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Abstract20

Recent progress in satellite observations has provided unprecedented21

opportunities to monitor vegetation activity on the global scale. However, a major22

challenge in fully utilizing remotely sensed data to constrain land surface models23

(LSMs) lies in inconsistencies between simulated and observed quantities. Transpiration24

and gross primary productivity (GPP) that traditional LSMs simulate are not directly25

measurable from space and they are inferred from spaceborne observations using26

assumptions that are inconsistent with those of the LSMs, whereas canopy reflectance27

and fluorescence spectra that satellites can detect are not modeled by traditional LSMs.28

To bridge these quantities, we present the land model developed within the Climate29

Modeling Alliance (CliMA), which simulates global-scale GPP, transpiration, and30

hyperspectral canopy radiative transfer (RT). Thus, CliMA Land can predict any31

vegetation index or outgoing radiance, including solar-induced chlorophyll fluorescence32

(SIF), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI),33

and near infrared reflectance of vegetation (NIRv) for any given measurement34

geometry. Even without parameter optimization, the modeled spatial patterns of35

CliMA Land GPP, SIF, NDVI, EVI, and NIRv correlate significantly with existing36

observational products. CliMA Land is also very useful in its high temporal resolution,37

e.g., providing insights into when GPP, SIF, and NIRv diverge. Based on comparisons38

between models and observations, we propose ways to improve future land modeling39

regarding data processing and model development.40

Plain Language Summary41

The land is a big sink of CO2, but there is not a direct way to measure its carbon42

sink strength at the global scale. Researchers often use eddy covariance flux tower43

and/or satellite observations to infer land carbon sink strength. However, the flux44

towers are too sparsely distributed, and satellites can only detect radiation-related45

properties of the vegetation such as solar induced chlorophyll fluorescence. We bridge46

the two aspects by developing a new land surface model that simultaneously simulates47

both carbon and water fluxes as well as spectrally resolved canopy radiation properties.48

We compare our model outputs directly to not only carbon flux estimations but also49

satellite observations. We show that our new land surface model can represent how50

carbon flux and canopy radiation properties vary across the globe and help understand51
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how ecosystems work under different environmental conditions. We believe advances52

in data processing and implementation of new features in land modeling will improve53

the land surface model predictive skills in the future.54

1 Introduction55

The land system sequesters approximately 25% of anthropogenic CO2 emissions56

(Le Quéré et al., 2018), which slows the increase of atmospheric CO2 concentration and57

thus global climate change. However, it is highly uncertain how the strength of58

terrestrial carbon sink will change in the future given that warmer global temperatures59

impact vegetation carbon fixation in diverging ways and that higher CO2 concentration60

fertilizes leaf photosynthesis (Sperry et al., 2019). Despite the importance of the61

magnitude of land net CO2 uptake, overall spatial and temporal global terrestrial62

carbon sink strength patterns remain poorly understood given the lack of direct63

observations at the landscape scale globally. As a result, the estimation of the global64

terrestrial carbon sink is largely dependent on data interpolation and/or modeling.65

Gross primary productivity (GPP) is the most direct measure of the gross land66

carbon sink. However, global scale GPP products from various studies differ67

dramatically (Anav et al., 2015) due to differences in (i) the model selection, such as68

stomatal model parameters (Medlyn, Duursma, & Zeppel, 2011), soil moisture response69

(Powell et al., 2013; Trugman et al., 2018), and canopy structure setup (Braghiere et al.,70

2019, 2020; Y. Wang & Frankenberg, 2021), and (ii) the major drivers used to force the71

model, such as flux tower data (e.g., Jung et al., 2011; Tramontana et al., 2016; Jung et72

al., 2020) or remote sensing data (e.g., Zhang et al., 2017). Furthermore, the rapidly73

changing climate and increasing atmospheric CO2 make it more challenging for the74

models to agree on the magnitude and direction of the future land carbon sink75

strength (Anav et al., 2013; Arora et al., 2013; Jones et al., 2013; Anav et al., 2015; Zhang76

& Ye, 2021).77

GPP divergence caused by model selection may be considered as a result of the78

various forms of forcing data. For example, eddy covariance flux towers provide79

relatively high quality half-hourly carbon and water fluxes (Baldocchi et al., 2001;80

Baldocchi, 2020), but are too sparsely distributed, and modeler have to rely on data81

interpolation for global interpretation. Also, GPP is not directly measured but82

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

partitioned from ecosystem net carbon flux using nighttime flux measurements to83

proxy respiration rates, and this partitioning could result in biased GPP estimates84

(Wehr et al., 2016). In comparison, spaceborne remote sensing data provide good85

spatial coverage (Schimel et al., 2015, 2019), but often have coarse temporal resolution86

and cannot directly measure carbon or water fluxes. Models based on remote sensing87

often have to rely on empirically correlating GPP with various quantities based on88

reflectance and/or fluorescence. As a result, a satisfactory approach to parameterize89

land surface models (LSMs) consistently at the global scale is lacking, and90

model-observation comparisons are inconsistent. In theory, if the LSMs can correctly91

account for vegetation processes and are given the same high quality flux and climate92

forcing data, these models should be able to predict similar GPP once their model93

parameters (e.g., leaf area index, plant functional type distributions, leaf photosynthetic94

capacity, and plant hydraulic traits) are optimized for the input training data.95

Currently, high quality carbon and water flux data are sparse, which makes model96

parameterization and development challenging and hence their GPP predictions are97

unreliable. Therefore, a key step for improving land modeling is to integrate data from98

multiple sources, equip LSMs with corresponding features to simulate observations,99

and parameterize the LSMs by minimizing the model-data mismatch.100

Remotely sensed data that are useful to constrain land processes at regional and101

global scales are mostly based on observed reflected and emitted radiances and optical102

depths of vegetation canopies (e.g., Badgley et al., 2017; Sun et al., 2017; Konings et al.,103

2021). Among the various index and radiance measures, solar-induced chlorophyll104

fluorescence (SIF) and near infrared reflectance of vegetation (NIRv) are the two most105

promising candidates for estimating GPP given their overall good correlations with106

GPP (Frankenberg et al., 2011; Badgley et al., 2017; Sun et al., 2018; Badgley et al., 2019;107

Doughty et al., 2021). Nevertheless, the intermediate step of translating SIF and/or108

