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Abstract 

In this talk, I will draw distinction between linear plasma waves and strong turbulent fluctuations 
and argue general characteristics of 3He rich solar energetic particle events favor the scenario 
that 3He ions are mostly energized via cyclotron resonance with proton cyclotron waves. These 
waves can be produced via magnetic reconnection at the ion diffusion scale and/or via cascade 
of turbulence energy from low to high frequencies. Both PIC and hybrid simulations can be 
used to verify these scenarios.

Dispersion Relation of Parallel Waves:

Resonance Condition:

Stochastic Particle Acceleration  

For most cases of astrophysical particle acceleration, only 
spatially integrated and/or time averaged particle distributions 
are available. One may solve the Fokker-Planck equation for 
energy distribution of energized particles. Usually four 
processes need to be considered: energy diffusion and 
convection due to interactions with turbulent electromagnetic 
fields; energy loss due to Coulomb collisions and radiative 
processes; escape from the acceleration site and injection into 
the acceleration processes. First order Fermi acceleration can 
also be incorporated by introducing an extra convection term. 
In the high-energy regime, the injection can be ignored. The 
other three processes can be characterized via three 
timescales: acceleration, energy loss, and escape [1].

Diffusion Loss and Acceleration Escape Source

where !pi ¼ (4!niq2i =mi)
1=2 and !i ¼ (qiB0)=(mic) are, re-

spectively, the plasma frequencies and the nonrelativistic
gyrofrequencies of the background particles (with charges
qi, masses mi, and number densities ni). The term B0 stands
for the large-scale magnetic field, c is the speed of light,
and ! and k are the wave frequency and wavenumber,
respectively.

One of the important parameters characterizing a magne-
tized plasma is the ratio of the electron plasma frequency to
the electron nonrelativistic gyrofrequency:

" ¼ !pe=!e ¼ 3:2 ne=10
10 cm"3

! "1=2
B0=100 Gð Þ"1; ð3Þ

where !e ¼ (eB0)=(mec) and e and me are the elemental charge
unit and the electron mass, respectively. The value of " is
small for a strongly magnetized plasma.

A particle with a velocity #c (Lorentz factor $) and a pitch-
angle cosine % interacts most strongly with waves satisfying
the resonance condition:

!" kk#% ¼ n!i

$
; ð4Þ

where n is for the harmonics of the gyrofrequency (not to be
confused with the background particle number densities ni),
! and kk are the wave frequency and the parallel component
of the wavevector in units of !e and !e/c, respectively (we
use these units in the following discussion unless specified
otherwise and in our case kk ¼ k and n ¼ "1), and !i ¼
qime=emi are the particle gyrofrequencies in units of !e;
!e ¼ "1 for electrons and !p ¼ & % me=mp for protons,
where mp is the proton mass (for more details see also DP94).
One notes that low-energy particles mostly resonate with
waves with high wavenumbers and only relativistic particles
interact with large-scale waves with low frequencies. The
resonant wave-particle interaction can transfer energy between
the turbulence and particles with the details depending on the
particle distribution and the spectrum and polarization of the
turbulence.

2.3. Fokker-Planck Coefficients

The evaluation of the F-P coefficients requires a knowl-
edge of the spectrum of the turbulence. Following previous
studies (DP94; PP97), we first assume a power-law distri-
bution of unpolarized turbulent plasma waves. For unpo-
larized turbulence, the amplitudes of the waves only depend
on k. Then we have E(k) ¼ (q" 1)E totk

q"1
min k

"q for k > kmin

(i.e., a large-scale cutoff ), where the turbulence spectral
index q > 1. For a given turbulence energy density E tot,
kmin, presumably larger than the inverse of the size of the
acceleration region, determines the maximum energy that
the accelerated particles can reach and the characteristic
timescale of the interaction. The general features of this sit-
uation have been explored in the papers cited above. For the
sake of completeness, we briefly summarize the key results
here.

The F-P coefficients can be written as

Dab ¼
%"2 " 1ð Þ
'pi$2

XN

j¼1

( kj
! " %% 1" xj

! "2
for ab¼ %%;

%pxj 1" xj
! "

for ab¼ %p;

p2x2j for ab¼ pp;

8
><

>: ð5Þ

where

( kj
! "

¼
kj
## ##"q

#%" #g kj
! "## ## ; xj ¼ %!j=#kj: ð6Þ

The sum over j is for the resonant interactions discussed in
the previous section. The characteristic interaction timescale
for each of the charged particle species is 'pi ¼ 'p=!2

i with
that for electrons given by (see DP94)

'"1
p ¼ !

2
!e

E tot

B2
0=8!

$ %
(q" 1)kq"1

min : ð7Þ

In general, the F-P coefficients have complicated depen-
dence on the turbulence spectral index q, the plasma parameter
" , and the energy and pitch angle of the particles. The exact
solution of the full F-P equation is a difficult task. Fortunately,
under certain conditions considerable simplifications are pos-
sible. These conditions are defined by the relative values of
the three F-P coefficients. The pitch-angle change rate of the
particles is proportional to D%%, while the momentum or en-
ergy change rate is proportional to Dpp /p

2. As evident from
equation (5), the behavior of D%p /p is intermediate between
the two.

2.4. Diffusion-Convvection Equation

The relative values of the F-P coefficients determine the
type of approximations that can be used for solving the F-P
equation. We now show that for most conditions reasonable
approximations lead to the well-known transport equation
(eq. [10]). In order to justify these approximations, it is con-
venient to define two ratios of the coefficients:

R1(%;p) ¼
Dpp

p2D%%
; ð8Þ

R2(%;p) ¼
Dp%

pD%%
: ð9Þ

We show in the following sections for most energies and pitch
angles both R1 and jR2jT1, which means that D%% 3
Dpp=p2. Under these conditions the particles are scattered
frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
pitch-angle–averaged particle distribution function F(s;t;p) ¼
0:5
R1
"1 d% f (%;s;t;p) satisfies the well-known diffusion-

convection equation (see, e.g., Kirk et al. 1988; DP94; PP97).
In this study we are interested in the relative acceleration

of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
vection of the particles by an energy-dependent escape term.
Then the above-mentioned equation is reduced to

