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Abstract

Buoyancy-controlled underwater floats have produced a wealth of in situ ob-
servational data from the open ocean. When deployed in large numbers, or
‘swarms’, floats offer a unique capacity to concurrently map 3D fields of critical
environmental variables, such as currents, temperatures, and dissolved oxygen.
This sensing paradigm is equally relevant in coastal waters, yet remains under-
utilized due to economic and technical limitations of existing platforms. To
address this gap, we developed a swarm of 25 µFloats that can actuate ver-
tically in the water column by controlling their buoyancy, but are otherwise
Lagrangian. Underwater positioning is achieved by acoustic localization using
low-bandwidth communication with GPS-equipped surface buoys. The µFloat



features a high-volume buoyancy engine that provides a 9% density change, en-
abling automatic ballasting and vertical control from fresh to salt water (∼ 3%
density change) with reserve capacity for external sensors. In this paper, we
present design specifications and field benchmarks for buoyancy control and
acoustic localization accuracy. Results demonstrate depth-holding accuracy
within ±0.2 m of target depth in quiescent flow and ±0.5 m in energetic flows.
Underwater localization is accurate to within ±5 m during periods with suf-
ficient connectivity, with degradation in performance resulting from adverse
sound speed gradients and unfavorable surface buoy array geometry. Support
for auxiliary sensors (<10% float volume) without additional control tuning is
also demonstrated. Overall performance is discussed in the context of poten-
tial use cases and demonstrated in a first-ever swarm-based three-dimensional
survey of tidal currents.

1 Introduction

Oceanographic floats, most notably the Argo program, have dramatically improved our un-
derstanding of ocean circulation and expanded the spatial and temporal distribution of
worldwide salinity and temperature measurements (Riser et al., 2016; Jayne et al., 2017;
Wong et al., 2020; Gould, 2005; Rossby, 2007). When considering the in situ sensing needs
to support monitoring, simulation, and management of coastal waterways (Arkema et al.,
2015; Wilkin et al., 2017; Liu et al., 2015; Fringer et al., 2019), multitudes of floats (i.e.,
‘swarms’) are a conceptually attractive approach. However, floats designed for the global
ocean are not well-suited to coastal environments. Oceanographic floats include pressure
housings and hydraulic buoyancy control systems for 2000 m dives and can tolerate rela-
tively low accuracy depth control of O(10) m. Coastal waters extend from estuarine systems
out to the continental shelf and have a maximum depth of roughly 200 m (Bowden, 1983).
These shallower waters necessitate higher accuracy O(1) m depth control, but lower hydro-
static pressures permit simpler (and less expensive) mechanical buoyancy engines (D’Asaro,
2003; Jaffe et al., 2017). Similarly, oceanographic floats are deployed for long durations
(weeks to years), often without intention of recovery. Thus, data communication is ac-
complished via satellite. In coastal environments, smaller horizontal domains O(1-10) km
permit inexpensive hardware recovery and operations within the range of cellular and radio
communication, eliminating the reliance on satellite communication. Lastly, coastal envi-
ronments can exhibit strong density gradients where fresh river water enters coastal seas or
be well-mixed in regions with strong tidal currents. A coastal float must accommodate both
conditions.

A small number of floats suitable for coastal environments do exist. The sole commercial
example is MRV Systems’ ALAMO float. While designed for open-ocean research (e.g., rapid
deployment in front of hurricanes and under-ice profiling in the Arctic (Jayne and Bogue,
2017)), it is sufficiently small (∼ 1 m tall, 9 kg) to permit shallow water deployments and
its buoyancy engine can accommodate the density gradients present in coastal waters. The



remaining examples are custom platforms developed by individual research groups. D’Asaro
et al. developed the MLF float (D’Asaro et al., 1996; D’Asaro, 2003) for 3D Lagrangian
flow-following to study convection, vertical velocity, vorticity, and turbulent mixing in the
upper-ocean (< 300 m) mixed layer, as well as in large scale tidal channels (Alford et al.,
2005; Steffen and D’Asaro, 2002; D’Asaro and Dairiki, 1997; D’Asaro and Lien, 2000; Lien
et al., 1998; D’Asaro et al., 2002; D’Asaro, 2014; Shcherbina et al., 2018). The MLF can also
measure internal waves, surface waves, and upwelling (Lien et al., 2002; D’Asaro, 2015, 2004).
Roman et al. developed a coastal float equipped with bottom-tracking and a downward-
looking camera for visual benthic explorations (Schwithal and Roman, 2009; McGilvray
and Roman, 2010; Roman et al., 2011), and later combined thruster and buoyancy-control
for improved vertical actuation accuracy and efficiency (Snyder et al., 2018). While the
previously mentioned profiling, Lagrangian, and bottom-tracking floats are roughly 1 m
scale, Jaffe et al. designed the miniature Autonomous Underwater Explorer (M-AUE) with
a form factor of roughly 0.2 m to better emulate passive and vertically-migrating larvae, as
well as improve measurements of submesoscale ocean dynamics (Jaffe et al., 2017). With
a swarm (16 floats), they demonstrated plankton patch formation in internal waves on the
California continental shelf. More recently, higher capacity coastal floats have been developed
for observing biogeochemical processes (Schulze Chretien and Speer, 2018) (Gene Massion,
pers. comm.), though their expense and size hinder swarm deployments.