NIRv to GPP may introduce additional biases given the decoupled correlations among109

them in light saturated environments (Zhang et al., 2016), drought stressed conditions110

(Helm et al., 2020), cold winters (Magney et al., 2019), and over diversely structured111

vegetation (Braghiere et al., 2021).112

Alternatively, a better way to utilize the remote sensing data would be to match113

modeled canopy fluorescence and reflectance spectra to satellite retrievals directly114

(Norton et al., 2018; Shiklomanov et al., 2021; Y. Wang, Köhler, et al., 2021). This,115
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however, requires LSMs to move from simple broadband canopy radiative transfer (RT)116

to a hyperspectral canopy RT in order to utilize spectrally resolved remote sensing data117

(e.g., Norton et al., 2019), which most existing LSMs are not designed to do. We note118

that traditional LSMs can be extended to utilize satellite data through scaling leaf level119

SIF up to canopy level using two leaf radiation scheme (e.g., Qiu et al., 2019). However,120

this empirical approach discards useful information that the hyperspectral and121

multi-layer approach contains, such as the sun-sensor geometry and vertical canopy122

gradients in fluorescence and photosynthesis yields, which interact non-linearly.123

Our recent efforts bridge land modeling and observations together in a new LSM124

as part of a new generation earth system model within the Climate Modeling Alliance,125

CliMA (https://clima.caltech.edu; Y. Wang, Köhler, et al., 2021). The new model126

can simulate hyperspectral canopy RT in a multi-layer canopy, enabling us to127

simultaneously simulate canopy carbon and water fluxes as well as corresponding128

canopy fluorescence and reflectance spectra. Our new LSM, CliMA Land, improves the129

representation of SIF at the canopy scale (Braghiere et al., 2021) and well captures the130

carbon and water fluxes measured at flux tower sites (Y. Wang, Köhler, et al., 2021). In131

particular, the simultaneously simulated GPP, SIF, and NIRv allow for many potential132

studies that are not possible in the past, say the diurnal cycles and correlations among133

SIF, NIRv, and GPP at various temporal resolutions.134

In this study, we (i) describe the general model framework of CliMA Land, (ii)135

detail the model parameterization and simulation procedure, and (iii) show our first136

global run using CliMA Land, the first LSM that outputs hourly canopy fluorescence137

and reflectance spectra along with corresponding carbon and water fluxes. In section 3,138

we investigate how well CliMA Land GPP, SIF, and other reflectance indices capture139

their spatial patterns. We run our model for the years 2010 and 2019, and compare our140

model outputs with flux tower observation-based datasets for the year 2010 and with141

other satellite-based GPP and SIF products for the year 2019. Finally, we discuss142

potential ways to improve future land modeling using the new LSM framework.143

2 Materials and Methods144

To facilitate research with various scales and model selections, CliMA Land is145

highly modular, containing plant hydraulics, stomatal control, canopy RT, and146
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soil-plant-air continuum sub-modules, each of which can be used as a standalone147

package (Figure 1; Y. Wang, Köhler, et al., 2021; Y. Wang & Frankenberg, 2021).148

Through simulating hyperspectral canopy RT and scaling leaf level gas exchange, we149

can integrate total canopy carbon and water fluxes, and simulate a number of remotely150

sensible quantities (such as SIF and NIRv) simultaneously at arbitrarily fine time steps151

at the global scale (here for the Nadir viewing satellite direction). CliMA Land code152

and documentation are publicly and freely available at153

https://github.com/CliMA/Land (the exact version of model is archived at Y. Wang,154

Braghiere, & Frankenberh, 2021, last access: 15 Nov 2021). Below, we describe the155

general CliMA Land framework and the procedure we used for the global simulations.156
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Figure 1. Diagram of the model framework and parameterization of CliMA Land. CliMA Land

consists of three key modules: canopy radiative transfer (RT), plant hydraulics, and stomatal

control. Canopy RT module is responsible for canopy RT simulation; plant hydraulic module

accounts for the water movement from soil to the air; stomatal control module addresses the leaf

gas exchange. To run CliMA Land at the global scale, various input parameters are used to initialize

the site such as soil color class, leaf area index, clumping index, and meteorological conditions.

Then each site is treated as a bulk forest with bulk plant traits, and carbon and water fluxes and

canopy spectra are simulated using the soil-plant-air continuum model.
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2.1 CliMA Land157

CliMA Land (v0.1; Y. Wang, Köhler, et al., 2021) considers a grid cell (e.g., a158

1◦ × 1◦ grid) as a “mono-species” stand in which all plants have the same size with a159

suite of bulk properties (such as canopy height, clumping index, and leaf chlorophyll160

content; Figure 1). CliMA Land supports freely customized plant hydraulic system161

ranging from a single organ (e.g., leaf, stem, or root) to a whole plant (such as grass162

and tree). CliMA Land also features a variety of stomatal models from empirical163

approaches (e.g., Ball et al., 1987; Medlyn, Duursma, Eamus, et al., 2011) to stomatal164

optimization theories (e.g., Sperry et al., 2017; Y. Wang et al., 2020). Further, CliMA165

Land can simulate canopy RT using either the traditional two leaf RT approach by166

partitioning the canopy to sunlit and shaded fractions with broadband radiative167

transfer scheme (Campbell & Norman, 1998), or a more complex multi-layer canopy168

model that accounts for hyperspectral radiation, leaf angular distribution and canopy169

clumping (Yang et al., 2017; Braghiere et al., 2021; Y. Wang, Köhler, et al., 2021; Yang et170

al., 2021).171

2.1.1 Plant Hydraulic Architecture172

Plant hydraulics in CliMA Land is simulated numerically by partitioning the173

plant into root, stem, and leaf organs (Sperry & Love, 2015; Sperry et al., 2016), and a174

specific xylem vulnerability curve is used for each organ (the curve is allowed to differ175

within and among organs). The organs can be aligned in a flexible way (Y. Wang,176

Köhler, et al., 2021). For example, a tree comprises a multi-layer root system, a trunk177

