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meridional location of the Angola Low 18 
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Abstract 21 

Variations in southern African precipitation have a major impact on local communities, increasing 22 

climate-related risks and affecting water and food security, as well as natural ecosystems. However, 23 

future changes in southern African precipitation are uncertain, with climate models showing a wide 24 

range of responses from near-term projections (2020-2040) to the end of the 21st century (2080-2100). 25 

Here, we assess the uncertainty in southern African precipitation change using five Ocean-26 

Atmosphere General Circulation single model initial-condition large ensembles (30 to 50 ensemble 27 

members) and four emissions scenarios. We show that the main source of uncertainty in 21st Century 28 

projections of southern African precipitation is the internal climate variability. In addition, we find 29 

that differences between ensemble members in simulating future changes in the location of the 30 

Angola Low explain a large proportion (~60%) of the uncertainty in precipitation change. Together, 31 

the internal variations in the large-scale circulation over the Pacific Ocean and the Angola Low 32 

explain ~64% of the uncertainty in southern African precipitation change. We suggest that a better 33 

understanding of the future evolutions of the southern African precipitation may be achieved by 34 

understanding better the model’s ability to simulate the Angola Low and its effects on precipitation.     35 

  36 
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 37 

Plain Language Summary 38 

The variability of precipitation in southern Africa has a strong impact on local communities, rain-fed 39 

agriculture, food security and water demand, hydropower production, lake levels, ecosystems, and 40 

wildlife. Above-average rainfall increases the risk of flooding, while below-average rainfall increases 41 

the risk of drought. However, future changes in precipitation in southern Africa are poorly 42 

understood. Here, we examine the potential sources of uncertainty in southern African precipitation 43 

change using five ocean-atmosphere general circulation single-model initial-condition large 44 

ensembles and four emissions scenarios. We show that the main source of uncertainty is the 45 

simulation of internal climate variability throughout the 21st century. Among potential drivers, we 46 

show that the main driver of uncertainty in southern African precipitation change is the future change 47 

in the location of the Angola low. A future northward (southward) shift of the Angola Low is 48 

associated with a future decrease (increase) in southern African precipitation. We suggest that a better 49 

understanding of future changes in southern African precipitation could be achieved by better 50 

understanding the impact of internal climate variability on the Angola Low. 51 

 52 

 53 

  54 
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1. Introduction 55 

Southern Africa shows a high degree of year-to-year variability in seasonal precipitation amounts 56 

(e.g., Dieppois et al. 2016, 2019; Reason, Landman, and Tennant 2006; Ullah et al. 2023). Coupled 57 

with reliance on rain-fed agriculture and growing water demand, the high variability of rainfall 58 

increases climate-related risk for local communities. For example, rainfall variability can lead to 59 

extreme conditions, such as the so-called 'Day Zero drought' observed in Cape Town in 2018 (Burls et 60 

al., 2019; Pascale et al., 2020; Wolski et al., 2021) and more largely all over southern Africa (Ayugi et 61 

al., 2022). Precipitation variability is also associated with reductions in lake levels and hydroelectric 62 

production (Conway et al., 2017; Siderius et al., 2018), and large impacts on natural ecosystems and 63 

wildlife (Dallas & Rivers-Moore, 2014). Above-average rainfall also leads to a higher risk of 64 

flooding, with severe consequences for communities in southern Africa (Li et al., 2016; Tramblay et 65 

al., 2022).  66 

Southern African precipitation varies on several timescales in response to internal modes of climate 67 

variability. On interannual timescales, for example, rainfall in southern Africa is strongly linked to the 68 

El Niño Southern Oscillation (ENSO) (e.g., (Crétat et al., 2012; Dieppois et al., 2015, 2016, 2019; 69 

Gaughan et al., 2016; Gore et al., 2020; J Malherbe et al., 2016; Ratna et al., 2013; Ratnam et al., 70 

2014). In addition to ENSO, changes in the strength and location of the Angola Low (AL) modulate 71 

the interannual variability of the southern African precipitation (Crétat et al., 2019; Pascale et al., 72 

2019). On decadal timescales, the effect of ENSO on southern African precipitation is modulated by 73 

decadal modes of climate variability in the Pacific Ocean (e.g., Pacific Decadal Oscillation, 74 

Interdecadal Pacific Oscillation; (Dieppois et al., 2016, 2019; J Malherbe et al., 2016; Benjamin Pohl 75 

et al., 2018; Reason & Rouault, 2002), the Indian Ocean (e.g., subtropical Indian Ocean dipole 76 

[SIOD]; Behera and Yamagata 2001), the Southern Hemisphere large-scale circulation (e.g., Southern 77 

Annular Mode), and the Hadley circulation (J Malherbe et al., 2016; Johan Malherbe et al., 2014).  78 

Another source of precipitation anomaly is the effect of climate change, which is mostly associated 79 

with the effects of anthropogenic activity. The externally forced response is associated with a weak to 80 
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moderate change in precipitation, with a wetter climate over tropical Africa and a contrasted decline 81 

in precipitation further south (B. Pohl et al., 2017). However, changes in precipitation are uncertain 82 

and model-dependent, with a low inter-model agreement in the simulated change in precipitation, 83 

particularly during the wet season in the Austral summer (Almazroui et al., 2020; Dosio et al., 2021; 84 

