B., Nishimura, Y., Donovan, E., Gillies, D. M., Perry, G. W., Archer, W. E., et al. (2018). A statistical analysis of STEVE.Journal of Geophysical Research: Space Physics, 123, 9893–9905. https://doi.org/10.1029/2018JA025368
Gallardo-Lacourt, B., Frey, H.U. & Martinis, C. (2021). Proton Aurora and Optical Emissions in the Subauroral Region. Space Science Reviews,  217, 10. https://doi.org/10.1007/s11214-020-00776-6
Galperin, Y., Ponomarev, V. N., and Zosimova, A. G. (1974). Plasma convection in the polar ionosphere, Annales Geophysicae , 30, 1.
Gillies, D. M., Donovan, E., Hampton, D., Liang, J., Connors, M., Nishimura, Y., et al. (2019). First observations from the TREx Spectrograph: The optical spectrum of STEVE and the Picket Fence phenomena. Geophysical Research Letters , 46, 7207–7213. https://doi.org/10.1029/2019GL083272
Hoch, R. J., Stable auroral red arcs, Reviews of Geophysics , 11, 935, 1973.
He, F., X.-X. Zhang, and B. Chen (2014), Solar cycle, seasonal, and diurnal variations of subauroral ion drifts: Statistical results,Journal of Geophysical Research: Space Physics , 119, 5076–5086, doi:10.1002/2014JA01980
Inaba, Y., Shiokawa, K., Oyama, S., Otsuka, Y., Connors, M., Schofield, I., et. al. (2021). Multi-event analysis of plasma and field variations in source of stable auroral red (SAR) arcs in inner magnetosphere during non-storm-time substorms. Journal of Geophysical Research: Space Physics , 126, e2020JA029081. https://doi.org/10.1029/2020JA029081
Ievenko, I.B., Parnikov, S.G., Alexeyev, V.N. (2008). Relationship of the diffuse aurora and SAR arc dynamics to substorms and storms,Advances in Space Research , 41, 8, 1252-1260
Karlsson, T., G. T. Marklund, and L. G. Blomberg (1998), Subauroral electric fields observed by the Freja satellite: A statistical study,Journal of Geophysical Research , 103(A3), 4327–4314, doi:10.1029/97JA00333.
Kozyra, J. U., E.G. Shelly, R. H. Comfort, L. H. Brace, T. E. Cravens, and A. F. Nagy, The role of ring current O + in the formation of stable red arcs, Journal of Geophysical Research , 92, 7487, 1987.
Kozyra, J. U., & Nagy, A. F. (1997), High-altitude energy source(s) for stable auroral red arcs. Reviews of Geophysics , 35, 155-190, 96RG03194.
MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-lacourt, B., et al. (2018). New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere. Science Advances , 4(March), 16–21. https://doi.org/10.1126/sciadv.aaq0030
Mann, I. R., et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era, Space Science Review , 141, 413–451, doi:10.1007/s11214-008-9457-6.
Moshupi, M. C., Anger, C. D., Murphree, J. S., Wallis, D. D., Whitteker, J. H., Brace L. H. (1979), Characteristics of trough region auroral patches and detached arcs observed by Isis 2. Journal of Geophysical Research: Space Physics , 84 (A4), 1333-1346. https://doi.org/10.1029/JA084iA04p01333
Mendillo, M., Baumgardner, J., & Wroten, J. (2016). SAR arcs we have seen: Evidence for variability in stable auroral red arcs. Journal of Geophysical Research: Space Physics , 121(1), 245–262. https://doi.org/10.1002/2015JA021722
Nagy, A. F., Roble, R. G., & Hays, P. B. (1970). Stable mid-latitude red arcs: Observations and theory. Space Science Reviews , 11, 709–727. https://doi.org/10.1007/BF00177029
Nishida, A. (1978). Geomagnetic Diagnosis of the Magnetosphere.Springer, New York .
