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Abstract
Stochastic precipitation generators (SPGs) are often used to produce synthetic
precipitation series for water resource management. Typically, an SPG assumes
a stationary climate. We present an hourly precipitation generation algorithm
for non-stationary conditions informed by the Global Climate Model (GCM)
forecasted average monthly temperature (AMT). The physical basis for precip-
itation formation is considered explicitly in the design of the algorithm using
hourly Pressure Change Events (PCE) to define the relationship between hourly
precipitation and AMT. The algorithm consists of a multi-variable Markov
Chain and a moving window driven by time, temperature, and pressure change.
We demonstrate the methodology by generating a 100-year, continuous, syn-
thetic hourly precipitation time series using GCM AMT projections for the
Northeast US. When compared with historical observations, the synthetic re-
sults suggest that future precipitation in this region will be more variable, with
more frequent mild events and fewer but intensified extremes, especially in warm
seasons. The synthetic time series suggests that there will be less precipitation
in the summers, while winters will be wetter, consistent with other research on
climate change projections for the northeast US. This SPG provides physically
plausible weather ensembles for water resource studies involving climate change.

Keywords: Stochastic process, rainfall generator, GCM temperature, hourly
precipitation, pressure change, extreme precipitation, climate change

This paper has 27 acronyms listed after the main text and sited before the
references.

Introduction
The anthropogenic use of fossil fuels releases greenhouse gases (GHGs) into the
atmosphere, contributing to global warming [Solomon et al., 2007; US EPA
(Environmental Protection Agency), 2010; VijayaVenkataRaman et al., 2012].
Global Climate Models (GCMs) suggest that increased GHG emissions could
alter precipitation patterns, with associated impacts on the reliability and per-
formance of water resource infrastructure. These impacts could be particularly
acute in urban settings, where even small changes in the intensity and duration
of precipitation can result in pronounced changes in runoff due to the prolifer-
ation of impervious surfaces [Betts et al., 2007; Hamlet and Lettenmaier, 1999;
Huntington, 2003; Labat et al., 2004]. Changes in precipitation patterns can
also alter urban flood risks [Pfister et al., 2004; Schreider et al., 2000], change
the volume and frequency of combined sewer overflows (CSOs) [Nie et al., 2009;
Semadeni-Davies et al., 2008], and impact the performance of the billion dol-
lars green infrastructure (GI) programs implemented in an increasing number
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of North American cities [Gill et al., 2007].

Global warming is very likely to increase precipitation potential due both to
acceleration of evaporation, and an increase in the air holding capacity of the
atmosphere, [Solomon et al., 2007; K. E. Trenberth, 2011]. In theory, a one-
degree Celsius change in air temperature can bring about a 7% increase in the
air’s moisture-holding capacity. The Clausius–Clapeyron (CC) relationship ex-
tends this increase in the air holding capacity to the global scale under climate
change [Sun et al., 2007; Kevin E Trenberth and Shea, 2005]. The actual re-
lationship between temperature and air holding capacity has been investigated
using measured climatic data at monthly [King et al., 2014; Kevin E Trenberth
and Shea, 2005], daily [Sun et al., 2007; Westra et al., 2013a] and sub-daily
[Geert Lenderink and van Meijgaard, 2008; G. Lenderink and van Meijgaard,
2010] time scales. Researchers have also investigated how changes in air temper-
ature alter mean [Allen and Ingram, 2002; K. E. Trenberth, 2011], and extreme
[Groisman et al., 2005; Kunkel et al., 2013; Meehl et al., 2005; Meehl et al., 2012;
Shaw et al., 2011] precipitation amounts, as well as event durations [Panthou et
al., 2014; Wasko et al., 2015a].

At relatively coarse temporal (e.g., decadal, annual, or seasonal) and spatial
(e.g., continental, regional) scales, GCMs can be used to investigate how different
emission scenarios might alter precipitation patterns. Precipitation is, however,
the GCM output with the greatest bias relative to observations [Johnson and
Sharma, 2009; Kendon et al., 2008]. The use of GCM outputs in predicting
precipitation at finer temporal (e.g., daily, hourly, sub-hourly) and spatial scales
(e.g., local and mesoscale) is generally considered inappropriate, in large part
due to the inability of GCMs to accurately simulate precipitation intensity and
resolve localized weather patterns.

At finer temporal and spatial scales, GCM outputs can be dynamically down-
scaled into regional climate models (RCMs) and/or incorporated into stochastic
precipitation generators (SPG) [Fowler et al., 2007; Wilks, 2010] in different
ways. SPGs have been used to incorporate precipitation uncertainty and vari-
ability into the evaluation of flood risks [Haberlandt et al., 2008], the reliability
of rainwater harvesting systems [Basinger et al., 2010], and the effectiveness
of other water resource decisions [Shamir et al., 2015]. In stationary applica-
tions, a variety of techniques can be employed to generate multiple Markovian
sequences of precipitation, e.g., ensembles [Wilks and Wilby, 1999]. Parametric
methods utilize statistical distributions of wet-day rain volumes [Stern and Coe,
1984; Wilks, 1998], precipitation arrival time, intensity, and duration [Rodriguez-
Iturbe et al., 1987; 1988; Wasko and Sharma, 2017; Wasko et al., 2015b], and
other rain event characteristics [Heneker et al., 2001]. Non-parametric meth-
ods, by contrast, create synthetic sequences by strategically sampling historical
precipitation [Basinger et al., 2010; Lall and Sharma, 1996; Lall et al., 1996;
Sharma and Lall, 1999], for example within a moving window to preserve sea-
sonality [Balaji Rajagopalan et al., 1996].