Inspired by the success of these groups, the objective of this work was to develop an in-
expensive coastal float swarm (Fig. 1). The new float, dubbed the µFloat (“microFloat”),
fills the gap in operational space between the capabilities and form factors of existing floats
and reduces unit costs by leveraging recent advancements in oceanographic and electronic
technology. In Section 2, we describe the overall design of the µFloat, with the buoyancy
engine implementation and evaluation described in Section 3. In Section 4, we describe the
underwater localization system and undertake field testing in quiescent water (Lake Wash-
ington, WA). Finally, in Section 5, we demonstrate the full swarm system in an energetic
tidal channel (Agate Pass, WA). Comparison between quiescent benchmarks and dynamic
performance are presented in Section 5. We finish by discussing implications for future
sampling objectives in Section 6.



Figure 1: µFloat operational concept from deployment, dive to target depth, transport with
water currents, and resurfacing for recovery.

2 µFloat Design

2.1 Design

The µFloats were designed for short-duration sampling (≤ 1 day) of quickly evolving phe-
nomena (O(10) minutes; e.g., eddies) in coastal waters. Regions of interest have small
horizontal ranges (O(1) km), but exhibit strong spatial gradients that necessitate high spa-
tial sample resolution (O(10) m). Operational depths may range from 10-100 m and flow
speeds may exceed 1 m/s. Water density may vary by as much as 3% (fresh to salt water)
or be well-mixed. Given this environment and the intended ‘swarm’ sampling strategy, the
µFloats were designed with the following requirements:

1. Depth-holding accuracy within 1 m to provide vertical coverage throughout a 100 m
water column.

2. Movement to target depth is achieved quickly (< 5 minutes).

3. Float horizontal position is resolved to within 10 m at minimum 1 km range.

4. Horizontal positions are updated at least once per 10 seconds.

5. Rapid recovery and redeployment are possible, enabling repeat surveys in the region
of interest.

6. Individual units are easily handled by a single person without special equipment to
minimize operational costs.

7. Unit costs are minimized.



2.2 Implementation

2.2.1 µFloat Architecture

The µFloat (Fig. 2) was designed to be as small as possible while respecting constraints for
low-cost electronics, future sensor suite expansion, and buoyancy engine capacity. Costs were
minimized through the use of hobbyist and commercial-off-the-shelf parts wherever possible
and all custom components were designed for inexpensive production and assembly. The
main housing is a 13 cm (4”) diameter, 40 cm long acrylic tube with double O-ring piston
seals (Blue Robotics) and custom end caps. It has a rated depth of 100 m.

Figure 2: µFloat with annotated core subsystems.

The µFloat can position itself vertically in the water column by manipulating its density
relative to the surrounding water through the use of a “buoyancy engine”. The buoyancy
engine is comprised of a solid acetal (Delrin) piston that extends through a T-ring seal in the
bottom end cap. Actively controlling the piston extension changes the total displaced volume
of the float while mass remains constant, thus changing the float density. The piston is driven
by a lead screw connected to a brushed DC motor with planetary gearbox (ServoCity) and
motor controller (Pololu). Piston position is inferred by a quadrature encoder attached to
the motor shaft and limit switches are mounted at both extents of the piston position to
prevent over-extension. Buoyancy engine cost was prioritized over energy efficiency, a trade-
off deemed acceptable since our observational focus was dynamics over short time intervals
(< 1 day).



The nominal volume of the float with the piston fully retracted is 4700 cm3. Fully extended,
the piston increases the volume by 450 cm3 (± 10 cm3 due to manufacturing variability),
providing a 9% change in total displaced volume. Floats are ballasted to be within 50 g of
neutral buoyancy with their piston halfway extended in fresh water and have an approximate
mass of 4.9 kg. While not strictly necessary, we add calibrated weights when deploying in
salt water to maintain balanced bidirectional performance of the buoyancy engine.