(stem), a multi-layer canopy system (stem and leaf in series in each layer); a grass178

comprises a multi-layer root system and a multi-layer canopy system (only leaf is179

present in each layer). Further, the plant hydraulics sub-module allows for customizing180

root and stem height change, and thus is able to account for a gravitational pressure181

drop in the xylem (Y. Wang, Köhler, et al., 2021). Moreover, there is a drought legacy182

variable in each hydraulic organ (the xylem remembers the minimal xylem pressure183

and thus minimal hydraulic conductance it has experienced, and xylem hydraulic184

conductance is not allowed to be higher than this memory conductance due to185

irreversible xylem cavitation), and addressing this gives more realistic stomatal186

response to the environment after a drought (W. R. L. Anderegg et al., 2015; Y. Wang et187

al., 2020). We also account for temperature effects on water viscosity and surface188
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tension in our model, which could otherwise result in non-negligible simulated water189

transport biases (e.g., 1 ◦C difference in water temperature potentially results in c. 2.4%190

change in maximum hydraulic conductance; Reid et al., 1987).191

Plant hydraulic architecture may impact the stomatal models in CliMA Land192

(not always as some stomatal models do not rely on plant hydraulics at all, see193

examples in section 2.1.2). With the ascent of sap along the xylem, xylem water194

pressure typically gets more and more negative, potentially resulting in xylem195

cavitation. The higher the water flux in the xylem and/or the drier the soil, the higher196

the risk of xylem cavitation. Loss of plant water transport capability may harm plants’197

leaf gas exchange performance given the limited water supply to leaves, and thus198

plants may regulate their stomata to alleviate the risk (Sperry & Love, 2015).199

Combining photosynthetic carbon gain and hydraulic risk leads to a variety of stomatal200

optimization models that simulate stomatal behavior using plant traits rather than201

empirically fitted parameters (see Y. Wang et al. (2020) for an overview). Furthermore,202

plant hydraulic status is also used in more and more empirical stomatal models (e.g.,203

Kennedy et al., 2019), acting as a tuning factor to link stomatal responses to soil204

moisture status.205

2.1.2 Stomatal Control206

Stomatal behavior in CliMA Land can be simulated using either empirical207

models that rely on statistically fitted parameters or stomatal optimization models that208

are based on plant traits and processes. To date, CliMA Land embeds three published209

empirical stomatal models, namely the Ball et al. (1987), Leuning (1995), and Medlyn,210

Duursma, Eamus, et al. (2011) models. These empirical models can be used along with211

two general types of tuning factors to force stomatal response to drought, one of which212

takes effect through tuning the empirical model parameters (such as the slope213

parameter 61) and another takes effect via down-regulating photosynthetic capacity214

(e.g., Kennedy et al., 2019). CliMA Land also supports four published stomatal215

optimization models based on plant hydraulics given their best performance in three216

datasets (W. R. Anderegg et al., 2018; Venturas et al., 2018; Y. Wang et al., 2019), and217

they are Sperry et al. (2017), W. R. Anderegg et al. (2018), Eller et al. (2018), and218

Y. Wang et al. (2020) models. These optimization based models are less dependent on219

fitting parameters and performed well compared to empirical models, though are more220
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difficult to parameterize. Further, the optimization framework can be extended to221

account for nighttime transpiration responses to the environment (Y. Wang, Anderegg,222

et al., 2021), showing great potential in advancing land surface modeling.223

Despite the predictive skills of optimization models in predicting stomatal224

responses to the environment, particularly soil moisture, difficulties in parameterizing225

these models hamper the use of trait- and optimization-based stomatal models at global226

scales. As a result, empirical models are still the top candidates for land surface models227

before reliable spatially resolved hydraulic trait maps become available. Similarly,228

tuning empirical model parameter 61 or photosynthetic capacity based on plant229

hydraulics does not work either. For example, D. M. Lawrence et al. (2019) and230

Kennedy et al. (2019) proposed to use hydraulic conductance to tune leaf231

photosynthetic capacity; however, the calculation of hydraulic conductance relies on the232

xylem vulnerability curve as well as whole plant hydraulic conductance, which are233

spatially unknown at global scales at present. Thus, to date, simulating global land234

carbon and water fluxes is still limited to empirical models and tuning factors based on235

soil conditions rather than plant hydraulics. However, with CliMA Land, we provide236

more alternatives that can be used in the future when globally spatial hydraulic trait237

maps become available or can be inferred using, for instance, evapotranspiration238

measurements or skin temperature in general.239

2.1.3 Canopy Radiative Transfer240

CliMA Land features two possible canopy RT schemes: single layered two leaf241

RT model with sunlit and shaded fractions simulating broadband reflectance and242

transmittance (Campbell & Norman, 1998), and a vertically layered canopy model with243

leaf angular distribution simulating hyperspectral reflectance and transmittance244

(adapted from Soil Canopy Observation of Photosynthesis and Energy fluxes model,245

SCOPE van der Tol et al., 2009; Yang et al., 2017). While the inclusion of the two leaf246

canopy RT model allows for compatibility with other vegetation models, the use of a247

complex multi-layer canopy model enables the simulation of canopy reflectance and248

fluorescence as well as carbon and water fluxes simultaneously, promoting the249

integration of land models with remote sensing observations (Y. Wang, Köhler, et al.,250

2021). Moreover, the multi-layer canopy model also supports vertically resolved251

heterogeneous micro-climates and leaf physiology within the canopy (Bonan et al.,252

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2018, 2021; Y. Wang & Frankenberg, 2021). Future research aiming to quantitatively253

understand the vertical canopy layout (such as optimal nutrient and leaf area254

partitioning) will further improve the predictive skills of the land surface models.255

Compared to the original SCOPE canopy RT scheme, (1) we implemented a256

clumping index in CliMA Land to account for the horizontal heterogeneity in the257

canopy (Pinty et al., 2006; Braghiere et al., 2019, 2020). The inclusion of a clumping258

index can promote light scattering into lower canopy layers, and improves model259

predictive skills against benchmark 3D datasets (Braghiere et al., 2021). (2) We260

accounted for carotenoid absorption as absorbed photosynthetically active radiation by261

the antenna systems, thus photosynthesis and chlorophyll fluorescence (Y. Wang,262

Köhler, et al., 2021). (3) We converted energy flux to photon flux and computed SIF in263

terms of photon (to use with fluorescence quantum yield); and then we convert SIF264

photon flux back to energy flux in the SIF radiative transfer (Y. Wang & Frankenberg,265