@N

@t
¼ @2

@E2
DEENð Þ þ @

@E
ĖL " A
! "

N
& '

" N

Tesc
þ Q; ð10Þ

where E ¼ ($ " 1)mic
2 is the particle kinetic energy,

N (t;E ) dE ¼ 4!p2 dp
RL
0 F(s;t;p) ds, ĖL describes the net sys-

tematic energy loss, and Q(t;E) ¼ 0:5
R1
"1 d%

RL
0 S(s;%;t;E) ds

is the total injection flux of particles into the acceleration
region. The term DEE describing the diffusion in energy is
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related to Dpp and defines the acceleration time, and Tesc is
related to the scattering time ! sc:

Tesc ¼
L2=v2

!sc
; !sc ¼

1

2

Z 1

"1

d"
1" "2ð Þ2

D""
TL=v; ð11Þ

!ac ¼
E2

DEE
; DEE ¼ E2

2

Z 1

"1

d"D"" R1 " R2
2

! "
: ð12Þ

Note that equation (10) describes the energy diffusion with
two terms, DEE and the direct acceleration rate:

A(E) ¼ 1

#$2
d#$2DEE

dE
¼ dDEE

dE
þ DEE

E

2" $"2

1 þ $"1
: ð13Þ

There are several important features in the diffusion coef-
ficients that we emphasize here:

1. The first is that in the extremely relativistic limit the
diffusion coefficients (and their ratios) for protons and electrons
are identical and assume asymptotic values such that both of
the ratios are much less than 1. Therefore, equations (10), (11),
and (12) are valid. (Strictly speaking, this is not true for very
strongly magnetized plasmas % & &1=2 where one gets R1 '
jR2j ' 1; see eq. [5].)

2. The second is that at low energies, as pointed out by
PP97, R1 and R2

2 are not necessarily less than 1, especially for
plasmas with low values of % . In the extreme case of R1 3
jR2j31, three of the four diffusion terms in equation (1) can
be ignored. Again, if we assume a finite homogeneous region
or integrate over a finite inhomogeneous source, the resultant
equation becomes similar to equation (10). Now because of
the lower rate of pitch-angle scatterings, the escape time may
be equal to the transit time Tesc ' L=(v"), the other transport
coefficients DEE and ĖL (and consequently the accelerated par-
ticle spectra) may depend on the pitch angle, and the as-
sumption of isotropy may not be valid. However, as can be
seen in the next section (Figs. 5 and 6), these coefficients
change slowly with ", except for some negligibly small ranges
of ", so that the expected anisotropy is small. In addition , at
lower energies Coulomb scatterings become increasingly im-
portant and can make the particle distribution isotropic. In many
cases, especially for plasmas not completely dominated by the
magnetic field (i.e., for % ( 1), one can neglect the small
expected anisotropy and integrate the equation over the pitch
angle, in which case the transport equation becomes identical
to equation (10) except now

Tesc ¼ L=
ffiffiffi
2

p
vT!sc ' 1=D""

$ %
; ð14Þ

!ac ¼
2p2

R1
"1 d"Dpp(")

; ð15Þ

where angle brackets denote averaging over the pitch angle.
3. It is easy to see that one can combine the above two sets

of expressions (eqs. [11]–[15]) for the acceleration rates (or
timescales) and the escape times at the nonrelativistic and ex-
tremely relativistic cases as

Tesc ¼
Lffiffiffi
2

p
v

1 þ
ffiffiffi
2

p
L

v!sc

& '
; !ac ¼

E2

DEE
; ð16Þ

and

DEE ¼ E2

2

Z 1

"1

d"D""
R1 if R1 3 R2j j31;

R1 " R2
2 if R1; R2j jT1

(
ð17Þ

The first expression in equation (17) is valid at low values of
E and % and the second at higher energies and in weakly
magnetized plasmas. However, it turns out that at extremely
relativistic energies and inweaklymagnetized plasmas (% > 1),
independent of other conditions, R2

2TR1 and the first expres-
sion can be used. These expressions and equation (10) then
describe the problem adequately for most purposes in high-
energy astrophysics, in particular for solar flares, the focus of
this paper.

4. Finally, in certain cases, especially in the intermediate
energy range, the quantity R1 " R2

2 appearing in equations (12)
and (17) can be small. The acceleration rate can be reduced
dramatically when both R1 and jR2j are much less than 1 and
R1 ’ R2

2. From the definitions of these ratios and expressions
for the F-P coefficients (eqs. [8], [9], and [5]) it is clear that
if there were only one resonant interaction, one would have
R1 ¼ R2

2 and there would be no acceleration. Thus, strictly
speaking, the use of equation (10) with interactions involving
only one wave mode (say the Alfvén) is incorrect. However,
as we show in x 3.1, there are always at least two resonant
interactions in unpolarized turbulence, in which case R1 6¼ R2

2
so that the acceleration rate is finite. But if one of the inter-
actions is much stronger than the others, R1 " R2

2 can be small.
In the next section we show some examples where this is true
(Fig. 5) and that this happens at the intermediate values of
energy (Fig. 6). The acceleration rate is then reduced greatly.
The much lower acceleration rate at the intermediate energies
compared to the higher rates in the nonrelativistic and ex-
tremely relativistic limits introduces an acceleration barrier. As
we shall see, in the intermediate energy range the behaviors of
protons and electrons are quite different and a much stronger
acceleration barrier appears for protons.