The µFloat is controlled by a single-board computer (Beaglebone Black) running a Linux-
Debian operating system that runs mission control, sensor telemetry, and data acquisition.
Programming and data offload occur via WiFi when on the bench or on-board the vessel. All
system status and sensor data are recorded continuously to a 32 GB micro SD card. A GPS
receiver (Adafruit) provides position and pulse-per-second (PPS) clock synchronization while
on the surface. For recovery, coordinates are transmitted to a support vessel via redundant
900 MHz RF radio (XBee) and cellular (Particle Electron) modems. These communication
methods also permit the exchange of short data messages and commands between floats
and the support vessel, such that floats can be re-tasked without physical retrieval. For
underwater communication and localization, we utilize nanomodems (Fenucci et al., 2018;
Neasham, 2016), an inexpensive (∼ $250 US) underwater acoustic modem (further details
in Section 4.2). An onboard inertial measurement unit (IMU) also records orientation and
acceleration (translational and rotational). To date, the IMU data has only been used for
diagnostic purposes (e.g., identifying seabed contact), however we anticipate adding inertial
navigation between acoustic position updates to improve localization accuracy and resolu-
tion. Additional USB, serial, analog, and I2C connections are available for auxiliary sensor
integration. The top end cap hosts all of the external interfaces and components. These
comprise a pressure sensor (Honeywell) and temperature sensor (BlueRobotics). The GPS
patch antenna, nanomodem acoustic transducer, and RF and cellular antennas are potted
in a single, custom unit. Additionally, a charging plug, vent plug, auxiliary port and power
switch are all also located on the top end cap. Power is provided by a rechargeable Li-ion
battery pack with 100 W-hr capacity. The hotel load consumes between 3-5 W, resulting in
a maximum endurance of 20-30 hr.

3 Buoyancy Control Implementation and Evaluation

Active control of the µFloat buoyancy engine is necessary to efficiently reach target depth
and to maintain that depth under environmental disturbances. Overall, we prioritized iso-
baric/depth control, rather than Lagrangian vertical behavior, to ensure vertical distribution
of the swarm throughout the water column.

3.0.1 µFloat Buoyancy Control

Control of the µFloat buoyancy engine is executed in software using feedback from the pres-
sure sensor to achieve isobaric control. For simplicity, we will refer to this as “depth control”,
noting that pressure in dbar and depth in m are interchangeable within an accuracy of 3%



(i.e., maximum 3 m difference at 100 m rated depth). Prior to deployment, a predefined
schedule of target depths and durations is constructed. Using a graphical-user-interface
(GUI) developed in MATLAB (Mathworks R©), the schedule is uploaded to floats via WiFi.

During a dive sequence, depth control is achieved via a closed-loop two-stage cascaded
proportional-derivative (PD) controller operating based on both float depth z and verti-
cal velocity v (Fig. 3). Float depth is provided by the pressure sensor sampling at 10 Hz.
The raw data is smoothed using a fourth-order digital Butterworth filter. Float velocity is
computed via a digital differentiation of the filtered pressure signal. The filter introduces a
one-second lag in both depth and velocity observations. In the first stage of the controller, the
position error (target minus current depth) is calculated. From this error, a recommended
velocity is computed based on PDz gains and checked against a user-defined upper speed
limit (V limit) to determine a target velocity. In the second stage, velocity error (target minus
current) is computed and the output motor command (with checks for minimal and maximal
values) is calculated based on PDv gains. To mitigate errors due to absolute drift of the
pressure sensor (< ± 0.5 dbar/hour, ± 1 dbar max), ambient pressure is sampled whenever
the float surfaces and dive pressure (depth) is computed relative to the most recent surface
pressure. Gains (PDz and PDv) were manually tuned to minimize time to target depth and
maximize depth-holding stability in a series of shallow water laboratory trials. These gains
were held constant for subsequent testing. As shown in Figure 4, the velocity limit (Vlimit)
improves transient dynamics, as well as enabling constant-speed profiling modes.

Figure 3: Block diagram of µFloat depth control. Control scheme is closed-loop, two-stage,
cascaded proportional-derivative (PD) controller with feedback from the pressure sensor.
Inputs are target depth and velocity limit Vlimit for constraining vertical speed.

3.1 Buoyancy Control Testing

Quiescent-flow field tests were conducted on 27 July 2020 in Lake Washington, WA, a large
freshwater lake with a muddy bottom and a depth of 30-65 m in the testing region. Winds
were light (1-2 m/s) and varied from SE to S over the course of the day. Depth control was
evaluated during the first of two test periods, which lasted approximately 2.7 hours.