C Munday & Washington, 2019; B. Pohl et al., 2017; Wu et al., 2024). Changes appear to be more 85 

robust when considering extreme events (B. Pohl et al., 2017), with climate change increasing the 86 

likelihood of a new Day Zero drought (Pascale et al., 2020). In addition to changes in precipitation, 87 

climate change is leading to a large increase in potential evapotranspiration and, therefore, a drier 88 

climate over southern Africa (Ukkola et al., 2020).  89 

While there is evidence that climate change may strongly affect the southern African climate, through 90 

an increase in the frequency and intensity of extreme events, such as heatwaves, heavy rainfall and 91 

drought (B. Pohl et al., 2017; Ukkola et al., 2020), uncertainties in climate change projections for 92 

southern Africa remain high. We also know very little about the source of these uncertainties in 93 

regional climate change projections. As highlighted by (Lehner et al., 2020), near-term changes in 94 

southern African precipitation conditions could be strongly uncertain because of: i) differences in 95 

model physics and/or model sensitivity to externally forced changes in global radiative forcing; ii) 96 

different sequences of internally driven climate variations; iii) alternative socio-economic and 97 

emissions scenarios, as well as different horizons. Improving our understanding of future changes is 98 

important for decision-makers and water management, for instance. Understanding both 99 

aforementioned sources of uncertainty is thus critical and requires large ensembles of simulations 100 

(Deser et al., 2014; Lehner et al., 2020; Maher et al., 2019; Paul-Arthur Monerie et al., 2017). This 101 

scientific and societally relevant question has yet to be addressed so far in the literature. We bridge 102 

this gap by assessing how internal climate variability could affect the future change in precipitation 103 

relative to the externally forced response. In particular, we address the following questions: 104 

- What are the contributions of the three main sources of uncertainty (internal variability, 105 

model, and scenario uncertainty) to future changes in southern African precipitation? 106 
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- What are the mechanisms at play behind the uncertainty in the change in southern African 107 

precipitation?  108 

 109 

The paper is organised as follows. Section 2 describes the data and methods. In section 3, we analyse 110 

the effect of both the externally forced response and internal climate variability on southern African 111 

precipitation. The results are discussed in section 4, and section 5 summarises the main findings of the 112 

study. 113 

 114 

  115 
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2. Data and Method 116 

2.1 Climate Model Simulations 117 

   118 

We use five Ocean-Atmosphere General Circulation Single Model Initial-condition Large Ensembles 119 

(SMILEs) (Table 1) forced by four future emissions pathways (SSP1-2.6; SSP2-4.5; SSP3-7.0 and 120 

SSP5-8.5), for which we have between 30 and 50 ensemble members. Multiple SMILEs and 121 

emissions scenarios allow us to assess the contribution of the three main sources of uncertainty in 122 

southern African precipitation changes. All models participated in the sixth phase of the Coupled 123 

Model Intercomparison Project (CMIP6; Eyring et al. 2016).  124 

All data were re-gridded to a common horizontal resolution of 1.5° x 1.5° using bilinear interpolation 125 

to facilitate comparison between models. We use monthly means to assess future changes in the 126 

southern African climate. 127 

Model Number of ensemble 

members 

Res. (lat x lon) References  

ACCESS-

ESM-1-5 

40 145 x 192; 1.25° x 1.875°  (Ziehn et al., 2020) 

CanESM5 50 64 x 128; 

~2.79° x 2.81°  

(Swart et al., 2019) 

MIROC6 50 128 x 256; 1.4° x 1.4° (Tatebe et al., 2019) 

MPI-ESM1-

2-LR 

30 96 x 192; ~1.85° x 1.875°   (Mauritsen et al., 2019) 

Ec-Earth3 50 256 x 512; 0.7° x 0.7 (Wyser et al., 2020) 

Table 1: Names, number of the available ensemble members for each scenario, horizontal resolutions 128 

and references of the five SMILEs used in this study. 129 
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We also compare the SMILEs' results to an ensemble mean composed of the outputs of 43 climate 130 

models (Table S2), using a single ensemble member for each model (hereafter referred to as the 131 

CMIP6 ensemble). This comparison aims to verify that the five SMILEs are representative of the full 132 

CMIP6 ensemble. This aforementioned comparison is performed using the historical and SSP5-8.5 133 

scenarios.  134 

 135 

2.2 Climate Indices  136 

 2.2.1 The Summer Rainfall Index 137 

 138 

The Summer Rainfall Index (SRI) is computed following (Dieppois et al., 2016). For each grid point, 139 

we map the months of the monthly precipitation peak. SRI is defined as the region where precipitation 140 

peaks between December and February (Figure S1; blue contours in Figure 1b).  141 

 142 

2.2.2 Sea surface temperature and atmospheric circulation 143 

 144 

We assess several drivers of precipitation variability based on both the results of Sect.3 and the 145 

literature. We summarise these below: 146 

- We assess the effect of ENSO, which has strong effects on southern African precipitation, by 147 

computing the Nino3.4 index [5°S-5°N; 190°-240°E] using sea surface temperature anomalies 148 

following (Barnston et al., 1999). The effect of the changes in Pacific SST on the large-scale 149 

atmospheric circulation is assessed by averaging the anomalies in 200 hPa velocity potential 150 

over the Pacific [20°S-20°N; 120°E-270°E], hereafter referred to as VP200. 151 

- The variability of the Indian Ocean SSTs affects the southern African precipitation, and we 152 

use two different indices. We averaged the SST of the Indian Ocean [20°S-10°N; 60°E-153 