2.5. Loss Rate

To determine the distributions of the accelerated protons
and electrons by solving equation (10) with the above for-
malism, in addition to the transport coefficients DEE , A, and
Tesc, we need to specify the loss term ĖL. For electrons the loss
processes are dominated by Coulomb collisions at low ener-
gies and by synchrotron losses at high energies:

ĖLe ¼ 4r20mec
3 'ne ln!=# þ B2

0#
2$2=9mec

2
! "

; ð18Þ

where r0 ¼ 2:8 ;10"13 cm is the classical electron radius and
ln! ¼ 20 is a reasonable value in our case (See Leach 1984).
The ion losses in a fully ionized plasma are mainly due to
Coulomb collisions with the background electrons and protons
(Post 1956; Ginzburg & Syrovatskii 1964). For electron-ion
collisions, we have

ĖLi ¼ 2'r20mec
3ne

qi
e

) *2

;

2
ffiffiffi
2

p
#2#"3

Te ln!
3

'

& '1=2
for # < #Te;

#"1 ln
m2

ec
2# 4

'r0nef2

& '
for 13# > #Te;
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m2

ec
2$2

2'r0nef2

& '
for

mi

me
3$31;

ln
memic

2$

4'r0nef2

& '
for $3

mi

me
;
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where !pi ¼ (4!niq2i =mi)
1=2 and !i ¼ (qiB0)=(mic) are, re-

spectively, the plasma frequencies and the nonrelativistic
gyrofrequencies of the background particles (with charges
qi, masses mi, and number densities ni). The term B0 stands
for the large-scale magnetic field, c is the speed of light,
and ! and k are the wave frequency and wavenumber,
respectively.

One of the important parameters characterizing a magne-
tized plasma is the ratio of the electron plasma frequency to
the electron nonrelativistic gyrofrequency:

" ¼ !pe=!e ¼ 3:2 ne=10
10 cm"3

! "1=2
B0=100 Gð Þ"1; ð3Þ

where !e ¼ (eB0)=(mec) and e and me are the elemental charge
unit and the electron mass, respectively. The value of " is
small for a strongly magnetized plasma.

A particle with a velocity #c (Lorentz factor $) and a pitch-
angle cosine % interacts most strongly with waves satisfying
the resonance condition:

!" kk#% ¼ n!i

$
; ð4Þ

where n is for the harmonics of the gyrofrequency (not to be
confused with the background particle number densities ni),
! and kk are the wave frequency and the parallel component
of the wavevector in units of !e and !e/c, respectively (we
use these units in the following discussion unless specified
otherwise and in our case kk ¼ k and n ¼ "1), and !i ¼
qime=emi are the particle gyrofrequencies in units of !e;
!e ¼ "1 for electrons and !p ¼ & % me=mp for protons,
where mp is the proton mass (for more details see also DP94).
One notes that low-energy particles mostly resonate with
waves with high wavenumbers and only relativistic particles
interact with large-scale waves with low frequencies. The
resonant wave-particle interaction can transfer energy between
the turbulence and particles with the details depending on the
particle distribution and the spectrum and polarization of the
turbulence.

2.3. Fokker-Planck Coefficients

The evaluation of the F-P coefficients requires a knowl-
edge of the spectrum of the turbulence. Following previous
studies (DP94; PP97), we first assume a power-law distri-
bution of unpolarized turbulent plasma waves. For unpo-
larized turbulence, the amplitudes of the waves only depend
on k. Then we have E(k) ¼ (q" 1)E totk

q"1
min k

"q for k > kmin

(i.e., a large-scale cutoff ), where the turbulence spectral
index q > 1. For a given turbulence energy density E tot,
kmin, presumably larger than the inverse of the size of the
acceleration region, determines the maximum energy that
the accelerated particles can reach and the characteristic
timescale of the interaction. The general features of this sit-
uation have been explored in the papers cited above. For the
sake of completeness, we briefly summarize the key results
here.

The F-P coefficients can be written as

Dab ¼
%"2 " 1ð Þ
'pi$2
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The sum over j is for the resonant interactions discussed in
the previous section. The characteristic interaction timescale
for each of the charged particle species is 'pi ¼ 'p=!2

i with
that for electrons given by (see DP94)

'"1
p ¼ !

2
!e

E tot

B2
0=8!

$ %
(q" 1)kq"1

min : ð7Þ

In general, the F-P coefficients have complicated depen-
dence on the turbulence spectral index q, the plasma parameter
" , and the energy and pitch angle of the particles. The exact
solution of the full F-P equation is a difficult task. Fortunately,
under certain conditions considerable simplifications are pos-
sible. These conditions are defined by the relative values of
the three F-P coefficients. The pitch-angle change rate of the
particles is proportional to D%%, while the momentum or en-
ergy change rate is proportional to Dpp /p

2. As evident from
equation (5), the behavior of D%p /p is intermediate between
the two.

2.4. Diffusion-Convvection Equation

The relative values of the F-P coefficients determine the
type of approximations that can be used for solving the F-P
equation. We now show that for most conditions reasonable
approximations lead to the well-known transport equation
(eq. [10]). In order to justify these approximations, it is con-
venient to define two ratios of the coefficients:

R1(%;p) ¼
Dpp

p2D%%
; ð8Þ

R2(%;p) ¼
Dp%

pD%%
: ð9Þ

We show in the following sections for most energies and pitch
angles both R1 and jR2jT1, which means that D%% 3
Dpp=p2. Under these conditions the particles are scattered
frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
pitch-angle–averaged particle distribution function F(s;t;p) ¼
0:5
R1
"1 d% f (%;s;t;p) satisfies the well-known diffusion-

convection equation (see, e.g., Kirk et al. 1988; DP94; PP97).
In this study we are interested in the relative acceleration

of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
vection of the particles by an energy-dependent escape term.
Then the above-mentioned equation is reduced to

@N

@t
¼ @2

@E2
DEENð Þ þ @

@E
ĖL " A
! "

N
& '

" N

Tesc
þ Q; ð10Þ

where E ¼ ($ " 1)mic
2 is the particle kinetic energy,

N (t;E ) dE ¼ 4!p2 dp
RL
0 F(s;t;p) ds, ĖL describes the net sys-

tematic energy loss, and Q(t;E) ¼ 0:5
R1
"1 d%

RL
0 S(s;%;t;E) ds

is the total injection flux of particles into the acceleration
region. The term DEE describing the diffusion in energy is

PETROSIAN & LIU552 Vol. 610

where !Te ¼ (3kBTe=mec
2)1=2 is the mean thermal velocity of

the background electrons in units of c and kB is the Boltzmann
constant. For proton-ion collisions, which are important for
ions with even lower energies, we have (Spitzer 1956)

ĖLi ¼ 4"r20mec
3np qi=eð Þ2 me=mp

! "
!$ 1 ln!: ð20Þ

These loss processes dominate at different energies, and we
can define a loss time #loss ¼ E=ĖL.