µFloats were deployed with a pre-programmed depth schedule designed to evaluate the buoy-
ancy engine’s transient dynamics and depth-holding accuracy, as well as float compressibility.
The lake depth permitted control assessment over approximately half the float range, with
target depths varying from 2.5 m to 42.5 m. The velocity limit control parameter (Fig. 3)
ranged from 0.2 m/s (slow) to 1.0 m/s (effectively unrestricted, given the float terminal
velocity of ∼ 0.5 m/s).

During this test, several µFloats were equipped with external sensors to provide supplemen-
tary data sets and to demonstrate adaptability. Four floats were equipped with hydrophones
for acoustic assessment of nanomodem transmissions (see Section 4) and three floats with
cameras (GoPro Hero 6 and Session 5) for visual examination of float performance.

3.2 Evaluation of Depth Control

3.2.1 Data Analysis

To distribute floats throughout the water column, the buoyancy engine controller must be
able to efficiently bring a float to a target depth. To characterize depth control performance,
the dive sequence was parsed into actions (any move from one target depth to another).
From each action, we computed the following metrics: (1) settling time - the elapsed time
between when the float moved 0.25 m from its starting depth to settling within 0.25 m of the
target depth; (2) overshoot – the max deviation (m) from the target depth prior to settling;
(3) depth-holding accuracy after settling, assessed as mean offset from target depth, and (4)
deviations from the settled depth, assessed as the interdecile range of actual minus mean
settled depths. Actions with steady-state periods less than 30 seconds were excluded due to
lack of statistical convergence.

3.2.2 Depth Control in Lake Washington

The buoyancy control algorithm was able to successfully and consistently control float depth
across a range of depths, as pictured in Fig. 4a. For a float starting on the surface with
piston fully extended (e.g., Figs. 4g-k), it took ∼ 30 s to retract the piston past the neutral
buoyancy position to begin diving. This must be accounted for when deploying in energetic
environments to ensure the floats reach depth within the region of interest, either by deploy-
ing upstream of that region or by pre-retracting the piston. Floats have a ∼ 0.5 m/s terminal
velocity (e.g., Fig. 4m, min. 125). The velocity limit, applied to adjust the dive speed of the
float, proved effective at reducing overshoot when the limit was smaller than the terminal
velocity (e.g., compare overshoot in Figs. 4b,g to Fig. 4l). While the unconstrained float
(Figs. 4l-p) reached the target depth fastest, the additional time spent recovering from the
larger overshoot resulted in a settling time similar to that of the float with a 0.2 m/s velocity
limit (∼ 180 sec), which conversely took longer to reach the target depth, but experienced
minimal overshoot (∼ 2 m).

Extracting depth performance statistics from all float dives taken in Lake Washington (Fig. 5,



colored circles), we find that overshoot can vary from < 1 m to 14 m depending on target
depth and the velocity limit. For purposes of dive planning, the average settling time is
roughly 10 s + 4 s per meter of target depth, an effective average dive velocity of 0.25 m/s.
Increasing the effective dive velocity would require a more advanced control strategy (e.g.,
model predictive control). Floats are able to hold depth to within the absolute accuracy of
the pressure sensor ((± 1 dbar; Fig. 5c), with deviations around the settled depth < 0.2 m
(Fig. 5d). While such transient and steady-state performance is desirable, it is achieved
at the cost of near-continuous actuation of buoyancy engine (Figs. 4e,j,o), increasing power
consumption (Figs. 4f,k,p). A velocity limit ≤ 0.5 m/s improves consistency of both settling
time and overshoot across variably ballasted floats (Figs. 5a,b), but does not influence the
depth-holding characteristics of the float (Figs. 5c,d). Lastly, variations in buoyancy control
dynamics due to the attachment of modestly-sized auxiliary sensors (i.e., hydrophones and
GoPro cameras, <10% Vo) are indistinguishable from variations across standard floats and
thus do not require any special control tuning.



Figure 4: Depth control of uFloat 009 during Lake Washington - Test 1 (a). Three dives are
highlighted, with detailed characteristics pictured in (b-f), (g-k), and (l-p). Velocity limit
for each dive was 0.4 m/s (b-f), 0.2 m/s (g-k), and 0.6 m/s (effectively unconstrained, l-p).
The grey region in (g-k) highlights the piston retraction period for a dive initiated from the
surface. The settling period is highlighted in purple (b-p).



Figure 5: Fleet-wide statistics for depth control actions during Lake Washington (circle) and
Agate Pass (square) tests. All Agate Pass floats were programmed with a 0.3 m/s velocity
limit. 0.5, 0.6, and 1 m/s velocity limit data points from Lake Washington include an offset
(1 m) on the horizontal axis to facilitate visualization.