2021). (4) In the present study, we further expand the soil albedo implementation to266

hyperspectral simulations to make land modeling more realistic in terms of canopy RT267

and gas exchange simulations. In brief, soil albedo values at photosynthetically active268

radiation (PAR) region and near infrared (NIR) regions, denoted as PAR and NIR269

respectively, are calculated by linearly interpolating the reference values at completely270

wet and dry soils (see Note S1 for more details):271

PAR = PAR,wet · RSWC + PAR,dry · (1 − RSWC), (1)272

NIR = NIR,wet · RSWC + NIR,dry · (1 − RSWC), (2)273

where RSWC is the relative volumetric soil water content (0 when completely dry, 1274

when soil water content is saturated), the subscript “wet” denotes saturated soil, and275

the subscript “dry” denotes completely dry soil.276

2.2 Model Parameterization277

2.2.1 Soil and Air278

Soil color impacts soil albedo calculations and thus canopy RT and gas exchange.279

We used the Community Land Model soil color class map (data from P. J. Lawrence &280

Chase, 2007) and soil albedo reference table (Table 3.3 in CLM5 tech notes) to describe281

broadband soil albedo values at PAR and NIR regions. Note here that CliMA Land282

supports using either broadband or hyperspectral soil albedo. When hyperspectral soil283
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albedo scheme was selected, we extrapolated the broadband PAR and NIR to a284

hyperspectral spectrum by fitting the mean hyperspectral PAR to broadband PAR and285

hyperspectral NIR to a flat constant NIR in the NIR region using the characteristic286

curves from (Jiang & Fang, 2019) (see Note S1 for more details):287

min

[
(PAR,mod − PAR,ref)2 +

(
|NIR,mod − NIR,ref |

)2]
(3)288

The same soil color class map was used for simulations at different years of global run.289

Soil hydraulic parameters impact soil water stress to plants (and thus stomatal290

and SIF responses to soil moisture). We used the van Genuchten equation to describe291

soil hydraulic parameters (van Genuchten, 1980). We used gridded van Genuchten292

parameters including soil retention curve characteristic parameters (soil air entry293

suction and soil pore-size distribution), residual soil water content, and saturated soil294

water content (data from Dai et al., 2019). The soil hydraulic dataset includes van295

Genuchten parameters for 4 soil layers, with the layer boundaries range from a soil296

depth from 0 to 0.1, 0.35, 1, and 3 m; and we partitioned plant root layering297

accordingly to 4 layers. The same soil van Genuchten parameter map was used for298

simulations at different years. Eventually, we will be able to use arbitrary vertical299

resolutions and solve the Richard’s equation in both 1D and 3D.300

Atmospheric CO2 concentration impacts leaf level gas exchange and SIF301

simulation. We used the annual mean CO2 concentration for each year regardless of302

the spatial and temporal variations within a year (data from303

https://gml.noaa.gov/ccgg/trends/data.html). A global mean CO2 concentration304

was used for simulations at the specific year (e.g., 389 ppm in 2010, and 410 ppm in305

year 2019).306

Climate forcing impacts the plants’ stomatal opening and photosynthesis307

kinetics, and thus carbon and water fluxes as well as canopy reflectance and308

fluorescence spectra. We downloaded hourly reanalysis weather data with 0.25◦ × 0.25◦309

spatial resolution from the ERA5 data portal (Hersbach et al., 2018, 2020), and used it310

to force CliMA Land simulation, i.e. canopy temperature and humidity are currently311

prescribed but will be dynamically coupled to the atmosphere in the future. The ERA5312

reanalysis data we used included wind speed at 10 m (used to determine leaf313

boundary layer thickness), dew point temperature and air temperature at 2 m (used to314

compute atmospheric vapor pressure deficit), skin temperature (prescribed, used as a315
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proxy for leaf temperature), mean direct and total surface shortwave radiation (used to316

compute direct and diffuse radiation to feed to canopy RT), surface atmosphere317

pressure, and soil temperature and volumetric water content at four soil layers. Note318

that the soil layering of ERA5 differs slightly from the soil hydraulic parameters in that319

the layer boundaries of the ERA5 data range from 0 to 0.07, 0.28, 1, and 2.89 m, and we320

used the van Genuchten parameters from the soil map in Dai et al. (2019) despite the321

minor mismatch in soil depth profiles.322

2.2.2 Plant Traits323

As the pigments that absorb PAR in the antenna system, chlorophyll and324

carotenoid contents impact leaf-level reflectance and transmittance, and canopy-level325

radiative transfer and thus leaf gas exchange. We used weekly mean leaf chlorophyll326

contents to represent seasonality of canopy greenness (data from Croft et al., 2020), and327

assumed leaf carotenoid content being 1/7 of the chlorophyll content (Croft et al.,328

2020). We note that the ratio between carotenoid and chlorophyll can be highly329

variable, and future research into their spatial and temporal variability will make the330

simulations more accurate. The weekly mean chlorophyll content was averaged from331

values in the same week from multiple years, and thus the same leaf chlorophyll332

content dataset was used for simulations at different years.333

Leaf mass per area (LMA) impacts reflectance and transmittance of a leaf, and334

canopy RT and hence leaf gas exchange. We used a globally gridded specific leaf area335

(SLA = 1/LMA) in our global land model run (Butler et al., 2017). The same LMA336

dataset was used for simulations at different years of global run.337

Leaf photosynthetic capacity impacts leaf gas exchange and fluorescence338

quantum yield. We used the leaf photosynthetic capacity (represented by maximum339

carboxylation rate at a reference temperature of 25 ◦C—+cmax25) from a recent machine340

learning based product (Luo et al., 2021). The +cmax25 was assumed time-invariant.341

Maximum electron transport rate at a reference temperature of 25 ◦C—�max25 and342

respiration rate at a reference temperature of 25 ◦C—'d25 were scaled from +cmax25 in343

that �max25 = 1.67 ·+cmax25 and 'd25 = 0.015 ·+cmax25, consistently with (Sperry et al.,344

2017). We assumed constant �max25 : +cmax25 and 'd25 : +cmax25 ratios due to the lack of345

global datasets, however we note that there is evidence that they vary across the globe346
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(e.g., Walker et al., 2014; Norby et al., 2017). The same photosynthetic capacity dataset347

was used for simulations at different years.348

Leaf area index (LAI) impacts canopy RT and whole plant gas exchange. We349

used the gridded Moderate Resolution Imaging Spectroradiometer (MODIS) LAI350

product at 0.5◦ × 0.5◦ spatial resolution and 8-day temporal resolution (data from Yuan351

et al., 2020). See Yuan et al. (2011) for more details of the LAI data quality control and352

gap filling. A time-dependent LAI was used in the simulations at the specific year353

years (e.g., LAI time series at year 2010 was used for the global simulation at year354