Sazykin, S., Fejer, B. G., Galperin, Y. I., Zinin, L. V., Grigoriev, S. A., & Mendillo, M. (2002). Polarization jet events and excitation of weak sar arcs. Geophysical Research Letters, 29(12), 26-1–26-4. https://doi.org/10.1029/2001GL014388
Ogawa, Y., Kadokura, A., Ejiri, M. K. (2020), Optical calibration system of NIPR for aurora and airglow observations. Polar Science , Volume 26. https://doi.org/10.1016/j.polar.2020.100570
Ozaki, M., Shiokawa, K., Horne, R. B., Engebretson, M. J., Lessard, M., Ogawa, Y., et al. (2021). Magnetic conjugacy of Pc1 waves and isolated proton precipitation at subauroral latitudes: Importance of ionosphere as intensity modulation region. Geophysical Research Letters, 48, e2020GL091384. https://doi.org/10.1029/2020GL091384
Rees, M. H., and Roble, R. G. (1975). Observations and theory of the formation of stable auroral red arcs, Reviews of Geophysics , 13, 201.
Rostoker, G. Akasofu, S.I. Foster, J. et al. (1980). Magnetospheric substorm – Definition and signatures. Journal of Geophysical Research , (A4), 1663-1668
Smiddy, M., Kelley, M. C., Burke, W., Rich, F., Sagalyn, R., Shuman, B., Hays, R., and Lai, S. (1977). Intense poleward-directed electric fields near the ionospheric projection of the plasmapause, Geophysical Research Letters, 4, 543 –546.
Spiro, R. W., Heelis, R. A., and Hanson, W. B. (1979). Rapid subauroral ion drifts observed by Atmospheric Explorer C, Geophysical Research Letters, 6, 657 – 660.
Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., Tsuda, T., & Wiens, R. H. (1999). Development of optical mesosphere thermosphere imagers (OMTI). Earth, Planets and Space, 51, 887–896. https://doi.org/10.1186/BF03353247
Shiokawa, K., Hosokawa, K., Sakaguchi, K., Ieda, A., Otsuka, Y., Ogawa, T., & Connors, M. (2009). The optical mesosphere thermosphere imagers (omtis) for network measurements of aurora and airglow. AIP Conference Proceedings, 1144(1), 212–215. https://doi.org/
10.1063/1.3169292
Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground-based instruments of the pwing project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the erg-ground coordinated observation network. Earth Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9
Sakaguchi, K., Shiokawa, K., Miyoshi, Y., Otsuka, Y., Ogawa, T., Asamura, K., & Connors, M. (2008). Simultaneous appearance of isolated auroral arcs and Pc 1 geomagnetic pulsations at subauroral latitudes.Journal of Geophysical Research , 113(A5), A05201. https://doi.org/10.1029/2007ja012888
Takagi, Y., Shiokawa, K., Otsuka, Y., Connors, M., & Schofield, I. (2018). Statistical analysis of SAR arc detachment from the main oval based on 11-year, all-sky imaging observation at Athabasca, Canada.Geophysical Research Letters , 45, 11,539–11,546. https://doi.org/10.1029/2018GL079615
Yadav, S., Shiokawa, K., Otsuka, Y., Connors, M., and St. Maurice, J.-P. (2021a), Multi-wavelength imaging observations of STEVE at Athabasca, Canada. Journal of Geophysical Research: Space Physics , 125, https://doi.org/10.1029/2020JA028622.
Yadav, S., Shiokawa, K., Oyama, S., Inaba, Y., Takahashi, N., Seki, K., et al. (2021b), Study of an equatorward detachment of auroral arc from the oval using ground-space observations and the BATS-R-US – CIMI model. Under second review in Journal of Geophysical Research: Space Physics .
Zhou, S., Luan, X., Burch, J. L., Yao, Z., Han, D. S., Tian, C., et. al. (2021), A possible mechanism on the detachment between a subauroral proton arc and the auroral oval. Journal of Geophysical Research: Space Physics, 126, e2020JA028493. https://doi.org/10.1029/2020JA028493