3.3 Evaluation of Float Compressibility

While the depth control accuracy achieved was well within the design requirements, the mo-
tor moved more frequently than expected given the quiescent conditions in the lake. Once the
float has reached neutral buoyancy (i.e., its density matches that of the surrounding water),
its stability should primarily depend on its compressibility relative to the compressibility of
water, as any difference will generate a relative change in buoyancy if perturbed from the
settled depth. If the float is less compressible (stiffer) than water, a restoring force results,
returning the float to the original depth, or more precisely, the original isopycnal (D’Asaro,
2017). If the float is more compressible than the surrounding water, neutral buoyancy is
a dynamically unstable state and the float must actively control its density to maintain a
desired depth or isobar. For such a float, passive isobaric control and Lagrangian/isopycnal
control requires stratified water. But even though the µFloats are expected to be more com-
pressible than water due to the housing, the resulting forces are expected to be small and
produce accelerations on the time scale of minutes, rather than the seconds observed in the
motor behavior.

To better understand the impact of float compressibility on dynamic stability, we character-
ized compressibility by examining how the neutral-buoyancy piston position – the average
position of the piston when holding depth – changed with hydrostatic pressure. A decrease in
nominal float volume Vo due to compression increases the nominal density (given a constant
float mass). Thus, to maintain neutral buoyancy, the piston must extend to compensate for
the lost nominal buoyancy. Accordingly, we assessed float compressibility γ by computing
the difference between neutral buoyancy piston volume Vpiston at 2.5 m (reference depth, zref )
and the piston volume for neutral buoyancy at greater depths z, normalized by the nominal
float volume Vo, and accounting for the change in water density with depth ρ(z) produced
by the thermocline (Fig. 8b). That is,

γ =
1

∆p

∆V

V
=
V0(

ρ(zref )

ρ(z)
− 1) + Vpiston,zref

ρ(zref )

ρ(z)
− Vpiston,z

(p(z) − p(zref ))V0
.

To interpret float compressibility in the context of water compressibility or stratification,
we cast compressibility into a change in nominal float density ∆ρnominal with hydrostatic
pressure, assuming a reference water density ρref = 1000 kg/m3 – fresh water at 15 ◦C,
following

∆ρnominal = γ ∗ ∆p ∗ ρref .

This analysis reveals that the floats are significantly more compressible than water (Fig. 6),
though only about 1/3 of the loss in volume can be attributed to the compression of the
cylindrical housing shell (following Roark et al. (1976)). The remainder is hypothesized to
be trapped air exposed to ambient pressure, since the shallow and short dives are likely
insufficient for dissolution of entrained air and surface bubbles (D’Asaro, 2003).

This high relative compressibility means that in well-mixed or weakly-stratified waters the
float is isopycnally unstable, and thus requires frequent actuation to maintain a target depth.



If deployed in a stably stratified environment, the water density gradient will counteract float
compressibility. Results from Lake Washington indicate that the minimum stratification
necessary for isopycnal operation is approximately δρ/δz > 0.00015 (g/cc)/m, or about
0.2 PSU/m salinity gradient. While the µFloat would ideally be less compressible than
water to enable passive depth control, this would require a more expensive housing, running
counter to the design specification to minimize cost.

Lastly, the question remains whether dynamic instability due to float compressibility drives
the near-continuous motor movement. Based on the characterized compressibility, if a µFloat
with piston extended such that it is neutrally buoyant at 40 m is offset from that depth by
0.1 m, it would take ∼ 1 minute to move another 0.1 m distant. While of similar magnitude,
the movements around the settled depth occur on the order of 10 s, much faster than can
be attributable to the compressibility. As such, we believe the current control algorithm
(Fig. 3), while decently tuned for the transient performance, is overly sensitive when holding
depth and the primary cause of the near-continuous manipulation of the buoyancy engine.

Figure 6: Equivalent change in float density with pressure due to compressibility. Points
indicate an individual measure of float compressibility. Vertical grey bars indicate confidence
intervals based on piston position uncertainty. Water density changes due to compressibility
(for fresh water at 15 ◦C, dotted line) and vertical salinity gradients (dashed lines) are
included for reference.



4 Underwater Localization Implementation and

Evaluation

4.1 Design

Design of the underwater localization system was motivated by the desire for high-resolution
float trajectory data, from which horizontal velocity could be reliably extracted. While GPS
provides float position while on the surface, the signal does not penetrate subsurface. As
with the buoyancy engine, we prioritized an inexpensive localization solution.