2010).355

Canopy height impacts plant hydraulic architecture and thus leaf gas exchange.356

We used a globally resolved canopy height map to initialize plant hydraulic357

architecture within each simulated grid (Simard et al., 2011). If average plant height358

within the simulated grid was higher than 2 m, we treated the bulk plant as a tree359

(gravitational pressure drop was accounted for in the stem xylem); otherwise, we360

treated the bulk plant as a grass (gravitational pressure drop was ignored in the stem361

xylem). The same canopy height dataset was used for simulations at different years.362

The clumping index impacts canopy RT and thus leaf gas exchange. We used a363

globally gridded clumping index to describe the horizontal canopy heterogeneity for364

each simulated grid (a constant clumping index for each pixel that does not change365

within and among growing seasons; He et al., 2012). The same canopy clumping index366

dataset was used for simulations in different years.367

2.2.3 Land Masks368

Stand elevation impacts atmospheric pressure, and thus leaf gas exchange. We369

used the elevation map from (Yamazaki et al., 2017) to initialize the land model at370

different grids.371

Percentage of land in a grid impacts the scaled fluxes in a grid. We used the372

land-sea mask at 0.25◦ × 0.25◦ resolution from ERA5 reanalysis data (Hersbach et al.,373

2018).374

The plant functional type (PFT) distribution impacts bulk properties of a site375

(such as the empirical slope parameter 61), and thus stomatal responses to the376
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environment. We used the CLM PFT distribution map (P. J. Lawrence & Chase, 2007)377

to derive the empirical parameter 61 at each grid cell. For each grid, we calculated the378

weighted 61 based on the PFT distribution (61 for each PFT from De Kauwe et al.,379

2015). The same PFT distribution map was used for simulations at different years in380

the present study.381

2.3 Global Simulations382

We ran CliMA Land globally at 1◦ × 1◦ spatial resolution and an hourly temporal383

resolution. We partitioned the Earth into 360 (in longitude) × 180 (in latitude) grids,384

and regridded the model parameters spatially by averaging all the data that fell into385

the target grid. For each pixel, we read data from the regridded model inputs as in386

section 2.2, and performed the annual simulation if (1) none of the input data was387

missing and (2) the pixel was vegetated. A total of 11288 grids were identified after388

applying these filtering criteria.389

For each grid, at each time step, we computed soil water potential for each soil390

layer (Ψi), and the tuning factor using Ψmax −Ψi
Ψmax −Ψmin

for each soil layer (Ψmax = 0 MPa,391

and Ψmin = −5 MPa by default). Then, we averaged the tuning factor for all soil layers,392

and used it along with the 61 parameter of the Medlyn, Duursma, Eamus, et al. (2011)393

model to simulate stomatal conductance. We did not use stomatal optimization models394

in the present study because of the lack of global plant hydraulic trait maps. We ran395

CliMA Land at steady state, and saved the model predicted hourly GPP, transpiration,396

SIF at 683/740/757/771 nm (SIF683, SIF740, SIF757, and SIF771, respectively), normalized397

difference vegetation index (NDVI), enhanced vegetation index (EVI), and NIRv398

(Badgley et al., 2017):399

NDVI = NIR − RED
NIR + RED

, (4)400

EVI = 2.5 · NIR − RED
NIR + 6 · RED − 7.5 · BLUE + 1 , (5)401

NIRv = NDVI · NIR , (6)402

where  is the albedo at the given wavelength (BLUE: 469 nm, RED: 645 nm, and NIR:403

858.5 nm). We ran the simulations for the years 2010 and 2019.404
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2.4 Benchmarks405

2.4.1 GPP406

We compared CliMA Land predicted global GPP for year 2019 against the GPP407

product interpolated from flux tower using machine learning (MPI GPP; data from408

Tramontana et al., 2016). We selected and regridded the 0.5◦ × 0.5◦ MPI GPP at year409

2019 that was based on (1) ensembles that include GPP and terrestrial ecosystem410

respiration from all flux partitioning methods, (2) ensembles that include carbon fluxes411

from all machine learning methods, and (3) all carbon fluxes from remote sensing, RS412

(RS GPP does not use meteorological forcing data). The data was labeled as413

“GPP.RS_V006.FP-ALL.MLM-ALL.METEO-NONE” as noted at414

https://www.fluxcom.org/CF-Download/. It is worth noting that the MPI GPP is a415

machine-learning based upscaling of flux tower derived GPP (not true measurements),416

and that we compared CliMA GPP to this reference dataset rather than to flux tower417

derived GPP directly.418

2.4.2 SIF419

We compared CliMA Land predicted mean SIF683 and SIF740 to the daily average420

SIF683 and SIF740 retrieved using the TROPOspheric Monitoring Instrument, TROPOMI421

(data from Köhler et al., 2018; Doughty et al., 2021). We compare CliMA mean SIF757422

and SIF771 to the daily average SIF757 and SIF771 retrieved using the Orbiting Carbon423

Observatory 2, OCO-2 (Sun et al., 2017). Note here that TROPOMI and OCO-2 SIF was424

averaged from observations with different sun-sensor geometry and that the day length425

correction was made with the assumption that SIF is function of the cosine of the solar426

zenith angle. In comparison, CliMA SIF was modeled at nadir direction (viewing427

zenith angle is 0◦), and the day length correction was made by averaging all modeled428

SIF at different times of a day.429

2.4.3 NDVI, EVI, and NIRv430

We compared CliMA Land predicted NDVI, EVI, and NIRv to those retrieved431

using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellites432

MCD43A4 v006 dataset (Schaaf & Wang, 2015; Doughty et al., 2021). Note that MODIS433

MCD43A4 v006 reflectance indices have been corrected to nadir direction, which agrees434
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with CliMA Land simulations. We regridded the MODIS MCD43A4 v006 to global435

scale NDVI, EVI, and NIRv with 1 degree spatial resolution and 8 day temporal436

resolution.437

2.4.4 ILAMB438

We used the International Land Model Benchmarking (ILAMB, v2.6) package for439

model assessment (Collier et al., 2018) focusing on global patterns of GPP (generated440

by Artificial Neural Networks and forced with CRUNCEPv6 meteorological data and441