In many applications, especially those requiring fine temporal precipitation
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quantities (e.g., urban stormwater planning), the direct use of GCM-forecasted
precipitation in SPGs is not appropriate since GCMs poorly reproduce precip-
itation event intensity [Johnson and Sharma, 2009; 2012], especially during
extreme events [Kim et al., 2020]. However, GCM forecasts of future annual,
seasonal, or monthly precipitation amounts are routinely compared to historical
precipitation to generate delta change factors (at annual, monthly, or seasonal
scales) that can be used to modify historical event characteristics. Maimone
et al. [2019], for example, developed an SPG to stochastically generate future
sequences of hourly precipitation for 2080~2100 by inflating historical rainfall
amounts by factors derived from an analysis of multiple GCM predictions of
annual and seasonal precipitation for Philadelphia.

Whether they are parametric or nonparametric, and regardless of whether they
are being used to create ensembles of historical or future precipitation, SPG
sampling procedures typically make a static assumption regarding the physi-
cal processes causing the formation of precipitation. Such assumptions can be
defended under a stationary climate, but as the atmosphere warms drivers of
precipitation could change. Although the accuracy of precipitation forecasts
under climate change could be improved by considering the fundamental phys-
ical mechanisms of precipitation formation, dynamic simulation of convection
processes remains challenging [Westra et al., 2013b].

Precipitation is caused when moist air rises, cools, condenses, and coalesces
into droplets that can fall under the right conditions. [Evans and Westra, 2012;
Westra et al., 2013b] The dynamic relationship between precipitation, tempera-
ture, and pressure were generalized by Ahrens et al. [2012] who showed that air
pressure at the ground surface is consistently reduced as air is lifted. At small
(e.g., local and/or mesoscale) spatial scales, Hoxit et al. [1976] found that sur-
face pressure dropped due to the formation of convective clouds. Ahrens et al.
[2012] and Visser et al. [2020] presented temperature changes associated with
the onset of an extreme precipitation event in the Australian tropics. These
processes vary even at sub-daily time scales [Evans and Westra, 2012] with “no
a priori reason” to assume consistency in a future climate [Westra et al., 2013b].
In Yu et al. [2018], we suggest the use of pressure changes as potential predictors
of future non-stationary precipitation formation.

In this paper, we present a non-parametric SPG for non-stationary future pre-
cipitation. The SPG generates dynamic sequences of hourly precipitation using
GCM predictions of future Average Monthly Temperature (AMT). The algo-
rithm is based on the meteorological relationships between precipitation and
temperature involving pressure changes, as originally introduced by Yu et al.
[2018]. One of the purposes of this study is to demonstrate that using pres-
sure changes, SPG algorithms can be used to preserve the physical causality of
precipitation in a non-stationary generator.

The paper is structured as follows. First, we describe the data sources used and
the relationship between hourly precipitation and AMT. Next, the stochastic
precipitation generation algorithm is introduced, followed by a validation of the
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model outputs using pooled gauge data across the Northeast US as a test case.

Data Sources and Collection
The study focuses on the northeastern coastal United States: a coastal region
extending from Philadelphia to Boston characterized by mostly flat terrain (See
Figure 9 Appendix). Throughout this region, the vertical lifting of air is typi-
cally associated with frontal precipitation rather than orographic lifting. Over
50 years of high-quality, hourly measurements of temperature, precipitation,
and sea-level air pressure were obtained from the National Climate Data Cen-
ter (NCDC), (formerly the National Center for Environmental Information) at
stations located at the international airports in New York City (NYC) (station
ID: 72503014732 for 1973~2018 & 99999914732 for 1948~1973), Philadelphia
(PHL) (station ID: 72408013739 for 1973~2018 & 99999913739 for 1941~1973)
and Boston (BOS) (station ID: 72509014739 for 1943~2018). (See Figure 9 in
Appendix) Since topographic relief and climatic conditions vary little across the
region, data from all three cities were pooled into one data set. This pooling
also increased the overall sample size for all events, especially the extreme events
that are more likely to detect with observations from multiple gauges distributed
spatially across the region [Hayhoe et al., 2008; Hayhoe et al., 2007; Hoerling et
al., 2016; Tebaldi et al., 2006]

Projections of future changes to AMT were obtained from the NASA Goddard
Institute for Space Studies, Center for Climate Systems Research at Columbia
University in New York City. Because this research was initiated prior to the
release of the Coupled Model Intercomparison Project 5 (CMIP5) and the most
recent CMIP6, neither the Representative Concentration Pathways (RCPs) of
CMIP5, nor the Shared Socioeconomic Pathways (SSCs) of CMIP6 are refer-
enced explicitly. Instead, the MIROC GCM [Hasumi and Emori, 2008] was
selected for this analysis because its higher relative predicted increases in tem-
perature would yield a more pronounced effect on the generated precipitation
series. AMT projections under the A2 emission scenario- “a very heterogeneous
world, ” [Nakicenovic et al., 2000], were used due to the regional scale of this
study.