4.2 Implementation

For subsurface positioning, we utilize a network of Surface Localization Buoys (SLBs)
equipped with acoustic nanomodems (Fig. 7a). A minimum of three SLBs, either moored
or drifting, provide a long-baseline style localization architecture (Smith and Abel, 1987).
Surface buoy electronics are a simplified subset of the µFloat’s contained within an acrylic
housing (Blue Robotics). The external structure consists of buoyant yellow foam upper and
a subsurface spar (1 m long) from which the nanomodem transducer extends.

Figure 7: Localization architecture: a localization buoy (SLB) being deployed by the first
author (a); nanomodem ping scheduling (b); computation of the horizontal distance LH from
the time of flight (c); plan view of the localization array (d).

The nanomodem (v2) is a low-cost acoustic modem (∼ $250) that exchanges messages on a
carrier frequency band of 24-28 kHz. They have a maximum data rate of 40 bit/s, a source
level of 168 dB re 1 µPa 1 m, and a nominal range of 2 km (Fenucci et al., 2018; Neasham,
2016). Nanomodems were chosen as they met the communication requirements necessary
for underwater localization at significantly lower cost (10x) than other commercially avail-
able acoustic modems. When integrated, the nanomodem was still under development and



the version of the hardware used could not parse overlapping messages and thus a time-
division-multiple-access (TDMA) approach was used to schedule SLB localization pings. All
nanomodems within broadcast range (i.e., both those on subsurface µFloats and on nearby
SLBs) recorded and timestamped received pings.

Positional information was determined in post-processing, after data have been off-loaded
from both the µFloats and SLBs. The sent and received pings are aligned to calculate the
time-of-flight, and estimate the corresponding range based on a measured or assumed sound
speed (Fig. 7c). Three or more range estimates occurring within the round-robin time are
combined to trilaterate the µFloat positions with a least-squares fit (Norrdine, 2012). The
resulting localizations are intermittent, noisy, and can indicate physically unrealistic float
motion. Egregious outliers (e.g., positions on land) are removed and remaining data are
smoothed using a robust (outlier-rejecting) locally-weighted, quadratic regression (MATLAB

‘smooth’ function with ‘rloess’ option). For a given track, the smoothing window was chosen
programmatically to ensure sufficient observations were used in the regression. Windows
varied from 60 to 240 seconds with 60 second discretization. Finally, to estimate velocity
along the track, we apply a first-order central-difference scheme to the previously smoothed
data. Additional details on localization processing are provided in Harrison (2021).

It is important to note that this time-stamped approach depends on synchronized clocks.
Both SLB and µFloats clocks are synchronized to the GPS pulse-per-second output while
on the surface. When subsurface, the µFloat clock (crystal oscillator on the onboard com-
puter) has a maximum drift of 30 parts-per-million, such that after 30 minutes underwater,
the maximum offset expected is 0.054 s. Additionally, the assumption of negligible float
movement between pings depends on the ping offset and water velocity. For example, if the
horizontal float velocity is 2 m/s and the ping offset is 1 second, float position may change
up to 6 m in the time required to receive all three pings in a localization set. This effect can
degrade the benefits of over-determined localization using more than three pings.

4.3 Testing of the Underwater Localization System

The underwater localization system was evaluated during the µFloat testing in Lake Wash-
ington described in Section 3.1. Two test periods occurred, with layouts as pictured in Fig. 8.
Five SLBs were deployed during both tests, scheduled with a 2 s ping offset. Prior to Test
1, profiles of water density and sound speed were measured (Valeport miniSVP), revealing
a strong thermocline (Fig. 8b).

Test 1 (LW-1) lasted approximately 2.7 hours and evaluated connectivity and accuracy. As
such, three SLBs were deployed in an equilateral triangle (∼200 m on edge) around the
floats to provide consistent localization data throughout the experiment. Two additional
SLBs (4,5) were initially deployed about 1600 m distant and moved sequentially closer to the
floats over the course of the two-hour deployment. To better understand acoustic conditions
impacting nanomodem connectivity, four µFloats were deployed with an externally mounted
hydrophone (OceanSonics icListen HF).



Figure 8: Layout of surface localization buoys (SLBs) (a) and sound speed and density
profiles (b) during Lake Washington tests. � and 6 mark the starting and final locations,
respectively, for each test. Some SLBs were manually relocated during Test 1, with H
marking each new starting location. Twenty µFloats were deployed in the center of the
triangle formed by SLB 1-2-3 in Test 1, and two floats nearly collocated with SLB 1 in Test
2. SLB movement was wind-driven, with light wind (1-2 m/s) varying from SE to S over the
course of the day.