MODIS; this reference GPP data was different from the one mentioned above, and the442

GPP is labeled as “GPP.ANN.CRUNCEPv6” Tramontana et al., 2016; Jung et al., 2017)443

and FLUXNET2015 (Pastorello et al., 2020). To distinguish this product from the one444

used above, we labeled it as MPI RS+METEO GPP. We also compared CliMA GPP to445

that from eight Coupled Model Intercomparison Project (CMIP) version 5 models and446

twelve CMIP version 6 models (Table S1).447

We benchmarked the ILAMB overall score for the absolute values, as well as the448

individual components: the spatially integrated bias score, the root-mean-squared error449

(RMSE) score (doubly weighted in the overall score to emphasize its importance), the450

phase shift score, the inter-annual variability score, and the spatial distribution score.451

For the complete set of equations of each score and further details refer to Collier et al.452

(2018).453

3 Results454

3.1 Seasonal cycles455

CliMA Land simulated the characteristic seasonal cycles of carbon and water456

fluxes, and canopy reflectance and fluorescence (Figure 2). In general, the simulated SIF457

and NIRv tracked the simulated variations of GPP well for the eight selected grids with458

flux towers located within, except for some drought spells (e.g., days 150–350 in Figure459

2b; Marengo et al., 2021), as SIF and NIRv are less sensitive to the environmental stress460

than GPP (Magney et al., 2020; Marrs et al., 2020). We refer the readers to (Y. Wang,461

Braghiere, & Frankenberh, 2021) for videos of the hourly CliMA GPP, SIF, and NIRv for462

the year 2019.463
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Figure 2. Example of CliMA Land run at eight sites across the globe. CliMA Land global run was

made for year 2019. The [latitude, longitude] centers are (a) [40.5, −105.5], (b) [−16.5, −56.5], (c)
[5.5, −2.5], (d) [51.5, 10.5], (e) [−25.5, 31.5], (f) [62.5, 129.5], (g) [26.5, 115.5], and (h) [−35.5, 148.5],
respectively. There is a flux tower within each example grid, and they are US-NR1, BR-Npw,

GH-Ank, DE-Hai, ZA-Kru, RU-Skp, CN-Qia, and AU-Tum, respectively. The cyan curve plots the

modeled daily cumulative gross primary productivity (GPP); the red curve plots the modeled daily

mean solar-induced chlorophyll fluorescence (SIF) at 740 nm; the blue curve plots the modeled

daytime mean near infrared reflectance of vegetation (NIRv). NIRv is scaled to 2 times the original

value to facilitate visualization. GPP, SIF, and NIRv are all daily means (nighttime values set to 0 for

GPP and SIF).
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3.2 GPP464

CliMA GPP displayed reasonable spatial patterns across the globe: reproducing465

the patterns of MPI GPP which was interpolated from flux tower estimates (Figure 3).466

CliMA GPP and MPI GPP differed in their magnitudes (Figure 3), and CliMA annual467

mean GPP, on average, was higher than that of MPI GPP by about 63%468

(H = 1.629G + 0.024 and '2 = 0.806 for the linear regression in Figure 3; slope469

significantly different from 1, ? < 0.001). The CliMA Land predicted a global GPP of470

160.0 Pg C year−1, whereas the reference MPI GPP was 126.8 Pg C year−1.471
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Figure 3. Comparison of gross primary productivity (GPP). CliMA Land global run was made for

the year 2019. MPI GPP was interpolated from flux tower estimates using machine learning. GPP

was annual means averaged from monthly averages (nighttime values set to 0). Red solid line with

shaded region plots the linear regression with confidence intervals, and black dotted line plots the

1:1 line.

3.3 SIF472

CliMA SIF683 agreed well with observed spatial patterns of TROPOMI SIF683,473

though the two differed in their magnitude (Figure 4). CliMA SIF683 was generally474

higher than TROPOMI SIF683 given the negative TROPOMI SIF683 values (Figure 4).475

The regression slope was close to 1 (H = 1.074G + 0.054 and '2 = 0.492; slope476

significantly different from 1, ? < 0.001).477
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Figure 4. Comparison of solar induced chlorophyll fluorescence at 683 nm (SIF683). CliMA Land

global run was made for the year 2019. TROPOMI SIF683 was regridded from satellite retrievals.

SIF683 was annual means averaged from monthly averages (nighttime values set to 0). Red solid

line with shaded region plots the linear regression with confidence intervals, and black dotted line

plots the 1:1 line.

Similarly, CliMA SIF740 also well matched the spatial patterns of TROPOMI478

SIF740, though the two also differed in their magnitudes (Figure 5). Slope of the479

regression between the two was close to 1 (H = 1.263G + 0.118 and '2 = 0.495; slope480

significantly different from 1, ? < 0.001).481

When compared to OCO-2 SIF757, while CliMA SIF757 well represented the482

spatial patterns, it predicted dramatically higher SIF757 than OCO-2 retrievals483

(H = 1.946G + 0.044 and '2 = 0.681; slope significantly different from 1, ? < 0.001; Figure484

6). The dramatically different magnitudes suggested potential issue in CliMA Land SIF485

model or OCO-2 SIF757 retrieval algorithm.486

For SIF at 771 nm, CliMA SIF771 also well tracked the spatial patterns of OCO-2487

SIF771, and the magnitude differed less than that for SIF757 (H = 1.392 + 0.039 and488

'2 = 0.633; Figure 7). Though the slope was close to 1, it was still significantly different489

from 1 (% < 0.001).490
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Figure 5. Comparison of solar induced chlorophyll fluorescence at 740 nm (SIF740). CliMA Land

global run was made for the year 2019. TROPOMI SIF740 was regridded from satellite retrievals.

SIF740 was annual means averaged from monthly averages (nighttime values set to 0). Red solid

line with shaded region plots the linear regression with confidence intervals, and black dotted line

plots the 1:1 line.
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Figure 6. Comparison of solar induced chlorophyll fluorescence at 757 nm (SIF757). CliMA Land

global run was made for the year 2019. OCO-2 SIF757 was regridded from satellite retrievals. SIF757

was annual means averaged from monthly averages (nighttime values set to 0). Red solid line with

shaded region plots the linear regression with confidence intervals, and black dotted line plots the

1:1 line.