Following the procedure described in Yu et al. [2018], the continuous hourly
pressure time series were discretized into individual Pressure Change Events
(PCEs) associated with fronts or other precipitation-causing systems. During
the definition of PCEs, daily fluctuations in atmospheric pressure were mini-
mized by defining the pressure change as the difference between two pressure
readings separated from each other by 24 hours, as shown in Equation 1:

�𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡−24 Equation (1)

where 𝑃𝑡 is the pressure reading at hour t, and �𝑃𝑡 is the pressure change relative
to 24 hours prior. PCEs were categorized as either Increasing (InPCEs) or
Decreasing (DePCEs) based on the computed direction of the pressure change.
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Two important features defining the magnitude of each PCE are the duration
and the Cumulative Event Pressure Change (CEPC). In the stochastic process
described in the next section, these two features will be used as the conditions for
selecting the subsequent PCE. The CEPC for each PCE is defined per Equation
2:

CEPC = ∑𝑑
𝑡=0 �𝑃𝑡 Equation (2)

where �𝑃𝑖is the 24-hour pressure change relative to hour t in a PCE defined
in Equation. 1, d is the duration of the PCE. The intensity, duration, and
alternating of DePCEs and InPCEs correspond to the strength and speed of the
precipitation causing meteorological systems as they move past the recording
gauges.

Methodology
Algorithm Design
Yu et al. [2018] used PCEs to describe the relationship between AMT and
specific precipitation characteristics, including the Probability of Precipitation
(POP) and the event Precipitation Depth (PD). PCEs, and especially DePCEs,
were shown to be associated with the vertical lifting of air, and associated con-
densation, coalescence, and precipitation. The analysis also showed that the
frequency of PCEs can be represented as a function of AMT, suggesting that a
synthetic series of future PCEs can be derived from future AMT projections.

The model uses non-parametric methods to simulate precipitation, making it
portable to other regions [Basinger et al., 2010]. The algorithm samples histori-
cal PCEs from specific AMT ranges (indexed to GCM outputs) occurring within
moving time windows. Since the characteristics of PCEs (e.g., type and mag-
nitude), their associated precipitation characteristics (e.g., POP and PD), and
AMT are statistically and physically related [Yu et al., 2018], a synthetic precip-
itation series can be generated by concatenating precipitation event characteris-
tics associated with specific sequences of PCEs. (Additional analysis regarding
the relationship between POP and PCE is presented in the Appendix).

Figures 1 and 2 provide more detail on the procedure used to sample an individ-
ual PCE based on temperature and time. The overall stochastic algorithm is rep-
resented in Equations 3 and 4, where PCE1 is selected from a group of candidate
PCEs, {PCE}, that could begin at the time 𝑡0 based on the GCM-projected
AMT for 𝑡0, (AM𝑇0), and the size of the moving window, Win. Specifically, the
set {PCE} is selected based on Equation 3.

{PCE} = 𝑓 (𝑡0, 𝐴𝑀𝑇0, 𝑊𝑖𝑛) Equation (3)

PCE1, the new successive PCE, is selected from within {PCE} but is conditioned
on the preceding PCE, PC𝐸0, in the sequence per Equation 4

PCE1 = 𝑓(𝑃𝐶𝐸0, {𝑃𝐶𝐸}) Equation (4)
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The moving window has been used to simulate temporally stationary precipi-
tation by other researchers using different length, such as 60 days by [Sharma
and Lall, 1999] or 90 days by [B. Rajagopalan and Lall, 1999]. The decision to
use a shorter window (e.g., 30 days) was made in this study to better represent
seasonality. The seasonal window is further narrowed using temperature, such
that only PCEs corresponding to a particular time of year and temperature is
selected, creating stability to the algorithm. The 6°C window was selected be-
cause seasonal shifts of POP for both DePCE and InPCE were detectable in this
range [Yu et al., 2018]. For example, in Figure 2, a day in March with AMT of
9°C can be used to select the subsequent PCE. The horizontally and vertically
shaded bars, both centered at this data point, graphically depict the 30-day,
and the 6°C, windows, respectively. The intersection of these two shaded bars
defines the set {PCE}, described by Equation 3.