120°E], and used the subtropical Indian Ocean Dipole (SIOD) index, which is the difference 154 

between the western [37°S-27°S; 55°E-65°E] and eastern [28°S-18°S; 90°E-100°E] Indian 155 

Ocean SST (Behera & Yamagata, 2001). 156 



9 

- Desbiolles et al. (2020) show that the Angola-Benguela Frontal Zone (ABFZ) plays a key role 157 

in modulating the AL activity, hence impacting precipitation. The ABFZ index is calculated 158 

as the average of the SST over the eastern Southern Atlantic Ocean [21°S-9°S; 5°E-20°E]. 159 

- Pascale et al. (2019) show that changes in the upper-level atmospheric circulation affect 160 

southern African precipitation through the propagation of a Rossby Wave. We address the 161 

effect of changes in the upper-level tropospheric atmospheric circulation by averaging 200 162 

hPa geopotential height anomalies (Z200) over the Southern Indian Ocean [60°S-20°S; 20°E-163 

60°E]. 164 

- Variations in the location and strength of the AL affect precipitation over Southern Africa 165 

(Crétat et al., 2019; Callum Munday & Washington, 2017; Pascale et al., 2019). We extract 166 

the location of the AL as the minimum of the 700 hPa relative vorticity over southern Africa, 167 

following Crétat et al. (2019). The meridional location of the AL is then defined as the 168 

latitudinal location of the minimum of the 700 hPa relative vorticity over southern Africa 169 

[25°S-8°S; 10°E-30°E] after performing a cubic spline interpolation, following (Shekhar & 170 

Boos, 2017). 171 

 172 

2.2.3 Internal variability and externally forced response 173 

 174 

Each ensemble member of a climate model provides an estimate of the change in precipitation that is 175 

due to both the effects of the externally forced response and internal climate variability. The latter is 176 

expected to be out of phase between simulations. One assumption is that the ensemble mean of a large 177 

ensemble of simulations allows the difference between ensemble members to be removed, preserving 178 

the common part of the signal, which we assume to be the externally forced response. The externally 179 

forced response to climate is then defined as the ensemble mean of each SMILE. Following (Deser et 180 

al., 2014), the effect of internal variability is then defined as the deviation from the externally forced 181 

response, as follows: 182 

 183 
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𝐼𝑉𝑚𝑣  = 𝛥𝑚𝑣 − 𝛥𝑣
̅̅ ̅ ,                       [1] 184 

 185 

Where 𝛥 denotes the change (future minus historical period) of a variable 𝑣, and for an ensemble 186 

member 𝑚. The overbar denotes an ensemble mean. 𝐼𝑉𝑚𝑣 is the internal variability component and 187 

𝛥𝑣   is the effect of climate change on each variable.  188 

 189 

We follow the 6th Assessment Report of the Intergovernmental Panel on Climate Change (Chen et al., 190 

2020) and define the effect of climate change over three different time horizons. We quantify near-191 

term (2020-2040), mid-term (2040-2060) and long-term (2080-2100) changes in precipitation relative 192 

to the period 1995-2014. We assess changes in the core of the Austral summer season, i.e., from 193 

December to February (DJF). 194 

 195 

2.2.4 Highlighting the effect of internal climate variability 196 

 197 

We assess the effects of internal climate variability on uncertainty in SRI changes by selecting the 198 

three ensemble members that show the strongest (i.e., stronger increase) and lowest (e.g., stronger 199 

decrease) changes in the internal component of SRI (following Eq. 1), for each year from 2015 to 200 

2100 for each SMILE and each emissions scenario. This selection of ensemble members allows for 201 

the generation of a database containing a large number of events (two sets of 5160 events: 5 SMILEs 202 

x 86 years x 3 ensemble members x 4 emissions scenarios). We merge all data together, assuming that 203 

the intra-SMILE ensemble variance is not dramatically impacted by the choice of the emissions 204 

scenario, as shown in Fig. S2. This database is then used to assess the effects of internal climate 205 

variability on SRI change and detect its main drivers.  206 

 207 

We assess the covariability of the drivers selecting ensemble members that simulate a strong 208 

evolution of the internal component of one of the selected drivers. For example, for the Z200-EN34 209 

correlation, we selected ensemble members that simulate the strongest (negative and positive) changes 210 
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in Z200 before calculating the correlation across these ensemble members between changes in Z200 211 

and EN34. 212 

 213 

2.5 Uncertainty in precipitation change 214 

 215 

We assess uncertainty in precipitation change following Hawkins and Sutton (2011). We define three 216 

sources of uncertainty defined as the divergence between models, ensemble members and scenarios, 217 

using the four SMILEs: 218 

i) Model uncertainty represents the difference between climate models in simulating future 219 

changes in precipitation. We first defined the effect of the externally forced response for each 220 

model and scenario (i.e., the multi-model mean). We then calculated the variance across all 221 

models for each scenario before calculating the average of the results across all scenarios. 222 

ii) The scenario uncertainty represents the difference between emissions scenarios in future 223 

changes in precipitation. We first calculated the ensemble mean across all models and 224 

ensemble members for each scenario before calculating the variance of the results across 225 

scenarios.  226 

iii) The internal variability uncertainty is the difference between the ensemble members of 227 

a single climate model. It is obtained by first calculating the variance across all ensemble 228 

members of each climate model and for each scenario before calculating the ensemble mean 229 

of the results across scenarios and models.  230 

iv) Total uncertainty is obtained as the sum of the model uncertainty, scenario uncertainty 231 

and internal variability uncertainty. 232 

 233 

The obtained time series are finally smoothed by fitting a fourth-order polynomial, following 234 