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

OCO2 SIF771 (mWm−2 sr−1 nm−1)

0.0

0.2

0.4

0.6

0.8

C
liM

A
SI
F 7

71
(m

W
m
−2

sr
−1

nm
−1
)

y =1.392x + 0.039
'2 = 0.633
RMSE = 0.09

0.00

0.05

0.10

0.15

0.20

0.25

O
CO

2
SI
F 7

71
(m

W
m
−2

sr
−1

nm
−1
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
liM

A
SI
F 7

71
(m

W
m
−2

sr
−1

nm
−1
)

100

101

102

N
um

be
ro

fo
bs
er
va

tio
ns

(-)

Figure 7. Comparison of solar induced chlorophyll fluorescence at 771 nm (SIF771). CliMA Land

global run was made for the year 2019. OCO-2 SIF771 was regridded from satellite retrievals. SIF771

was annual means averaged from monthly averages (nighttime values set to 0). Red solid line with

shaded region plots the linear regression with confidence intervals, and black dotted line plots the

1:1 line.

3.4 NDVI491

CliMA NDVI (average daytime values) well reproduced the pattern of MODIS492

NDVI (Figure 8). However, the two differed in their magnitude as CliMA NDVI was493

generally higher than MODIS NDVI by 0.1 (H = 1.057G + 0.097 and '2 = 0.915; slope494

significantly different from 1; Figure 8).495

3.5 EVI496

Similar to the comparison with MODIS NDVI, CliMA EVI (average daytime497

values) also showed good agreement with MODIS EVI (H = 1.372G + 0.067 and498

'2 = 0.914; slope significantly different from 1, ? < 0.001; Figure 9).499

3.6 NIRv500

CliMA NIRv (average daytime values) well represented the spatial patterns501

observed from MODIS NIRv, but the two differed in their magnitudes502

(H = 1.691G − 0.010 and '2 = 0.875; slope significantly different from 1, ? < 0.001; Figure503

10).504
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Figure 8. Comparison of normalized difference vegetation index (NDVI). CliMA Land global

run was made for the year 2019. MODIS NDVI was regridded from satellite retrievals. NDVI was

annual means averaged from 8-day averages (averaged from daytime values only). Red solid line

with shaded region plots the linear regression with confidence intervals, and black dotted line plots

the 1:1 line.
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Figure 9. Comparison of enhanced vegetation index (EVI). CliMA Land global run was made for

the year 2019. MODIS EVI was regridded from satellite retrievals. EVI was annual means averaged

from 8-day averages (averaged from daytime values only). Red solid line with shaded region plots

the linear regression with confidence intervals, and black dotted line plots the 1:1 line.
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Figure 10. Comparison of near infrared reflectance of vegetation (NIRv). CliMA Land global run

was made for the year 2019. MODIS NIRv was regridded from satellite retrievals. NIRv was annual

means averaged from 8-day averages (averaged from daytime values only). Red solid line with

shaded region plots the linear regression with confidence intervals, and black dotted line plots the

1:1 line.

3.7 ILAMB505

The ILAMB results showed that CliMA Land had higher discrepancies with the506

reference estimate (MPI RS+METEO GPP) than the Ensemble CMIP5 (from 8 models)507

and the Ensemble CMIP6 (from 12 models). The discrepancies were larger both in508

terms of bias score and root-mean-square-error (RSME) in GPP, as CliMA Land509

predicted approximately 34% higher GPP than MPI RS+METEO GPP (CliMA Land510

GPP was 155.1 Pg C year−1 and MPI RS+METRO GPP was 115.7 Pg C year−1 for the511

year 2010). In terms of seasonal cycle score of GPP, CliMA Land performed similarly to512

Ensemble CMIP6, both of which showed better agreement with MPI RS+METEO GPP513

than the Ensemble CMIP5. Overall, CliMA Land was less closer to MPI RS+METEO514

GPP than Ensemble CMIP5 and CMIP6 in GPP given the higher CliMA GPP than MPI515

RS+METEO GPP. See Y. Wang, Braghiere, and Frankenberh (2021) for the complete set516

of ILAMB results (also available at517

https://braghiere.github.io/ILAMB_CliMA_gpp_et/index.html). We note that518

CliMA Land input parameters have not yet been calibrated to match field- or519

satellite-based measurements, and future calibrations will improve the model predictive520
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skills. It is also worth noting that MPI RS+METEO GPP is also an estimate of GPP and521

thus has significant uncertainty.522

4 Discussion523

We present and evaluate CliMA Land, the first LSM that can simultaneously524

simulate hyperspectral canopy fluorescence and reflectance properties as well as525

corresponded carbon and water fluxes. CliMA Land modeled indices and measures, in526

general, well captured the spatial patterns globally, though the magnitude differed in527

some regions. These inconsistencies between model outputs and data-driven estimates528

potentially resulted from the following aspects, improvements over which would529

advance future land modeling.530

(i) CliMA Land is not well constrained given the various sources of plant traits531

and environmental cues. First, the model input datasets often disagree in their532

assumptions and model complexity, likely resulting in biases in simulated results (see533

Y. Wang and Frankenberg (2021) for an example of how canopy model complexity534

impacts the simulated carbon, water, and fluorescence fluxes). Second, because of the535

limited knowledge of how plant physiological traits vary spatially and temporally,536

datasets used to drive CliMA Land are often temporally constant instead of a time537

series. For instance, photosynthetic capacity represented by +cmax25, which should be538

varying in a growing season, is constant in a grid in our simulation, and this might539

contribute biases in the simulated carbon and water fluxes (Y. P. Wang et al., 2007).540

Third, CliMA Land prescribed environmental cues from ERA5 reanalysis data, which541

were interpolated from sparsely distributed historical observations and could have high542

uncertainty; and mismatch between ERA5 reanalysis data and reality would also543

contribute to biases in our model output. For example, when comparing the soil water544

contents from ERA5 reanalysis (black curve in Figure S1) vs. that from flux tower545

measurements (red curve with shaded region in Figure S1), we found that ERA5546

reanalysis data had wetter soil throughout the year, particularly from day 1 to 150,547

which corresponded to the growing season at AU-Tum. Promisingly, with the548

increasing number of observations across the globe, the uncertainty and biases549

resulting from model parameterization will be better resolved in the future (Cucchi et550

al., 2020).551
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(ii) Some key processes have been missing in the global-scale LSMs, such as the552

dynamics and variations in leaf photosynthesis and fluorescence related physiology.553