2.6. Steady State Solution and Normalization

We use the impulsive phase conditions of solar flares for
our demonstration. In this case, we can assume that the system
is in a steady state because the relevant timescales are shorter
than the dynamical time (the flare duration). We also assume
the presence of a constant spectrum of turbulence. We are
interested in the acceleration from a thermal background
plasma; therefore, a thermal distribution is assumed for the
source term Q. As described above, equation (10) may not be
valid at low (keV) energies where R1 31. However, for solar
flare conditions and in the keV energy range, Coulomb scat-
terings become important (DCoul

$$ 3Dwave
$$ ; see Hamilton &

Petrosian 1992). In this case R1T1 and the particle distri-
bution will be nearly isotropic at all energies. We therefore
calculate the acceleration rate with the second expression of
equation (17) and solve equation (10) to get the distributions
of the accelerated particles over all energies.

To appreciate the relevant physical processes, one can
compare the acceleration time with the escape and the loss
time. We are mostly interested in the energy range above the
energy of the injected particles. Thus, the source term is not as
important in shaping the spectrum as the other terms. In the
energy band where the escape and loss terms are negligible,
from the flux conservation in the energy space, one can show
that AN $ d(DEEN )=dE ¼ const. On the other hand, when the
acceleration terms are negligible, no acceleration occurs.
When the escape time becomes much shorter than the accel-
eration time and both of them are much shorter than the loss
time, particles escape before being accelerated. This results
in a sharp cutoff in the particle distribution at the energy
where Tesc ’ E=A(E) % E2=DEE . When the escape time is
long and the loss time is much shorter than the acceleration
time, one would then expect a quasi-thermal distribution for
the Coulomb collisional losses (Hamilton & Petrosian 1992)
and a sharp high-energy cutoff for the synchrotron losses
(Park et al. 1997). Power-law distributions can be produced
only in energy ranges where the loss term is small and the
acceleration and escape times have similar energy dependence.

The normalization of the steady state particle distributions
is determined by their rates of acceleration, escape, and in-
jection. The injection rates depend on the geometries of the
reconnection and the turbulent acceleration site and on pos-
sible contributions of the charged particles to reverse currents
that must exist when a net charge current leaves the acceler-
ation site. A more detailed time-dependent treatment is re-
quired to determine the relative normalization. This is beyond
the scope of the paper and will be dealt with in the future.
Here we concentrate on the relative shapes of the electron and
proton spectra in the LT and FP sources. We assume that the
injection flux

R
QdE ¼ 1 s$ 1 cm$ 2 for both electrons and

protons (see also x 5). In the steady state this is equal to the
flux of the escaping particles N tot

esc ¼
R1
0 NLT(E )=Tesc(E ) dE.

Since the escaping particles lose most of their energy at the

FPs, instead of Nesc(E ) ¼ NLT(E )=Tesc(E ) we show the effec-
tive particle distribution for a thick target (complete cooling)
FP source, which is related to the corresponding LT distribu-
tion NLT via (Petrosian & Donaghy 1999)

NFP(E ) ¼
1

ĖL

Z 1

E

NLT E 0ð Þ
Tesc E 0ð Þ

dE 0: ð21Þ

3. APPLICATION IN COLD HYDROGEN PLASMAS

In this section we describe the relative acceleration of
electrons and protons in cold, fully ionized, pure hydrogen
plasmas. This is an approximation because all astrophysical
plasmas contain some helium and traces of heavy elements.
Ignoring the effects of helium (trace elements will, in general,
have no influence on the following discussion) and adopting a
turbulence spectrum of a single power law of the wavenumber
simplify the mathematics and allow us to demonstrate the
differences between the acceleration rates of electrons and
protons more clearly. Moreover, in some low-temperature
plasmas, most of the helium may be neutral and not be in-
volved in the SA processes. The results presented here are
a good approximation. Pure hydrogen plasmas can also be
realized in terrestrial experiments to test the theory. The for-
malism can also be easily generalized to the case of electron-
positron plasmas and to more complicated situations. In the
next section we present our results for plasmas including
about 8% by number of helium and for turbulence with a more
realistic spectrum.

3.1. Dispersion Relation and Resonant Interactions

In a pure hydrogen plasma, equation (2) reduces to (PP97)

k2

!2
¼ 1 $ %2(1 þ &)