Hawkins and Sutton (2011). 235 

 236 

 237 

 238 
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2.6 A Tale of Two Futures 239 

 240 

We assess how and why different projections from the same model might diverge in simulating 241 

changes in southern African precipitation due to the effects of internal climate variability. We use the 242 

internal component (eq. 1) of the drivers of southern African precipitation variability (Sect. 2.2.3) and 243 

the database as obtained following Sect. 2.2.4. We perform a linear multiple regression to define how 244 

precipitation could change only because of the effects of the two main drivers of uncertainty identified 245 

in Sect. 3.2, such as: 246 

𝐼𝑉. 𝑆𝑅𝐼 =  𝛼 +  𝛽 (𝐼𝑉. 𝐷1) +  𝛾 (𝐼𝑉. 𝐷2) +  𝜖        [2] 247 

 248 

 249 

where 𝐼𝑉. 𝑆𝑅𝐼, 𝐼𝑉. 𝐷1 and 𝐼𝑉. 𝐷2 are the internal components of the SRI anomaly and the anomalies 250 

of the two selected drivers D1 and D2. 𝛼 is the precipitation anomaly that is not due to the two drivers 251 

D1 and D2, 𝛽 is the effect of D1 on precipitation, 𝛾 is the effect of D2 on precipitation. 𝜖 is the 252 

residual. 𝛼, 𝛽 and 𝛾 are defined with multiple linear regression.  253 

  254 
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3. Results 255 

3.1 Externally forced response and internal climate variability 256 

 257 

The CMIP6 multi-model mean (Fig. 1a) shows similar changes to the five SMILEs (Fig. 1b) for the 258 

near-term horizon (2020-2040), with moderate precipitation change and a low inter-model agreement. 259 

The five SMILEs are thus representative of the entire CMIP6 ensemble, in terms of the projected 260 

mean precipitation changes over southern Africa. Despite a change in magnitude, the same conclusion 261 

holds for the long-term change in precipitation (Fig. S3). 262 

 263 

The sign of precipitation change is only robust (i.e., 75% of agreement between ensemble members) 264 

over tropical and south-eastern southern Africa within most SMILEs (Fig. 1c-g). This inter-member 265 

disagreement is due to antagonistic changes between the ensemble members, with some projecting 266 

drier conditions and some others projecting wetter conditions (Fig. 1h-l; Fig. 1m-q). This large range 267 

of responses shows that the effect of internal climate variability is stronger than the externally forced 268 

response for the near-term horizon. Future changes in precipitation could, therefore, consist of either 269 

an increase or a decrease in precipitation over the period 2020-2040, following different sequences or 270 

pathways of internal climate variability. These different sequences of internal climate variability are 271 

associated with changes in the atmospheric dynamics, with an increase (a decrease) in southern 272 

African precipitation associated with northerly (southerly) wind anomaly at 850hPa over the 273 

Mozambique Channel (Fig. 1). 274 

 275 

The effect of internal variability becomes weaker than the externally forced response in most of 276 

southern Africa in the long-term horizon (i.e., 2080-2100). This is particularly true over the areas 277 

covered by the South Indian Convergence Zone (eastern South Africa, southern Mozambique, and the 278 

southwestern Indian Ocean), where most ensemble members show wetter conditions (Fig. S3). 279 

However, the effect of internal climate variability remains high and the effect of the externally forced 280 

response remains highly model-sensitive, especially in the tropical-subtropical transition region.  281 
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 282 

We further confirm the results of Fig. 1 by quantifying the effects of the three sources of uncertainty 283 

(internal climate variability, model, and scenario) in SRI change. All sources of uncertainty increase 284 

with time towards the end of the 21st century (Fig. 2a). The strongest source of uncertainty for near-285 

term and mid-term changes (2040-2060) in SRI relates to internal climate variability (Fig. 2b). Model 286 

uncertainty and internal climate variability have a comparable weight in the total uncertainty for long-287 

term changes in SRI (after 2080; Fig. 2b). The internal climate variability uncertainty is thus the main 288 

source of uncertainty in SRI changes over the period 2000-2080. Unlike internal climate variability 289 

and model uncertainty, scenario uncertainty contributes only moderately to the total uncertainty in 290 

SRI change in the 21st century.  291 

  292 
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3.2 The Effect of Internal Climate Variability 293 

 294 

Here, we aim to understand better the effect of internal climate variability on southern African 295 

precipitation, highlighting the mechanisms at play. We selected ensemble members (See Sect. 2.4) to 296 

pinpoint the mechanisms explaining the divergence induced by internal climate variability. 297 

 298 

The effect of internal climate variability reveals a tripole in precipitation anomaly, with an increase in 299 

precipitation over southern Africa and a decrease in precipitation over Angola, the Congo Basin and 300 

Madagascar (Fig. 3a). The increase in SRI is associated with a strengthening of the low-level wind 301 

over the Mozambique Channel, which advects moisture from the tropical Indian Ocean. It is also 302 

associated with a strengthening and a southward shift of the AL (Fig. 3b), and a decrease in Z850 (and 303 

SLP; not shown) over Botswana, Zambia and Zimbabwe, allowing the strengthening of the northerlies 304 

over the Mozambique Channel and the cyclonic circulation over land (Fig. 3c). This pattern promotes 305 

inter-oceanic moisture convergence over southern Africa, by increasing moisture transport from the 306 