Steps 2 & 3 of Figure 1 can be denoted by Equation 4, where the new PCE
will be sampled from {PCE} based on the condition of the previous one, PC𝐸0.
In step 2, the PCEs of the same type of PC𝐸0 are excluded, ensuring that
InPCEs are always followed by DePCEs and vice versa. In Step 3, a K Nearest
Neighbor (KNN) approach [Lall and Sharma, 1996] is employed to select one
PCE out of the remaining PCEs from Step 2 to append to the synthetic series
after PC𝐸0. In this study, “nearest neighbors” are selected from {PCE} based
on the magnitude of PC𝐸0, defined by the Euclidian distance of the standard
scores of CEPC and event duration (Additional details provided in the Appendix
10.2). Specifically, the candidate PCE in {PCE} whose predecessor’s magnitude
is closest to the magnitude of PC𝐸0 will be chosen as the subsequent one to
continue the generation.

After the selection of PC𝐸1, the time of interest is advanced from 𝑡0 to 𝑡1 by the
duration of PC𝐸1 (Equation 5). Next, 𝑡1 is used to update the projected AMT,
AM𝑇1 in Equation 6. For example, if 𝑡0 is 2054-1-31 10:00 and the duration
of PC𝐸1 is 25 hours, then 𝑡1 will be 2054-2-1 11:00. AM𝑇1 will be the AMT
projected for Feb 2054.

𝑡1 = 𝑡0 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝐶𝐸1 Equation (5)

AM𝑇1 = 𝑓 (𝑡1) Equation (6)

After completing the stochastic process, the corresponding precipitation series
of each synthetic PCE is concatenated to form the final hourly synthetic precip-
itation series.
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Figure 1. Flow chart of the synthetic precipitation generation algorithm
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Figure 2. Sample of a two-dimensional moving window, a day in March with
9°C AMT is the time of interest. The horizontal shadow area is the 30-day
moving window. The vertical shadow area is the 6°C wide temperature window,
centered on 9°C. The PCEs in the intersection are the candidates for sampling
the next one.

Two-step Validation Approach
To validate the approach, the algorithm was used to generate synthetic se-
quences of precipitation for both historic (e.g., 1975-2012) and future (e.g., 2035-
2099) periods. One hundred realizations of precipitation for each of these time
periods were generated. The historic simulations were generated using observed
AMT, while the future simulations used the climate change AMT projected by
Center for Climate Systems Research at Columbia University. To simplify the
discussion, the time series of historic precipitation is referred to as the “Ob-
served” series, the modeled time series of the historic period is referred to as the
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“Reanalysis” series, and the modeled time series of the future period is referred
to as the ”Forecasted” series.

The validation process involves two steps. In step 1 (described in Section 4.1),
the Reanalysis series is compared to the pooled precipitation observations de-
scribed above, demonstrating the algorithm’s ability to replicate the physical
link between precipitation occurrence and temperature. The goal is to demon-
strate the model’s ability to bracket trends displayed in the historical data. This
comparison will first depict the relationship between PD and the magnitude of
pressure change (e.g., CEPC). Next, it will show the impact of temperature (e.g.,
AMT) and the dependence of different seasonal PD percentiles on temperature
(e.g., AMT). The analysis of PD distributions in all the plots are displayed in
contours while the trends of PD are lined up by Loess regression curves ([Cleve-
land et al., 1992]) are generated to display trends in these relationships.

In Step 2 of the validation process (described in Section 4.2), the forecasted
series are qualitatively compared to precipitation forecasts made for this period
by Hayhoe et al. [2007]. Box plots of seasonal and annual PD for 2035~2069
and for 2070~2099 are developed for comparison with box plots for the same
future time slices generated by Hayhoe et al. [2007]. This same plot is used to
discuss the implications of climate change on future precipitation, specifically
through a comparison of the Reanalysis series to the Forecasted series. A further
breakdown of the shifts of distributions and trends of seasonal precipitation
of the reanalysis series is presented against pressure change (e.g., CEPC) and
temperature (e.g., AMT).

Results
Validation Step 1: Comparison of all series
We note that because the Reanalysis series includes 100 replicates of the historic
period, it more clearly presents the characteristics of PCE than the pooled
observations. To reflect the relationship between precipitation and temperature,
the results are presented for each of the three series.

The relationships between PD and CEPC embedded in all time periods are
shown in Figure 3, with nearly identical trends evident in all series. Because
all dry PCEs lie on the horizontal axis (e.g., PD = 0 mm), the contours reflect
the density distribution of only the wet-weather PCEs. The contours show a
nearly identical distribution of PCEs over all three series. On the horizontal
axis, 0 hPa separates DePCEs (to the left) and InPCEs (to the right). This
point on the horizontal axis also corresponds to a point of inflection in the PD
trend line. The steeper slope of the PD trend line indicates that precipitation
is more sensitive to DePCEs than to InPCEs. Among DePCEs, PD increases
with increasing (negative) CEPC. Among InPCEs, PD decreases with increasing
(positive) CEPC. These differences are not surprising because increasing pres-
sure tends to be associated with increased atmospheric stability, indicating less
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convection, condensation, coalescence, and precipitation. Slight discrepancies
in the trend lines are apparent at the left and right extremities. The differences
between the Reanalysis trend and the Observed trend at the extreme DePCEs
and InPCEs are likely due to the larger sample size of the synthetic series. The
impact of climate change is evident through the higher trend line for the Fore-
casted series at the extreme InPCEs. An analysis of the associated POP is
provided in the Appendix.