For example, Magney et al. (2019) and Raczka et al. (2019) highlighted the importance554

of sustained non-photochemical quenching (NPQ) in modeling SIF in the cold winter,555

which results in lower modeled SIF in cold environments. However, this process has556

not been yet implemented in any land surface or vegetation model (including CliMA557

Land) because of the lack of knowledge on how sustained NPQ quantitatively and558

mechanistically responds to temperature. Also, we used constant parameter sets for559

rate coefficient calculations such as the temperature dependency of maximum560

carboxylation rate, whereas species- and temperature-dependent parameter sets561

(Medlyn et al., 2002) should be used to best describe plants’ acclimation to the562

environment. Similarly, the fluorescence parameter set we used to compute NPQ,563

fluorescence yield, and hence SIF (see van der Tol et al. (2014) for more details), was564

also constant across the globe, regardless of the site-level species composition and565

stress status. Future research efforts to implement new physiological processes and566

resolve the spatial and temporal variations and acclimation of these physiological567

parameters will also improve the predictive skills of LSMs.568

(iii) The global scale data-driven GPP estimation used in the present study was569

interpolated using machine learning based on algorithm rather than real observations570

at 1◦ × 1◦ resolution, and thus had high uncertainty in the grids without a flux tower.571

Further, even for those grids with flux towers, there could be issues when up scaling572

flux tower observations that typically covers < 1 km2 footprint to the entire grid that573

may range up to > 10000 km2 and consist various vegetation types. A recent study574

compared 45 global GPP products and found considerable difference among the575

products, and the annual GPP ranges from approximately 0.8 to 2.4 times the MPI GPP576

(Zhang & Ye, 2021). In comparison, CliMA GPP was 1.26 times the MPI GPP for the577

year 2019. Therefore, as true global GPP patterns are unknown and current estimates578

are highly inconsistent (Anav et al., 2015; Zhang & Ye, 2021), effective evaluation of579

CliMA GPP or any other GPP remains a challenge.580

(iv) The global-scale TROPOMI, OCO-2, and MODIS observations may have581

considerable errors. For example, the retrievals are often negative or close to zero,582

particularly in those regions with low vegetation cover, making it difficult for a 1:1583

comparison between CliMA Land output and satellite observations. As a result, there584
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is always a postive offset in the linear regressions. For example, SIF retrieval may use585

barren land as a baseline, and the potential illuminance from other chemicals other586

than chlorophyll could lead to biases over the baseline (Köhler et al., 2021). Moreover,587

the mismatch in sun-sensor geometry likely impacted the 1:1 comparison between588

CliMA Land and TROPOMI/OCO-2 SIF as we used a nadir viewing zenith angle for589

the global simulation. We note that the daily average SIF in CliMA Land was590

calculated by averaging the SIF at nadir throughout the diurnal cycle, whereas591

TROPOMI/OCO-2 daily mean SIF was converted from point measurements with592

varying solar zenith angles based on an assumption that SIF is a function of cosine593

solar zenith angle that peaks at midday, which may not be true. We not that CliMA594

Land allows for using specific sun-sensor geometry and solar time that match all595

satellite overpasses, enabling the direct comparison between model simulation and596

satellite retrievals rather than the averages (as done in Figure 16 of Y. Wang, Köhler, et597

al., 2021). As CliMA Land is equipped to utilize the data from multiple sources, such598

as flux tower and satellite observations, it allows for more systematic and599

comprehensive data assimilation, thus promoting future research on plant trait600

inversion at various spatial and temporal resolutions.601

We note that CliMA predictions (pure forward model run without parameter602

calibration) were generally higher than existing MPI, TROPOMI, OCO-2, and MODIS603

products. Aside from errors in the reference benchmark datasets, the differences604

probably resulted from non-idealized model parameterization, such as chlorophyll605

content which was not inverted to use with a hyperspectral and multi-layer canopy RT606

model (so did many other input parameters). For example, if we use a lower607

chlorophyll content in the model, the vegetation will be less greener and thus NDVI,608

EVI, and NIRv will be lower; SIF and GPP will also be lower given the lower PAR609

absorption. Being able to simultaneously model hyperspectral canopy RT as well as610

carbon and water fluxes, CliMA Land has great potential in advancing future Earth611

System modeling. The simulated hyperspectral canopy RT can be directly compared to612

satellite observations, and can help constrain the Earth system model with the large613

number of remote sensing data such as inverting chlorophyll content that (1) is614

compatible with hyperspectral and multi-layer canopy RT model, and (2) agrees with615

remote sensing and/or ground-based data from multiple sources.616
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Further, the high temporal resolution of CliMA Land outputs provides an617

improved way to interpolate observations using modeled patterns (compared to618

prescribed constant trends such as when computing daily average SIF). The hourly619

global scales simulations allow for novel research that was not feasible in the past, such620

as the decoupling of SIF and NIRv vs. GPP in a diurnal cycle under different621

environmental stresses, supplementing the deficits of traditional satellite retrievals. We622

believe that future global maps with improved temporal resolutions (e.g., the NASA623

Surface Biology and Geology mission) can be used as model inputs, and that the624

implementation of new features into the land model will advance the land model625

predictive skills, for not only the past but also the future climate with respect to global626

climate change.627

5 Conclusions628

We present our first global run of CliMA Land, the first global land surface629

model that outputs carbon and water fluxes as well as hyperspectral canopy reflectance630

and fluorescence simultaneously. CliMA Land allows for not only the comparison of631

spatial patterns between carbon and water fluxes, reflectance, and chlorophyll632

fluorescence, but also provides insight into the details of their diurnal and seasonal633

cycles. We compare the model outputs to other data-driven GPP, SIF, NDVI, EVI, and634

NIRv products, and demonstrate the predictive skills of CliMA Land. Our model635

simulations underline (i) the necessity of improving land model parameterization, both636

spatially and temporally; (ii) the importance of implementing advanced or new features637

in the land surface models, such as the photosynthesis and fluorescence physiology;638

and (iii) the demand of integrating datasets to calibrate land surface models.639
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