(! $ 1)(! þ &)
; ð22Þ

and the Alfvén velocity in units of c is given by !A ¼ &1=2=%.
(For e' pair-dominated plasmas & ¼ 1).
The left panels of Figure 1 depict the normal modes of

these waves, which compose four distinct branches. From top
to bottom in the top left panel, we have the electromagnetic
wave branch (EM; long-dashed line), electron-cyclotron branch
(EC; dot-dashed line), proton-cyclotron branch (PC; dotted
line), and a second electromagnetic wave branch (EM0; short-
dashed line). The bottom left panel is an enlargement of the
region near the origin. The positive and negative frequencies
mean that the waves are right- and left-handed polarized, re-
spectively, where the polarization is defined relative to the
large-scale magnetic field (Schlickeiser 2002). The right
panels of Figure 1 depict the group velocities !g ¼ d!=dk of
these waves. One may note that the signs of the phase velocity
!ph ¼ !=k and the group velocity of a specific wave mode are
always the same.
In the left panels of Figure 1, the two solid straight lines

depict equation (4) for an electron (upper line) and a proton
(lower line) with ! ¼ 0:5 and $ ¼ 0:25. The intersections of
these lines with the wave branches satisfy the resonance
condition. The electron interacts resonantly at the indicated
point with the EC branch and at another point with the PC
branch at a high negative wavenumber that lies outside the
figure. The proton, on the other hand, resonates with not only
one PC wave but also three EC waves (only two of which are
seen in the bottom left panel of the figure). As we show below,
the fact that certain protons can resonate with more than one
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related to Dpp and defines the acceleration time, and Tesc is
related to the scattering time ! sc:

Tesc ¼
L2=v2

!sc
; !sc ¼

1

2

Z 1

"1

d"
1" "2ð Þ2

D""
TL=v; ð11Þ

!ac ¼
E2

DEE
; DEE ¼ E2

2

Z 1

"1

d"D"" R1 " R2
2

! "
: ð12Þ

Note that equation (10) describes the energy diffusion with
two terms, DEE and the direct acceleration rate:

A(E) ¼ 1

#$2
d#$2DEE

dE
¼ dDEE

dE
þ DEE

E

2" $"2

1 þ $"1
: ð13Þ

There are several important features in the diffusion coef-
ficients that we emphasize here:

1. The first is that in the extremely relativistic limit the
diffusion coefficients (and their ratios) for protons and electrons
are identical and assume asymptotic values such that both of
the ratios are much less than 1. Therefore, equations (10), (11),
and (12) are valid. (Strictly speaking, this is not true for very
strongly magnetized plasmas % & &1=2 where one gets R1 '
jR2j ' 1; see eq. [5].)

2. The second is that at low energies, as pointed out by
PP97, R1 and R2

2 are not necessarily less than 1, especially for
plasmas with low values of % . In the extreme case of R1 3
jR2j31, three of the four diffusion terms in equation (1) can
be ignored. Again, if we assume a finite homogeneous region
or integrate over a finite inhomogeneous source, the resultant
equation becomes similar to equation (10). Now because of
the lower rate of pitch-angle scatterings, the escape time may
be equal to the transit time Tesc ' L=(v"), the other transport
coefficients DEE and ĖL (and consequently the accelerated par-
ticle spectra) may depend on the pitch angle, and the as-
sumption of isotropy may not be valid. However, as can be
seen in the next section (Figs. 5 and 6), these coefficients
change slowly with ", except for some negligibly small ranges
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to equation (10) except now

Tesc ¼ L=
ffiffiffi
2

p
vT!sc ' 1=D""

$ %
; ð14Þ

!ac ¼
2p2

R1
"1 d"Dpp(")

; ð15Þ

where angle brackets denote averaging over the pitch angle.
3. It is easy to see that one can combine the above two sets

of expressions (eqs. [11]–[15]) for the acceleration rates (or
timescales) and the escape times at the nonrelativistic and ex-
tremely relativistic cases as
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The first expression in equation (17) is valid at low values of
E and % and the second at higher energies and in weakly
magnetized plasmas. However, it turns out that at extremely
relativistic energies and inweaklymagnetized plasmas (% > 1),
independent of other conditions, R2

2TR1 and the first expres-
sion can be used. These expressions and equation (10) then
describe the problem adequately for most purposes in high-
energy astrophysics, in particular for solar flares, the focus of
this paper.

4. Finally, in certain cases, especially in the intermediate
energy range, the quantity R1 " R2

2 appearing in equations (12)
and (17) can be small. The acceleration rate can be reduced
dramatically when both R1 and jR2j are much less than 1 and
R1 ’ R2

2. From the definitions of these ratios and expressions
for the F-P coefficients (eqs. [8], [9], and [5]) it is clear that
if there were only one resonant interaction, one would have
R1 ¼ R2

2 and there would be no acceleration. Thus, strictly
speaking, the use of equation (10) with interactions involving
only one wave mode (say the Alfvén) is incorrect. However,
as we show in x 3.1, there are always at least two resonant
interactions in unpolarized turbulence, in which case R1 6¼ R2

2
so that the acceleration rate is finite. But if one of the inter-
actions is much stronger than the others, R1 " R2

2 can be small.
In the next section we show some examples where this is true
(Fig. 5) and that this happens at the intermediate values of
energy (Fig. 6). The acceleration rate is then reduced greatly.
The much lower acceleration rate at the intermediate energies
compared to the higher rates in the nonrelativistic and ex-
tremely relativistic limits introduces an acceleration barrier. As
we shall see, in the intermediate energy range the behaviors of
protons and electrons are quite different and a much stronger
acceleration barrier appears for protons.

2.5. Loss Rate

To determine the distributions of the accelerated protons
and electrons by solving equation (10) with the above for-
malism, in addition to the transport coefficients DEE , A, and
Tesc, we need to specify the loss term ĖL. For electrons the loss
processes are dominated by Coulomb collisions at low ener-
gies and by synchrotron losses at high energies:
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where r0 ¼ 2:8 ;10"13 cm is the classical electron radius and
ln! ¼ 20 is a reasonable value in our case (See Leach 1984).
The ion losses in a fully ionized plasma are mainly due to
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(Post 1956; Ginzburg & Syrovatskii 1964). For electron-ion
collisions, we have
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Electron-ion collision

Proton-ion collision

where !pi ¼ (4!niq2i =mi)
1=2 and !i ¼ (qiB0)=(mic) are, re-

spectively, the plasma frequencies and the nonrelativistic
gyrofrequencies of the background particles (with charges
qi, masses mi, and number densities ni). The term B0 stands
for the large-scale magnetic field, c is the speed of light,
and ! and k are the wave frequency and wavenumber,
respectively.