Figure . The relationship between Precipitation Depth (PD) and Cumulative
Event Pressure Change (CEPC) of all Pressure Change Events (PCEs) for the
comparisons of Observed, Reanalysis (for validation), and Forecasted (for show-
ing climate change impacts). Since contours indicate the distribution of PCEs
qualitatively, their corresponding values are not shown. Loess regression curves
in-dash are shown for each dataset to denote the trend of PD against CEPC.

By introducing AMT and precipitation quantity as additional dimensions to
the validation process, the distribution of PD can be further decomposed, as
shown in Figure 4. Most precipitation events are categorized as mild PD (e.g.,
0~20mm) and, as a result, the distribution of PD is stable in the upper plot
of Figure 4. Enhanced ensembles in the Reanalysis series provide a clearer
transition from 5 mm and 10 mm than in the Observed.

For moderate events that have a smaller sample size, (e.g., PD = 20~60mm)
differences in the Observed and Reanalysis series distributions are more obvious.
The contours of 35 mm retreat from the middle of the plot in the Reanalysis
compared to the Observed. Only an isolated area located at 20 oC and -300 hPa
is denoted as >35mm. Under the impacts of climate change in the Forecasted,
the 35 mm contour retreats even further while the isolated peak area expanded
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toward low temperature and low CEPC.

Extreme events (e.g., PD > 60mm) presented in the Observed series are too few
and too scattered to discuss. In the Reanalysis series, the high DePCEs (low end
of the tiled area) for all AMTs have PD > 100 mm. Impacts of climate change
are evident in the Forecasted series as the region of PD > 100mm extends
to high AMTs. This observation is consistent with the projections of more
extreme precipitation under climate change that have been made by many other
researchers [Betts et al., 2007; Hamlet and Lettenmaier, 1999; Huntington, 2003;
Labat et al., 2004], to be discussed further in the next section.

As reflected in Figure 4, most of the high wet InPCEs (high end of the tiled
area) are of mild PD and occur more frequently in low AMT. With the spread-
ing occurrence region toward warm AMT in the Forecasted for all categories,
extreme wet InPCEs will have higher PD under the climate change which agrees
with the discrepancy of trend lines observed at the right end in Figure 3.

@ >p(- 2) * >p(- 2) * @

1. Mild Precipitation

&

1. Intensive precipitation
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Figure . Relationship of Precipitation Depth (PD) against Cumulative Event
Pressure Change (CEPC) and Average Monthly Temperature (AMT) in different
ranges of PD. The color area represents the average PD of rainy Pressure Change
Events (PCEs) corresponding to different combinations of CEPC and AMT.
Contours and labels indicate the local regressions of PD vs. CEPC & AMT
generated by the locfit function in R. (A: mild precipitation with PD between
0 and 20 mm, B: moderate precipitation with PD between 20 and 60 mm, C:
extreme precipitation with PD > 60 mm)

Additional insights of the dependence between PD and temperature can be
derived from PD percentiles separated by type of PCEs (Figure 5). While the
PD of DePCE is similar across all temperatures, the PD of InPCE generally
increases with temperature, especially between 25th and 99th percentiles. This
relationship could be related to the type of precipitations in different seasons.
During winter, most weather mechanisms are systematic and the movement of
the precipitation region is geographically related to DePCE. Once the shifting
to InPCE, precipitation will end quickly causing PD of InPCE much lower
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than that of DePCE. But in Summer, there are many localized convections
that a rainy system generated in a DePCE of small geographic scale has a big
chance to move into a large scale InPCE area remaining a big portion of PD.
Specifically, DePCE is the small center forming precipitation while InPCE is
the surrounding contributor of air and humidity. To balance a DePCE, air
must move downward in the surrounding region, creating an InPCE. However,
the precipitation formation cloud is dynamically developed and moves. Given
the tributary InPCE area is usually much larger than what can be represented
by the point-sourced data collected at ground-based stations, precipitation was
more difficult to be observed for InPCEs than for DePCEs, especially in local
systems in summer. In addition to PD, the variance of PD percentiles of InPCE
expands as the temperature gets warm, indicating that such possibility may get
higher at extreme PD. The relationship between POP with seasonality and for
different PCE types is explored in Appendix.

Figure . Dependence of Pressure Change Event (PCE) type and Precipitation
Depth (PD) on Average Monthly Temperature (AMT). The contours represent
the distributions of PCE in different datasets. Again, since contours indicate
the distribution of PCEs qualitatively, their corresponding values are not shown.
The percentiles of PD illustrate its trend and variances against AMT.
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Validation Step 2: Comparison of the Forecasted Series to
forecasts made by others
In this section, the SPG algorithm results will be qualitatively compared to other
research. After researching nine coupled atmosphere–ocean general circulation
models (AOGCMs) under different emission scenarios, Hayhoe et al. [2007]
projected a consistent change of precipitation under global warming across the
northeast US, with the magnitudes positively correlated to GHG emissions. As
shown in Figure 6A, under the A2 emissions scenario, annual temperature and
precipitation across the northeast US are projected to increase by about 2.5°C
and 6%, respectively in 2035~2064, and by about 4.5°C and 8% in 2070~2099,
respectively. The greatest percent increase in precipitation is expected to occur
in winter.