Test 2 (LW-2) lasted approximately 30 minutes and evaluated optimal localization accuracy,
with all five SLBs deployed in a cross configuration, with a maximum separation distance
of 300 m. To assess horizontal position uncertainty, two µFloats were programmed to sit on
the lake bottom for fifteen minutes, thus acting as stationary targets, following Casagrande
et al. (2019). An additional four floats were deployed at depths varying from 2 to 10 m, but
their data was utilized only in connectivity analysis.

4.4 Evaluating Nanomodem Connectivity

4.4.1 Nanomodem Connectivity Analysis

Underwater localization relies on the receipt of pings from a minimum of three surface buoys
within the localization window (e.g., 12 s in Lake Washington) and is thus impacted by the



underlying connectivity between source and receiver. We evaluated connectivity as the ratio
of pings received from an SLB relative to the total possible.

To evaluate how connectivity was impacted by acoustic conditions, data from the µFloat-
mounted hydrophones were processed in MATLAB (Mathworks R©) to extract pressure spectral
density levels over the duration of the test. We calculated the 10-second moving-median
sound pressure level within the 24-28 kHz transmission frequency band as a measure of
ambient noise. Pings appeared as short, distinct elevations in this band, and were identified
using a matched filter. The received level for each ping was calculated as the root-mean-
square band level over the duration of the ping. Subtracting the ambient noise level from
the received level (in dB space) provided a signal-to-noise (SNR) ratio for each ping in
the hydrophone data stream. The hydrophone time series was manually aligned to µFloat
time series by reference to both the nanomodem ping record and µFloat buoyancy engine
motor noise. The nanomodem pings recorded on the hydrophone were then labeled with
their corresponding source SLB by reference to the known ping schedule. µFloat depth and
transmission distance for each possible ping were extracted from the µFloat data series.
Additional details on acoustic processing can be found in Harrison (2021).

4.4.2 Nanomodem Connectivity Performance

In general, nanomodem connectivity rates are expected to decrease with decreasing SNR,
however the cutoff within which receptions can be expected (i.e., connectivity rates > 50%)
must first be determined before assessing the relative impacts of propagation losses (e.g.,
spreading and absorption) and elevated background noise (e.g., vessel traffic). To do so,
we binned all Lake Washington pings into 5 dB levels (Fig. 9) and computed the ratio of
received to possible pings. Levels for missed pings were estimated via interpolation from
temporally adjacent received pings from the same source. As expected, connectivity was
strongly correlated with ping SNR, with reception rates near 100% for SNR > 30 dB and
reducing roughly linearly down to 0 dB, at which point reception rates were effectively 0%
(Fig. 9a).

To disambiguate the impact of range, receiver depth, and elevated background noise, we
examined how nanomodem connectivity varied with depth and distance (Fig. 10a). High
reception rates (> 75%) are observed within 400 m, followed by rapid deterioration with
distance and a maximum range of ∼ 1000 m. This range is slightly shorter than expected:
the nanomodem source level is 168 dB and average noise levels in the carrier frequency band
were roughly 75 dB, indicating a maximum allowable propagation loss of ∼ 90 dB. Near-
field (< 60 m) receptions exhibit 45-55 dB SNR, corresponding to a loss of 35 dB in the
first 60 m of transmission, which matches spherical spreading. Theoretically, the remaining
55 dB could provide > 10 km range, assuming < 1 dB/km loss due to absorption in fresh
water and cylindrical spreading, but the observed range was significantly smaller.

The diminished nanomodem range was partly due to the downward refraction due to the
strong thermocline (Fig. 8b) present on the day of testing. Comparison of the acoustic path
distance to GPS-based source-receiver distance revealed a significant percentage of pings



on both SLBs and µFloats with time-of-flights corresponding to a propagation path that
included a bounce off the bottom (Table 1). Flagging these pings and plotting by depth and
distance, we see that nearly all receptions outside 375 m likely included a bottom bounce
(Fig. 10b). Received levels for direct paths are 5-15 dB higher than bottom bounce paths
of the same acoustic path distance. This attenuation range is consistent with expectations
for bounces of varying grazing angles off a soft muddy bottom (Jackson et al., 2010). The
impact of refraction is also evident in how connectivity (Fig. 10a) and SNR (Fig. 10c) change
with receiver depth. Within 375 m, deeper receivers maintaining higher reception rates and
SNR at longer ranges. Beyond 375 m, bottom bounce effects dominate.