One of the important parameters characterizing a magne-
tized plasma is the ratio of the electron plasma frequency to
the electron nonrelativistic gyrofrequency:

" ¼ !pe=!e ¼ 3:2 ne=10
10 cm"3

! "1=2
B0=100 Gð Þ"1; ð3Þ

where !e ¼ (eB0)=(mec) and e and me are the elemental charge
unit and the electron mass, respectively. The value of " is
small for a strongly magnetized plasma.

A particle with a velocity #c (Lorentz factor $) and a pitch-
angle cosine % interacts most strongly with waves satisfying
the resonance condition:

!" kk#% ¼ n!i

$
; ð4Þ

where n is for the harmonics of the gyrofrequency (not to be
confused with the background particle number densities ni),
! and kk are the wave frequency and the parallel component
of the wavevector in units of !e and !e/c, respectively (we
use these units in the following discussion unless specified
otherwise and in our case kk ¼ k and n ¼ "1), and !i ¼
qime=emi are the particle gyrofrequencies in units of !e;
!e ¼ "1 for electrons and !p ¼ & % me=mp for protons,
where mp is the proton mass (for more details see also DP94).
One notes that low-energy particles mostly resonate with
waves with high wavenumbers and only relativistic particles
interact with large-scale waves with low frequencies. The
resonant wave-particle interaction can transfer energy between
the turbulence and particles with the details depending on the
particle distribution and the spectrum and polarization of the
turbulence.

2.3. Fokker-Planck Coefficients

The evaluation of the F-P coefficients requires a knowl-
edge of the spectrum of the turbulence. Following previous
studies (DP94; PP97), we first assume a power-law distri-
bution of unpolarized turbulent plasma waves. For unpo-
larized turbulence, the amplitudes of the waves only depend
on k. Then we have E(k) ¼ (q" 1)E totk

q"1
min k

"q for k > kmin

(i.e., a large-scale cutoff ), where the turbulence spectral
index q > 1. For a given turbulence energy density E tot,
kmin, presumably larger than the inverse of the size of the
acceleration region, determines the maximum energy that
the accelerated particles can reach and the characteristic
timescale of the interaction. The general features of this sit-
uation have been explored in the papers cited above. For the
sake of completeness, we briefly summarize the key results
here.

The F-P coefficients can be written as
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where
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¼
kj
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! "## ## ; xj ¼ %!j=#kj: ð6Þ

The sum over j is for the resonant interactions discussed in
the previous section. The characteristic interaction timescale
for each of the charged particle species is 'pi ¼ 'p=!2

i with
that for electrons given by (see DP94)

'"1
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2
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B2
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$ %
(q" 1)kq"1
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In general, the F-P coefficients have complicated depen-
dence on the turbulence spectral index q, the plasma parameter
" , and the energy and pitch angle of the particles. The exact
solution of the full F-P equation is a difficult task. Fortunately,
under certain conditions considerable simplifications are pos-
sible. These conditions are defined by the relative values of
the three F-P coefficients. The pitch-angle change rate of the
particles is proportional to D%%, while the momentum or en-
ergy change rate is proportional to Dpp /p

2. As evident from
equation (5), the behavior of D%p /p is intermediate between
the two.

2.4. Diffusion-Convvection Equation

The relative values of the F-P coefficients determine the
type of approximations that can be used for solving the F-P
equation. We now show that for most conditions reasonable
approximations lead to the well-known transport equation
(eq. [10]). In order to justify these approximations, it is con-
venient to define two ratios of the coefficients:

R1(%;p) ¼
Dpp

p2D%%
; ð8Þ

R2(%;p) ¼
Dp%

pD%%
: ð9Þ

We show in the following sections for most energies and pitch
angles both R1 and jR2jT1, which means that D%% 3
Dpp=p2. Under these conditions the particles are scattered
frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
pitch-angle–averaged particle distribution function F(s;t;p) ¼
0:5
R1
"1 d% f (%;s;t;p) satisfies the well-known diffusion-

convection equation (see, e.g., Kirk et al. 1988; DP94; PP97).
In this study we are interested in the relative acceleration

of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
vection of the particles by an energy-dependent escape term.
Then the above-mentioned equation is reduced to

@N

@t
¼ @2

@E2
DEENð Þ þ @

@E
ĖL " A
! "

N
& '

" N

Tesc
þ Q; ð10Þ

where E ¼ ($ " 1)mic
2 is the particle kinetic energy,

N (t;E ) dE ¼ 4!p2 dp
RL
0 F(s;t;p) ds, ĖL describes the net sys-

tematic energy loss, and Q(t;E) ¼ 0:5
R1
"1 d%

RL
0 S(s;%;t;E) ds

is the total injection flux of particles into the acceleration
region. The term DEE describing the diffusion in energy is
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larized turbulence, the amplitudes of the waves only depend
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(i.e., a large-scale cutoff ), where the turbulence spectral
index q > 1. For a given turbulence energy density E tot,
kmin, presumably larger than the inverse of the size of the
acceleration region, determines the maximum energy that
the accelerated particles can reach and the characteristic
timescale of the interaction. The general features of this sit-
uation have been explored in the papers cited above. For the
sake of completeness, we briefly summarize the key results
here.