Figure 6B presents a seasonal comparison of temperature and precipitation
change between the Observed and the Forecasted datasets for the two time
slices considered in Hayhoe et al [2007]. AMT projections show a gradual in-
crease of about 2°C by 2069 and 5°C by 2099 on average, annually as well as
for both Summer and Winter. The modeled change in precipitation reflects a
shift that partially aligns with the projections by Hayhoe et al. [2007]. While
annual increases are small and hard to differentiate, Winter precipitation will
increase more both before and after the 2069 breakpoint than Hayhoe et al.
[2007]. Summer precipitation will decrease by about 5% in the two future time
slices. These findings qualitatively agree with the projections by Hayhoe et al.
[2007], validating the results.
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Figure . Comparison of temperature and precipitation projections in NE US
in A2 emissions (A from [Hayhoe et al., 2007], B from the Observed and the
Forecasted datasets)

Figure 7 provides a closer examination of the seasonal trends of PD relative
to CEPC & AMT and reveals more information about precipitation changes
under climate change by focusing on three time periods, the observed period,
2035~2069, and 2070~2099. According to Yu et al. [2018], maximum PCE
frequencies occur at 0°C. This observation suggests that global warming may
promote atmospheric stability, producing more PCEs for small CEPCs. This
phenomenon can be observed from the upward trend of PCE distributions from
the observed period to 2035~2069 and to 2070~2099 in Figure 7, especially in
winter, spring, and fall. For summer, although the upward trend is not pro-
nounced, the portion of PCE distributions (solid lines) < 10 mm (dashed lines)
shrinks from the observed period to 2035~2069 and to 2070~2099, indicating
that small PD will be less frequent in the climate change impact. This could
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be due to the reason that the convection system in summer is much more in-
tensive than in other seasons and can deplete the amplified moisture-holding in
warmer air under the CC relationship. However, the portion of the rainy PCEs
in Summer (labeled under the marginal density plot) out of all rainy PCEs
indicates that the chance of Summer precipitation will slightly decrease from
24.7% to 24.6%. Thus, even though intensive PD would be favored under warm
AMT, the overall Summer PD may not increase, agreeing with Figure 6. In
Winter, the portion of rainy PCE in Winter will increase from 26.1% to 26.7%
in 2035~2069 and to 27.3% in 2070~2099. Consequently, an increase in Winter
PD would occur as Figure 6 shows.

Figure . Seasonal average Precipitation Depth (PD) change vs. Cumulative
Event Pressure Change (CEPC) & Average Monthly Temperature (AMT) in
the Observed dataset and different projection periods. Solid contours represent
the main distribution of Pressure Change Events (PCEs), while the dotted lines
show the distribution of PD. Again, since contours indicate the distribution of
PCEs qualitatively, their corresponding values are not shown. Dotted contours
and labels in black are in millimeters indicating the local regression of PD vs.
CEPC & AMT generated by the locfit function in R. The percentage numbers
below the marginal density plots show the portion of PCEs of each season in a
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year for different datasets.

Key findings
The foundations of this algorithm are the relationships between precipitation
and AMT using PCE characteristics as a media for interpreting the precipitation
mechanism. With the logic that precipitation is subject to its PCE character-
istics while the PCE occurrence is determined by temperature (AMT � PCE
� Precipitation), synthetic future precipitation time series were created using
AMT as a primary input for generating PCE sequence under climate change. It
is crucial that the algorithm has a sound physical basis because 1) the physical
construct should not vary significantly as the climate changes and 2) empiri-
cal models may not be valid or accurate when extrapolated beyond observed
datasets.

Many researchers have endeavored to describe the dependency of precipitation
on temperature, such as prior and post temperature change to an extreme pre-
cipitation event in a tropical area [Visser et al., 2020]. As atmospheric instability
favors precipitation formation, high CEPC is an indicator for vertical air move-
ment, condensation, and precipitation, and as such is representative of the CC
relationship. Therefore, the extreme events (e.g., summer convections, Winter
blizzards) with intensive precipitation formation mechanisms have the capabil-
ity to deplete the precipitable moisture. The trend is apparent in InPCE as
indicated by PD driven percentiles shown in Figure 5. As intensive and rainy
InPCE are typically contributory to intensive DePCE, the CC relationship is
an accurate representation of these conditions.