Indian Ocean basin and limiting moisture export over Angola towards the South Atlantic. (Fig 3a). 307 

Fig. 3 thus shows that there is a large inter-model agreement, with an increase in precipitation over 308 

southern Africa, a southward shift of the Angola Low and a strengthening of the low-level 309 

atmospheric circulation. In addition, Fig. S5 shows remarkable similarities between the SMILEs 310 

concerning the effect of internal climate variability on precipitation and atmospheric circulation 311 

anomalies over southern Africa and the surrounding areas. The aforementioned results are consistent 312 

with the literature documenting interannual changes in southern African precipitation (e.g., Crétat et 313 

al. 2019; Dieppois et al. 2016, 2019; Pascale et al. 2019). 314 

 315 

Anomalies in southern African precipitation are associated with changes in SST over the Pacific 316 

Ocean (e.g., Dieppois et al. 2016, 2019), the Indian Ocean (e.g., Behera and Yamagata 2001), and the 317 

southeast Atlantic Ocean (e.g., Desbiolles et al. 2020). An increase in southern African precipitation is 318 

associated with a cooling of the tropical Indian Ocean, a La-Nina-like pattern and/or a negative IPV-319 

like pattern in the tropical Pacific and a positive phase of the SIOD (Fig. 4a; Dieppois et al. 2016). 320 
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SST increases over the southwestern Indian Ocean and decreases over the north-eastern Indian Ocean, 321 

in a positive SIOD anomaly, which is known to favour moisture advection from the Indian Ocean into 322 

southern Africa (Behera & Yamagata, 2001). In addition, the increase in precipitation was associated 323 

with an increase in the SST of the Angola-Benguela front over the western South Atlantic Ocean (Fig. 324 

4a), affecting the AL (Desbiolles et al., 2020). There is a good inter-model agreement in SST 325 

anomalies over the Indian and Pacific Oceans (Fig. 4a and Fig. S6), although there are differences 326 

between the SMILEs on the pattern and magnitude of the SST anomaly over the equatorial and 327 

tropical Pacific Ocean (Fig. S6).  328 

 329 

Changes in SST influence and interact with the upper tropospheric circulation. Fig. 4b shows that 330 

ENSO-induced strengthening of the Walker circulation promotes upper tropospheric divergence over 331 

southern Africa during La Nina events, hence increased precipitation there, in line with Dieppois et al. 332 

(2016) and Monerie et al. (2019). A warming of the western tropical Pacific Ocean (Fig. 4a) could 333 

also contribute to the large-scale change in atmospheric circulation, promoting upper-level divergence 334 

(Fig. 4b).  335 

 336 

Another notable effect of internal climate variability is the alternation of negative and positive Z200 337 

anomalies along the Austral Ocean, South America, and South Africa (Fig. 4c). These anomalies 338 

indicate the presence of extratropical waves that can favour precipitation (Ivanciu et al., 2022; 339 

Ndarana et al., 2022, 2023), through their effects on the AL (Pascale et al., 2019). 340 

 341 

In summary, there is generally a good agreement between the SMILEs regarding changes in SST and 342 

atmospheric circulation (Fig. 4; Fig. S6). We build on the existing literature and show that the modes 343 

of variability that influence the interannual variability of southern African precipitation can mask the 344 

effect of the externally forced response over the region and over a wide range of timescales. We also 345 

show that results also hold when using periods of 20 years (Fig. S4). However, we show that the 346 

SMILEs overestimate precipitation and 700 hPa relative vorticity over southern Africa (Fig. S7), 347 

potentially leading to an overestimated uncertainty in precipitation change. We assume that this 348 
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scientific question would require an in-depth analysis of the representation of the Angola Low and its 349 

relationship with precipitation variability in climate models (see, for instance, Munday and 350 

Washington 2017).  351 

 352 

3.3 Drivers of uncertainty in changes in Southern African precipitation 353 

 354 

Possible drivers of uncertainty in southern African precipitation change were identified in the 355 

previous section. However, we have not quantified the relative role of the linkages between each 356 

plausible ocean-atmosphere driver of future changes in southern African rainfall. We also did not 357 

identify a priori the main source of uncertainty for future changes in SRI. Here, we assess the role of 358 

each driver of uncertainty in southern African precipitation by calculating the correlation coefficient 359 

between the change in SRI and each plausible ocean-atmosphere driver. This is achieved by selecting 360 

ensemble members that show the strongest and lowest changes in SRI for each year, scenario, and 361 

model (5160 events, see Section 2.2.4). 362 

The two main drivers of uncertainty are identified to be the changes in 200 hPa velocity potential 363 

(VP200; r=0.45 between changes in VP200 and SRI) over the equatorial Pacific Ocean and the 364 

meridional location of the AL (r=0.69 between changes in the meridional location of the AL and SRI) 365 

(Fig. 5a). Both drivers of future precipitation changes are independent, with a low and non-significant 366 

correlation coefficient calculated between the change in AL and VP200 (r=-0.13). Thus, a large 367 

change in the meridional position of AL can occur with no change in VP200 over the equatorial 368 

Pacific and vice versa. This is consistent with Pascale et al. (2019), who show that the interannual 369 

variability in the AL location is not due to changes in ENSO and, hence, of the resulting VP200 370 

anomalies. The SIOD (Indian Ocean SSTs) and Z200 also explain the uncertainty in SRI change but 371 

have a weaker impact than the meridional location of the AL and VP200 (r=0.09 between changes in 372 