The F-P coefficients can be written as
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In general, the F-P coefficients have complicated depen-
dence on the turbulence spectral index q, the plasma parameter
" , and the energy and pitch angle of the particles. The exact
solution of the full F-P equation is a difficult task. Fortunately,
under certain conditions considerable simplifications are pos-
sible. These conditions are defined by the relative values of
the three F-P coefficients. The pitch-angle change rate of the
particles is proportional to D%%, while the momentum or en-
ergy change rate is proportional to Dpp /p

2. As evident from
equation (5), the behavior of D%p /p is intermediate between
the two.

2.4. Diffusion-Convvection Equation

The relative values of the F-P coefficients determine the
type of approximations that can be used for solving the F-P
equation. We now show that for most conditions reasonable
approximations lead to the well-known transport equation
(eq. [10]). In order to justify these approximations, it is con-
venient to define two ratios of the coefficients:
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We show in the following sections for most energies and pitch
angles both R1 and jR2jT1, which means that D%% 3
Dpp=p2. Under these conditions the particles are scattered
frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
pitch-angle–averaged particle distribution function F(s;t;p) ¼
0:5
R1
"1 d% f (%;s;t;p) satisfies the well-known diffusion-

convection equation (see, e.g., Kirk et al. 1988; DP94; PP97).
In this study we are interested in the relative acceleration

of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
vection of the particles by an energy-dependent escape term.
Then the above-mentioned equation is reduced to
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where E ¼ ($ " 1)mic
2 is the particle kinetic energy,
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0 F(s;t;p) ds, ĖL describes the net sys-

tematic energy loss, and Q(t;E) ¼ 0:5
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is the total injection flux of particles into the acceleration
region. The term DEE describing the diffusion in energy is
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Fokker-Planck Equation

Linear Waves and Others 

Linear waves have well-defined dispersion relations with 
the wave period much shorter than their decay time so 
that charged particles may exchange energy with them 
efficiently via resonances. 

n=0 for transit-time damping (TTD) is for all particles 
moving with the waves and it is not selective in the 
sense that gyro-frequency of the particle is irrelevant. It 
leads to energization primarily for motion along the 
magnetic field. 

For cyclotron resonances (CR) [1], particles with 
different gyro frequencies interact with different waves. 
Selective acceleration can be achieved since the waves 
are determined by properties of the background plasma. 

Besides energy exchange with linear waves, particles 
may also change energy due to interactions with other 
electric field fluctuations, which is likely chaotic, leading 
to bulk energization of the background plasma.
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angles both R1 and jR2jT1, which means that D%% 3
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frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
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In this study we are interested in the relative acceleration

of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
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is the total injection flux of particles into the acceleration
region. The term DEE describing the diffusion in energy is
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Wave Cascade and Damping 

In general, waves are generated on large scale 
with relatively low frequencies and cascade 
into small scale high frequency regimes via 
nonlinear processes, where: oblique waves are 
damped via TTD; parallel waves are damped 
via CR; while perpendicular waves are damped 
via nonlinear processes [3, 8]. 

The nonlinear regime of the wave phase space  
(left) expands with the wave intensity. Overall 
particle acceleration will be less selective in 
larger events for the suppression of the CR 
regime, which explains their relatively weaker 
3He enrichment.

Selective Acceleration 

3He enrichment is achieved via resonances with proton-cyclotron waves. While proton and 4He have much weaker 
energy gain via CR due to modification of the dispersion relation as background particles [6] and damping by the thermal 
background. The model predicts depletion of low-energy 3He giving rise to a flat spectrum toward low-energy [2] and an 
anti-correlation between 3He enrichment and 4He fluence, a measurement of flare amplitude [4].
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Figure 1. Left: 3He vs. 4He fluences showing a much larger range for the latter while the former seems to be limited to a small range. Note that there is little correlation
between the two fluences and that 3He fluences do not concentrate at the lower end, which would be the case if observational threshold was affecting their distribution.
Middle: the distribution of fluences of 3He and 4He. Note that the high end of the 4He distribution may be truncated because of the threshold of the fluence ratio
(missing point in the lower left triangle of the middle panel). Right: variation of the ratio of 3He to 4He fluences with the fluence of 4He showing a continuum of
enrichments and a strong anticorrelation. The fluences are in units of particles/(cm2 sr MeV nucleon−1). From Ho05.

depend on several model parameters so that in a large sample
of events one would expect some dispersion in the distributions
of fluences and spectra. Ho et al. (2005; Ho05) analyzed a
large sample of events and provide distributions of 3He and
4He fluences and the correlations between them. Our aim here
is to explore the possibility of explaining these observations
by the above-mentioned dependence of the fluences on the
model parameters. In particular, we would like to explain the
observations reproduced in Figure 1. The two striking features
of these data are (1) that there is no or very weak correlation
between the two fluences (left panel) and (2) that the 3He
fluence distribution appears to be relatively narrow (and follows
a lognormal distribution) while 4He distribution is much broader
and may have a power-law distribution in the middle of the
range, where the observational selection effects are unimportant
(middle panel). These two basic aspects of the observations
introduce a strong anticorrelation between the fluence ratio
of 3He to 4He and 4He fluence (right panel). Often the SEPs
are divided into two classes; impulsive-high enrichment and
gradual-normal abundance classes. However, as evident from
the left panel of the above figure there is a continuum of
enrichment extending over many orders of magnitude.7

In the next section, we describe some of the model character-
istics that can explain these observations. These features were
introduced in LPM06. Here, we describe the importance of these
features in describing the observations summarized in Figure 1.
For convenience of the reader, we reproduce some of the rele-
vant figures from LPM06. In Section 3, we compare the model
predictions with the observations, specifically the distributions
of the fluences. A brief summary and conclusion are given in
Section 4.