Figure 5 reveals that the PCE type plays an important role. Condensation is
favored during DePCEs the intensity of which indicates the forces extracting
moisture from the air. This could be a possible explanation for the stable dis-
tribution of PD over the temperature in Figure 5. At the same time, strong air
convection requires the intake of air from surrounding regions that are much
larger than the rainy zone itself. In other words, a high-intensity DePCE is
balanced by a high-intensity wide-spreading InPCE. Thus, precipitation during
InPCEs usually occurs when the observation site is originally outside of the
core DePCE area but located on the path of the rainy zone movement. Con-
sequently, not all available moistures can be condensed, and this condition is
even capped by the moisture-holding capacity represented by the shift up of
PD distribution for InPCE in Figure 5. The analysis also shows that during
InPCEs, PD increases above 12°C in Figure 5, likely corresponding with the
increased frequency of thunderstorms and other severe air convection beginning
in Spring, and agreeing with condensed Summer PD contours in Figure 7.

The dissimilarities observed in intensive CEPC PD in Figure 3 suggest that
extreme PD is likely to become more intensive in the future as the temperature
warms. Given that Summer DePCEs is likely to skew toward non-high inten-
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sity events (see Figure 7), intensive DePCEs ( -2000hPa ~ -300hPa) that cause
extreme precipitation is likely to occur less frequently. Accounting for warming,
the remaining extreme precipitation associated with intensive DePCEs would
be benefited from the CC relationship and result in more severe precipitation
stress in the future.

Limitations and future efforts
One of the main purposes of this study was to demonstrate the physical sound-
ness of PCE as a media to associate precipitation and temperature. Thus, the
study did not include many climate models to obtain a robust sample size for
analysis and the analysis was neither conducted statistically. We believe the
physical phenomenon represented by PCE will be generally found in any climate
model, but MIROC, the extreme condition, could embody it more pronouncedly
than other mild models.

Although the results qualitatively agree with other research, the current algo-
rithm resamples observed events without altering their volumes or temporal
patterns whose changes are expected under global warming [Fadhel et al., 2018;
Wasko and Sharma, 2015]. Although better extrapolation of future precipitation
can be made, introducing scaling parameters, however, may bring bias to the
demonstration of this algorithm. Being conservative in this study to prove the
physical soundness of PCE as the first step, our future work will focus on how
to tune the model or scaling for extrapolation.

In addition, the hourly time step was not fine enough to reflect the temporal
pattern of a precipitation event, especially in summer convections. To solve this
issue, possible improvements could be 1) using new data in more granular tem-
poral scales to embody the patterns of extreme weather events, 2) investigating
the nexus of temperature, humidity, and pressure in triggering and producing
precipitation, and 3) quantifying the scaling impact of climate change on the
volume and temporal patterns of PCEs, which is the driven force of moisture
extraction. In the contrast to precipitation, the above improvements can also
be applied to drought since InPCE is very likely an important indicator of NO
rain. More importantly, PCE brings the light to preserve the physical concepts
that hold regardless of locations, time, and weather conditions while generating
synthetic series. Once weather conditions can be classified properly by including
PCE with other weather variables, all PCEs observed in the world can be polled
to support the current non-parametric algorithm for any location at any time
with any projected climate change temperature in the same physical system
with significantly enhanced sample size.
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Summary and conclusion
A nonparametric stochastic algorithm for generating non-stationary hourly pre-
cipitation was developed. The semi-physical link between hourly precipitation
and Average Monthly Temperature (AMT) was built using Pressure Change
Event (PCE). Moving windows on both temperature and time were used to
identify PCE and associated historical hourly rainfall observations that could
be used to simulate future changing conditions. A multi-variate bootstrapping
method was employed to reflect the covariance of Cumulative Event Pressure
Change (CEPC) and PCE duration in a simulation process. This process is a
very important finding that provides a sophisticated solution to build the rela-
tionship between Global Climate Model (GCM) temperature projections on a
coarser temporal scale and climate characteristics on a finer scale.

After applying GCM AMT projections for the US Northeast until 2099, this
algorithm was used to generate synthetic PCE ensembles and associated pre-
cipitation series qualitatively agreeing with the projections obtained by other
researchers in terms of seasonal precipitation and extreme precipitation. Pre-
cipitation Depth (PD) was found to be highly correlated to PCE. The PCEs
can be used to link temperature and precipitation dynamics, presenting a more
physically plausible concept, in contrast to pure statistical assumptions used by
most existing models.

Overall, the analysis suggests that:

• Increasing Pressure Change Event (InPCE) PD increases with
AMT more significantly than with Decreasing Pressure Change
Event (DePCE) which could be due to the point sourced data
in this study

• In the NE US, more frequent mild and lighter precipitation
events are likely to occur in the future during all seasons

• Overall, Summer precipitation is likely to be reduced, while
Summer extreme events are likely to become more frequent un-
der climate change

• Winter precipitation is likely to increase

Moreover, because PCEs are more strongly related to precipitation formation
than coarser temporal scale temperature (e.g., monthly), this algorithm may
represent a reliable method for downscaling precipitation from GCM AMT pro-
jections, which are more trustworthy than GCM precipitation projections on
their own. Despite being non-parametrically structured, PCE could also be
further explored as a means of integrating physically plausible synthetic future
events into time series generated, even through parametric procedures.