SIOD and SRI and r=0.20 between changes in Z200 and SRI). We expect the change in VP200 to be 373 

driven primarily by changes in equatorial Pacific SST but find a weaker relationship between the 374 

change in EN34 and SRI (r=-0.24 between changes in EN34 and SRI). 375 
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Here we provide a projection of plausible future different trajectories of SRI change as a function of 376 

changes in the meridional location of the AL and of the VP200 index, following Eq. 2, without 377 

accounting for the residual. Differences between trajectories then only depend on different future 378 

changes in the AL meridional location and equatorial Pacific VP200 anomalies. The correlation 379 

coefficient between the projected change in SRI and the actual change in SRI is r=0.80, showing that 380 

this statistical model can explain 64% of the uncertainty in SRI change. This means that almost two-381 

thirds of the uncertainty in SRI change is due to the uncertainty in the change in the AL meridional 382 

location and equatorial Pacific VP200 anomalies.  383 

The future change in SRI is shown in Fig. 5b, using the range of outcomes in AL meridional location 384 

and VP200 as obtained across all ensemble members of all SMILEs, assessing both the effects of 385 

internal climate variability and the externally forced response. A northward shift of the AL and a 386 

decrease in the equatorial Pacific VP200 lead to a decrease in SRI, while a southward shift of the AL 387 

and a strengthening of VP200 is associated with an increase in SRI (Fig. 5b). The aforementioned 388 

discussed relationships between the AL, VP200 and precipitation are consistent with Crétat et al. 389 

(2019) and Pascale et al. (2019). Fig. 5b shows that the main driver in SRI uncertainty is the 390 

meridional location of the AL, which leads to either a decrease or an increase in SRI. Meanwhile, 391 

VP200 anomalies have a weaker influence and only moderately modulate regional precipitation. To 392 

highlight the dominant role of the AL, we have reproduced our analysis but using a linear regression 393 

(only one driver) and selecting the AL as a unique driver, we then explain ~60% of the uncertainty 394 

with the AL alone. We find that the AL is the main source of uncertainty for southern African 395 

precipitation change, a result that is consistent with Munday and Washington (2017), which show that 396 

the difference between models in simulating the AL is the main source of uncertainty for simulating 397 

historical variations in southern African precipitation.  398 

We also assess how this framework could represent the extreme variations in SRI precipitation. First, 399 

we show the extreme changes in precipitation by calculating the 10% and 90% percentiles in SRI 400 

change (black lines in Fig. 5b). We also show the extreme predicted changes in SRI (black lines in 401 

Fig. 5b). The statistical model can reproduce both the overall change in SRI, as well as the extreme 402 
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changes in SRI. This conclusion also holds when changes averaged over 20-year periods are assessed 403 

(Fig. 5c), highlighting that changes in the meridional location of the AL and the equatorial Pacific 404 

VP200 can affect projections of southern African precipitation from interannual to multi-decadal 405 

timescales. We can then conclude that a better understanding of future changes in AL activity, as well 406 

as equatorial Pacific VP200 anomalies (and thus ENSO and Pacific SST changes in general), is 407 

needed. 408 

In addition to the statistical model, we show how changes in AL meridional location and VP200 409 

anomalies can modulate SRI for a given emissions scenario. For each year, we selected the three 410 

ensemble members that show the larger northward/southward shift of the Angolan low and the 411 

stronger 200 hPa wind convergence/divergence over the equatorial Pacific and show their projected 412 

change in SRI (Fig. 6). The ensemble spread is greater than the effect of climate change over the 20th 413 

and 21st centuries (Fig. 6a-f), in agreement with Fig. 1. We show that the effect of the uncertainty in 414 

the location of the meridional location of the AL is greater than the effect of the uncertainty in VP200. 415 

The effect of an uncertain AL location largely explains the ensemble spread in SRI change, for the 416 

multi-model mean (Fig. 6a) and for each model (Figs. 6b-f). Fig. 6 shows that the respective effects of 417 

each driver of uncertainty are model-dependent and that they vary with time. 418 

The strong effect of uncertainty in the location of the AL on changes in SRI, for each model, is 419 

consistent with the fact that the uncertainty in its location is mainly due to internal climate variability 420 

(Fig. 6g). By contrast, model uncertainty is strong for VP200, particularly by the end of the 21st 421 

century (Fig. 6h).  422 
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 423 

4. Discussion 424 

Future changes in precipitation are uncertain because of divergences in the processes that allow 425 

atmospheric convection to occur (e.g., moisture flux convergence, temperature anomalies and changes 426 

in radiative forcing), and because of differences between climate models in simulating atmospheric 427 

convection (e.g., differences in atmospheric convection schemes and microphysics, in horizontal and 428 

vertical resolution). Uncertainty also arises from uncertainty in simulating the regional and large-scale 429 

climate drivers of precipitation. We show that the uncertainty in the simulation of future changes in 430 

southern African precipitation is strongly tied to the simulation of the effects of internal climate 431 

variability on southern African climate, through changes in the meridional location of the AL and the 432 

large-scale Walker circulation. However, we do not argue that the uncertainty in simulating changes 433 

in southern African precipitation can be explained solely by changes in the AL and the Walker 434 

circulation. First, we show that other drivers may be of importance for the changes in southern 435 

African precipitation, such as the change in Rossby waves activity over the Austral Ocean (Fig. 3). 436 