2. MODEL CHARACTERISTICS

The model used in LPM04 and LPM06, which successfully
described the enrichment and spectra in several flares, has
several free parameters. As usual we have the plasma parameters
density n , temperature T, and magnetic field B0. It turns out that

7 The 4He distribution shows a weak sign of bimodality but this is not
statistically significant. In this paper, we will ignore this feature.

the final results are insensitive to the temperature as long as it is
higher than 2×106 K (see Figure 4 below), which is the case for
flaring coronal loops. It also turns out that only a combination
of density and magnetic field (

√
n/B0) comes into play in the

acceleration model. We express this as the ratio of plasma to
gyrofrequency of electrons, α = ωpe/Ωe, which is related to
the Alfvén velocity in unit of speed of light; βA = δ1/2/α,
where δ = me/mp is the ratio of the electron to proton masses.
So, in reality, we have only one effective free plasma parameter
α or βA. On the other hand, several parameters are required to
describe the spectrum of the turbulence. Following the above
papers, we assume broken power laws for the two relevant
plasma modes, the proton cyclotron (PC) and the He cyclotron
(HeC), with an inertial range kmin < k < kmax, and similar
power-law indexes q and q h in and beyond the inertial range,
respectively.8 The only difference between the two branches
is that the wave numbers kmax and kmin for the PC mode are
two times higher than those for the HeC mode. Finally, there
is the most important parameter related to the total energy
density of turbulence, Etot, which determines both the rate of
acceleration and, when integrated over the volume of the source
region, determines the intensity or the strength of the event. This
parameter is the characteristic timescale τp or its inverse the rate
defined as (see, e.g., Pryadko & Petrosian 1997)9

τ−1
p = π

2
Ωe

[
4E0

B2
0

/
8π

]

with E0 = (q − 1)Etot

(kminc/Ωe)1−q
, (1)

for each mode. The factor of 4 arises from having two branches
(PC and HeC) and two propagation directions of the waves (see
LPM06 for details).

As shown in LPM04 and LPM06 papers, the main difference
between the acceleration process of 3He and 4He is in the
difference between their acceleration rates or timescales (τa).
The other relevant timescales, namely the loss (τloss) and escape

8 In LPM06, we also have an index q l describing the power law below the
inertial range which is of minor consequence. For all practical purposes, we
can assume a sharp cutoff below kmin which means ql → ∞.
9 Note that in Pryadko & Petrosian (1997), the wave vector is dimensionless
expressed in units of Ωe/c.
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and resonance condition

energy are the observed radiations from long wavelength radio to ∼ GeV gamma-rays, SEPs, and
CMEs. We believe that plasma waves or turbulence (PWT) plays an important role. We envision
the following scenario. Magnetic energy is converted into turbulence by the reconnection process
above coronal loops, which we refer to as the acceleration site or the loop top (LT) source. The
PWT undergo nonlinear wave-wave interactions causing a dissipationless cascade to smaller scales
and wave-particle interaction, which damp the PWT and cause heating and particle acceleration.

These interactions and the evolutions of waves and particles are described by the wave trans-
port equation for W (k, t), the spectral (wavevector k) distribution of the PWT, and the particle
kinetic equation for N(E, t), the particle (energy E) spectrum averaged over pitch angle cosine µ
and integrated over the LT turbulent region:

∂W

∂t
=

∂

∂ki

[

Dij
∂

∂kj
W

]

− Γ(k)W −
W

TW
esc(k)

+ Q̇W , (1)

∂N

∂t
=

∂

∂E

[

DEE
∂N

∂E
− (A − ĖL)N

]

−
N

T p
esc

+ Q̇p. (2)

Here DEE/E2, A(E)/E and ĖL/E give the diffusion, direct acceleration and energy loss rates of the
particles, respectively, and Dij(k)/k2 and Γ(k) describe the cascade and damping rates of PWT.
The Q̇’s and the terms with the escape times Tesc describe the source and leakage of particles and
waves (see Miller et al. 1996; Petrosian & Liu 2004, PL04). expression for The two equations are
coupled: The coefficients of one depend on the spectral distribution of the other because the energy
loss rate of the turbulence Ẇ ≡

∫

Γ(k)W (k)d3k must be equal to the rate of energy gain by the
particles Ė =

∫

A(E)N(E)dE. Representing the energy transfer rate by Σ(k, E) this equality implies
that

Γ(k) =
∫ ∞

0
dEN(E)Σ(k, E), A(E) =

∫ ∞

0
d3kW (k)Σ(k, E) + Ash , (3)

where we have added Ash to represent contributions of processes other than turbulence, e.g. shocks.
The rates Σ are obtained from the plasma dispersion relation ω(k) and the resonant condition
ω − k cos θvµ = nΩ/γ, for waves (of harmonic number n = 0,±1,±2, ...) moving at angle θ with
respect to the magnetic field, and particles with gyrofrequency Ω, velocity v and Lorentz factor
γ. Figure 1 shows the curved dispersion surfaces in a cold plasma and the resonant flat planes in
(ω − k∥ − k⊥) space. Intersections of these surfaces define the resonances.

The accelerated particles escape the turbulent LT region with the spectral flux N(E)/Tesc(E).
Their transport is described by an equation similar to (2), though the pitch angle dependence must be
included. This yields the energy and pitch angle distribution N(E,µ, s) as a function of the distance
s along the field lines. Some of the escaping particles travel out along open field lines, produce
radio waves and are detected near the Earth as SEPs (they may also produce Type III and other
similar radio emissions). Others travel down the legs of the loops and produce microwaves, X- and
gamma-rays along the loop and at its foot points (FPs). For example, electrons, via bremsstrahlung
with cross section σb, produce X-rays (with emissivity J at energy ϵ and direction θ) given by

J(ϵ, θ, s) =
∫ ∞

ϵ
n(s)vN(E,µ, s)σb(ϵ, θ, E, µ)dEdµ. (4)

For the LT source n(s) = nLT , and N(E,µ, s) = N(E) obtained from equation (2). The thick target
emission (integrated over the loop outside the LT, mainly from FPs) is obtained with n(s)N(E,µ, s) =
nLT

ĖL

∫∞
E dE′N(E′)/Tesc(E′), where ĖL is evaluated for the LT with density nLT . The spatially inte-

2

Heavy ion enrichment is less prominent 
than 3He [5] due to CR with low 
frequency MHD waves and collisional 
energy loss at low energies for their high 
charge. 

The right panel for impulsive SEPs 
assumes that all ions are accelerated to 
the same velocity distribution due to 
chaotic particle orbits at the ion inertial 
scale of magnetic reconnection [7] and 
ions above an energy threshold are 
accelerated to high energy while all 3He 
are selectively accelerated.
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