In conclusion, this paper demonstrates a means of generating long, continuous,
synthetic precipitation series scaled-down from GCM AMT projections. These
series could then be used for a variety of climate change model applications, such
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as hydrologic and hydraulic modeling, water resource modeling and agriculture
applications, etc.
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Acronyms Description
AMT Average Monthly Temperature
AOGCM atmosphere–ocean general circulation models
BOS Boston
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RCP Representative Concentration Pathway
SPG Stochastic Precipitation Generator
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Appendix
Geographic scope

Figure . Locations of weather stations in the research area (size of circles
indicates the length of available data) New York City (NYC) (station ID:
72503014732 for 1973~2018 & 99999914732 for 1948~1973), Philadelphia (PHL)
(station ID: 72408013739 for 1973~2018 & 99999913739 for 1941~1973) and
Boston (BOS) (station ID: 72509014739 for 1943~2018) from NOAA NCEI

Dependence of precipitation on PCE characteristics
The CEPC magnitude and PCE duration are used in the KNN analysis because
of their relationships to the stability of air masses. Since a collision of air mass
is usually accompanied by pressure change, the PCE duration is considered a
general indicator of the horizontal stability of the air mass over the weather
station (i.e., a short PCE indicates a stable air system). Within an air mass,
vertical stability is negatively associated with CEPC magnitude. For example,
the smaller the CEPC, either DePCE or InPCE, the more vertically stable
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the air mass, and vice versa. Precipitation is more likely to form in vertically
unstable air masses [Ackerman and Knox, 2007; Ackerman and Knox, 2015],
especially DePCE.

For illustration, Figure 9 graphically depicts the relationship between CEPC and
PCE duration of all historical PCEs. The contours indicate that precipitation
is more likely to occur during DePCE, favored by both intensity and duration.

Figure 9. Precipitation dependence on both Pressure Change Event (PCE)
duration and Cumulative Event Pressure Change (CEPC) (Red: dry PCE, Blue:
wet PCE)

To consider both CEPC and duration of the stochastic process, the magnitude
of a PCE is defined by Equation 7.

𝑀PCE = √(𝑑𝑧)2 + (CEPC𝑧)2 Equation 7

Where 𝑀PCE is the magnitude of a PCE; subscript z denotes the z score of
the corresponding dataset; 𝑑𝑧 and CEPC𝑧 are the z scores of the duration and
CEPC of the PCE, respectively. The conversion of the z score help obtain equal
weighting for the two features in determining the magnitude of a PCE.

K Nearest Neighbor (KNN) parameter selection
In Step 3 of the algorithm (Figure 1), the measure to determine the “nearest
neighbors” is calculated by the Euclidian distance integrating both CEPC and
PCE duration after scaling on the whole population. The value k is defined in
the following equation suggested by Lall and Sharma [1996] on Page 684.
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𝑘 = √𝑛

where n is the number of PCE in {PCE}

Relationship between POP and CEPC
In Figure 10, as the magnitude of CEPC increases, the POP of DePCE climbs
from 15% to 100% within 0 ~ -800 hPa, while InPCE POP increases only from
15% to about 50% within 0 ~ 1000 hPa. Given the limited sample size of extreme
InPCE (n = 79 when CEPC > 820 hPa in historical data), less confidence is
associated with the POP beyond 820 hPa. For CEPC<-1000, there are 5 histor-
ical PCE observed in BOS between 1944 and 1946 without precipitation. But
all of them have a sudden air pressure drop about 100 hPa within 1 hour, which
lead to a heavy bias. Although these events are excluded in the analysis in our
model, we treat the POP in this range as 100% regardless of the decreasing trend
lines. Thus, falling pressure appears to be a better indicator of precipitation
than increasing pressure.

Figure . Dependence of Probability of Precipitation (POP) on Cumulative Event
Pressure Change (CEPC). The grey area represents the Observed data. All
datasets are fitted by loess regression in different colors separated by two types
of Pressure Change Event (PCE) at CEPC =0 hPa.

In Figure 11, the POP in Spring for DePCE historically oscillates between 50%
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to 70% with a low end at around 19°C. Despite the decrease beyond 15°C, its
synthetic trend bears a similar general level. As for InPCE, POP remains around
25% for both the Observed and the Forecasted. The Forecasted POP trend on
AMT spans a larger range than the Observed with a similar pattern after 5°C.
This situation could also be found similar in Summer and Fall for both PCE
types. Despite similar patterns, the Winter POP of both PCE types historically
increases after 6°C while the Forecasted series remain stable. This indicates
that the rain likelihood would be lowered for warm Winters in the future in this
region. Focusing on the low variation parts in the middle-temperature range of
all seasons, the POPs for both PCE types generally match between the Observed
and the Forecasted.

Figure 11. Seasonal dependence of Probability of Precipitation (POP) on Aver-
age Monthly Temperature (AMT). The average POP for each AMT from the
Observed and the Forecasted datasets is differentiated by solid lines and dotted
lines. Pressure Change Event (PCE) types are colored differently.
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