Second, we show that, although there are strong similarities between the results of the different 437 

SMILEs, large-scale drivers of precipitation changes may be model-dependent. Meanwhile, the 438 

Walker circulation anomaly is weaker in ACCESS-ESM1-5 than in the other models (Fig. S6). 439 

Similarly, the pattern of the Z200 anomalies differs between SMILEs over the Austral Ocean, being 440 

more homogeneous in ACCESS-ESM1-5 than in MIROC6 (Fig. S6). A major driver of precipitation 441 

changes could, therefore, be the Southern Annular Mode in ACCESS-ESM1-5 (as in Gillett, Kell, and 442 

Jones 2006) and the propagation of a Rossby Wave in MIROC6 (as in Pascale et al. 2019). A more in-443 

depth analysis may be required to understand the cause of the uncertainty in each SMILE. Finally, we 444 

do not assess changes in soil moisture and land surface feedback, which were discarded as a main 445 

driver of southern African climate variability by (Pascale et al., 2019).  446 

Other sources of uncertainty may be related to differences between climate models in simulating 447 

changes in the interhemispheric temperature gradient (C Munday & Washington, 2019). Here, we find 448 

no evidence for the role of the large-scale interhemispheric temperature gradient (Fig. 4a), which is 449 
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mostly associated with the effect of the externally forced response rather than internal climate 450 

variability. 451 

In contrast to the literature, we do not show a strong correlation between the change in the AL activity 452 

and the ABFZ SSTs (in Desbiolles et al. 2020) and the Z200 anomaly (as in Pascale et al. 2019). The 453 

aforementioned hiatus could be due to the horizontal resolution of SMILEs, which is relatively coarse 454 

compared to the datasets used in Desbiolles et al. (2020) and Pascale et al. (2019), climate models 455 

biases, or because the patterns of South Atlantic SST and Z200 changes are model dependent. We do 456 

not rule out the possibility that the eastern South Atlantic SST or anomalies in the extratropical Z200 457 

play a role in the changes in southern African precipitation and its uncertainty. Similarly, we do not 458 

show a major effect of an uncertain simulation of the SIOD on southern African precipitation. This is 459 

not consistent with Hoell et al. (2017) and Hoell and Cheng (2018). However, we do not rule out the 460 

possibility of SIOD affecting southern African rainfall (as seen in Fig. 4a for instance). We replicated 461 

the analysis of Sect. 3.3 using the EN3.4 and SIOD indices but found that it only explains ~20% of the 462 

uncertainty in future precipitation changes. These results are, however, model-dependent. For 463 

instance, we found that the Indian Ocean temperature is a strong source of uncertainty in the 464 

simulation of southern African precipitation in MPI-ESM1-2-LR (not shown), and we also 465 

hypothesise that the dominance of the AL could be due to higher uncertainty in the simulation of the 466 

future change of the AL than the other drivers. 467 

We show that the meridional position of the Angola Low is the main source of uncertainty for the 468 

future change in SRI. We also tested the effect of an uncertain change in the strength of the Angola 469 

Low. There is no robust relationship between the change in the meridional location of the Angola 470 

Low and its strength (not shown) and the statistical model run with solely the strength of the Angola 471 

Low only explains ~2% of the uncertainty in the SRI change. 472 

We argue that a better understanding of the above sources of uncertainty could improve the simulation 473 

of future changes in southern African precipitation. A consequence of the uncertainty in the SRI 474 
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change is that the SMILEs show a robust time of emergence (i.e. when the externally forced response 475 

is stronger than the effect of internal climate variability) only at a few locations (Fig. S8). 476 

  477 
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5. Conclusion 478 

We assess future changes in precipitation over southern Africa using five Single Model Initial-479 

condition Large Ensembles (SMILEs) forced by four emissions scenarios. We show that the effect of 480 

the externally forced response is weak due to model uncertainty and internal variability uncertainty. 481 

The latter obscures the effect of externally forced changes and leads to either a decrease or an increase 482 

in southern African precipitation. The internal climate variability uncertainty is found to be the main 483 

source of uncertainty for the 21st century. Understanding the drivers of uncertainty in future southern 484 

African precipitation change is critical for anticipating future problems caused by e.g. multi-year 485 

droughts, hence threatening water and food security, as well as hydroelectric production.  486 

We show that future changes in southern African precipitation depend mainly on the future change in 487 

the meridional location of the Angola Low (AL). We show that ~60% of the uncertainty in the change 488 

in southern African precipitation is due to the uncertainty in simulating the change in the meridional 489 

location of the AL. This is consistent with Munday and Washington (2017) who show that the 490 

simulation of the AL is the main source of bias for southern African precipitation in general 491 

circulation models.  492 

 Besides the AL, we show that uncertainty in simulating the change in the Walker circulation (a 493 

decrease in atmospheric vertical rise over the western Pacific due to a cooling of its equatorial part) 494 

also explains a non-negligible proportion of the uncertainty. Both the equatorial Pacific Sea Surface 495 

Temperature (SST) and the location of the AL are known drivers of southern African precipitation 496 

variability and are relatively independent (e.g., Crétat et al. 2019; Dieppois et al. 2016, 2019, 2015; 497 

Pascale et al. 2019). Thus, we show that future changes in southern African precipitation will strongly 498 

depend on the future evolution of the Angola Low and the large-scale Walker circulation. We 499 

acknowledge that understanding better the future change of these aforementioned drivers of southern 500 

African precipitation could allow for improving the projections of the southern African precipitation 501 

change, as also argued by Dieppois et al. (2021) for the Pacific Ocean SST characteristics. We show 502 
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that these two drivers affect both the short-term (the year to come) to the longer-term (for 20 years) 503 

evolution of southern African precipitation over the 21st century. 504 

Previous studies have shown that climate change is associated with an increase in precipitation and 505 

temperature variability (Rehfeld et al., 2020; Thornton et al., 2014). A future increase in the 506 

variability of the AL meridional location and large-scale Walker circulation strength could lead to a 507 

stronger uncertainty in projections of the southern African precipitation. This could be the topic of 508 

further study. Another follow-up would be to apply an emergent constraint approach to the Angola 509 

Low’s meridional location to reduce uncertainty in projections of southern African precipitation. We 510 

also suggest here that calibrating the general circulation models (e.g., O’Reilly et al. 2021; O’Reilly, 511 

Befort, and Weisheimer 2020) using the interannual variability of the Angola Low location may allow 512 

the improvement of southern African precipitation projections, but this would require a better 513 

understanding of the reasons for the variability of the Angola Low and its effect on precipitation. 514 

Besides, a combination of decadal forecasts and uninitialized simulations may also be used to reduce 515 

uncertainty over the first part of the 21st century (e.g., Befort et al. 2022) allowing the development of 516 

a seamless prediction of the southern African precipitation.  517 

  518 
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Figure 1: Near-term (2020-2040) change in DJF precipitation [colours; mm day-1], for (a) the CMIP6 749 

multi-model ensemble mean, (b) the multi-model mean of the 5 SMILEs and for (c-g) each model, 750 

under the SSP5-8.5 emission scenario. Panels h-l (m-q) show the ensemble mean of the two individual 751 

ensemble members that show the lowest (highest) change in SRI precipitation. Vectors show the 752 

change in surface moisture flux [kg kg-1 m s-1]. The contours show the precipitation climatology 753 

(1995-2014), for each ensemble mean. On panels a-d-f-i-o, the stippling indicates non-robust changes, 754 

i.e., when 75% of the ensemble members/models disagree on the sign of the change compared to the 755 

ensemble mean. On panel b, stippling indicates non-robust changes, i.e., when at least 4 out of the 5 756 

SMILEs do not agree with the sign of change, and the blue contour indicates SRI region. 757 
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 772 
Figure 2: (a) Value of uncertainty and (b) fraction of total uncertainty in the SRI changes explained by 773 

each source of uncertainty. The internal variability is shown in orange, the model uncertainty in blue, 774 

and the scenario uncertainty in green. We applied a 20-year running mean to the SRI time series to 775 

smooth out noise. Light (dark) colours indicate which source of uncertainty contributes the most to 776 

the total uncertainty, i.e., internal climate variability up to the 2050s and model uncertainty 777 

afterwards. 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 



35 

 789 

Figure 3: Effect of internal climate variability on changes in (a) precipitation [mm day-1] and 850 790 

hPa wind speed [m s-1], (b) 700 hPa relative vorticity [s-1] and wind speed [m s-1], (c) Z850 [m] and 791 

850 hPa wind speed [m s-1]. The effect of internal climate variability is assessed as the difference 792 

between the ensemble members that show the more positive and more negative changes in SRI, for 793 

each year over the period 2015-2100, selecting the internal component of all variables (see Sect. 794 

2.2.3), and using data of all SMILEs (following Sect. 2.2.4). Stippling indicates that less than 4 795 

models (out of 5) simulate an anomaly that is significant, according to a Student’s t test at the 95% 796 

confidence level. The contours indicate a climatology that is defined by averaging together the 797 

events for which SRI change is the lowest (or more negative).  798 
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 801 

Figure 4: As in Figure 3 but for (a) SST [K] and 850 hPa wind speed [m s-1], (b) 200 hPa velocity 802 

potential [m-2 s-1] and divergent wind speed [s-1], and (c) 200 hPa geopotential height [m] and wind 803 

speed [m s-1].  804 
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 809 

Figure 5: (a) (left) Correlation coefficient computed between the changes in SRI and in several drivers 810 

of SRI variability (defined in Sect. 2), and (right) between drivers. The correlation between drivers 811 

and SRI is calculated by selecting ensemble members (Section 2.2.4). Prediction of the SRI anomaly 812 

depending on the future change in AL meridional location and 200 hPa velocity potential over the 813 

equatorial Pacific Ocean, selecting SRI anomalies of each (b) individual year and (c) the three 20-year 814 

time horizons (near-, mid-, and long-term changes), in a storyline approach, following Sect. 2. The 815 

purple lines show the extreme predicted changes, and the black lines show the actual extreme changes 816 

in SRI (10th and 90th percentiles of the distribution).  817 
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 818 

Figure 6: Time series of SRI change (relative to the period 1995-2014) for the ensemble mean (thick 819 

black line), the ensemble spread (blue shading; the ensemble standard deviation), the 10th and 90th 820 

percentiles (thin dashed black line), and that due to the uncertainty in the simulation of the meridional 821 

location of the Angola low (orange dots) and the 200 hPa wind convergence over the eastern tropical 822 

Pacific (blue dots). Results are given for (a) the ensemble of all models and ensemble members, and 823 

for (b-f) each SMILE. The time series have been smoothed with a 20-year running mean. (g) and (h), 824 

as in Fig. 2b, but for the meridional location of the Angola low and VP200. 825 
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