Nonetheless, the nanomodems have proven effective at SNR as low as 0 dB in previous
deployments, so the degradation in connectivity from 30 to 0 dB observed here was worse
than expected. Examination of the hydrophone records revealed that, as range increased, the
channel also exhibited a severe multipath response composed of multiple arrivals as shown
in Fig. 10e, as compared with the strong peak in the near-range (d). Here, a perfect signal
has one peak of magnitude 1 and a signal with very low SNR has will have a low peak
value. However, a signal with high SNR and lot of multipath with also show low correlation.
Pings sent from similar distance as (e) that were observed on the hydrophone record but
not recorded by the floats exhibited even more dramatic multipath signals. This greatly
increased the probability of missing receptions and the probability of locking onto a reflected
path rather than the earliest path. Thus, the performance reported here is representative of
severely unfavorable acoustic conditions.

While elevated background noise is another possible cause of reduced range, vessel traffic
(the primary contribution during testing) increased background levels in the transmission
band by roughly 10-20 dB for short periods (1-2 minutes), and thus deemed insignificant
relative to the propagation losses discussed here.

The significance of propagation losses due to range, receiver depth, bottom interactions,
and multipath signal degradation is borne out when comparing connectivity statistics for
all µFloats and SLBs (Table 1) across the Lake Washington tests. Test 1 experienced lower
SLB receptions, due to the lengthy period SLBs 4 and 5 spent at far range (> 750 m) from
the other three SLBs. Connectivity improved dramatically during Test 2, as all SLBs were
placed within 200 m of each other and the floats. µFloat connectivity matched this trend for
the same reasons. Additionally, because the thermocline favors targets at depth, the µFloat
reception rates were significantly higher and suspected bottom interaction rates significantly
lower than those of the SLBs.

4.5 Evaluating Localization Accuracy

4.5.1 Analysis of Localization Accuracy

The ultimate purpose of the nanomodem array is to accurately estimate the horizontal
positions of subsurface µFloats. Because the true location of the floats is unknown while
underwater, system accuracy was assessed by examining acoustic localizations of the SLBs,



Figure 9: Received messages by SNR. This includes only data from the four µFloats with
externally mounted hydrophones. (a) Total number of possible receptions, actual receptions,
and suspected indirect paths; (b) Received percentage relative to total possible; (c) Indirect
(i.e. transmission with suspected bottom interaction) percentage relative to total received.
Bins with fewer than 20 receptions (less than 0 dB) are omitted.

as compared to their ‘true’ GPS data. From this standpoint, the SLBs are functionally
equivalent to µFloats holding depth at 1.5 m.

To generate the ‘true’ position reference for all SLBs, their raw (1 Hz) GPS data was
smoothed using a low-pass filter with 0.0167 Hz cut-off frequency (60 second period). A
first-order central-difference scheme was applied to the smoothed position data to provide
the horizontal velocity reference.

To isolate the influence of the source geometry on localization accuracy, we also applied
the localization algorithm using the GPS-measured distances between source and receiver
SLBs as the range inputs in the trilateration process (replacing the distances calculated from
acoustic time-of-flight).

4.5.2 Accuracy of Underwater Localization

When SLBs received consistent pings, localization was possible and positions calculated from
raw acoustic data generally matched GPS data, though with considerable noise (Fig. 11a).
To correct for acoustic paths with suspected bottom bounces, we estimated the corresponding
direct path distances by assuming a nominal water depth (60 m in Test 1, 30 m in Test 2)
and a triangular path from source to bottom to receiver. Methods for identifying paths with
suspected bounces and corrections are detailed in Harrison (2021). Correcting for bottom
bounces reduced scatter, but did not eliminate it. Test 1 and Test 2 have similar position
errors before correcting for bounces (Table 2), but the corrected values for Test 1 are twice



Figure 10: Nanomodem connectivity during Lake Washington as a function of depth and
source-receiver separation distance. (a) overall percent received relative to possible recep-
tions; (b) percentage of received messages suspected of being following an indirect path; (c)
SNR of received pings. (d) and (e) show examples of the matched filter correlation strength
used to identify the pings, centered on peak correlation time for each received ping. White
and black marks on (c) correspond to (d) and (e), respectively.



as accurate as for Test 2. The likely cause is that Test 1 occurred over the main basin of the
lake, where the nominal depth of 60 m was widely applicable. Test 2 (Fig. 11a) occurred
over a sloped region of the lake, with depth increasing by 30 m from SLB 4 to SLB 5. Thus,
the single nominal depth used to correct for bounces proved less effective. However, even
after correction, positions remain noisy and indicate non-physical trajectories.

Smoothing the data produces physically realistic tracks. Position errors (50th percentile) are
within 4 m of the GPS positions in Test 1 and 8 m in Test 2 (Table 2). Artifacts do remain
(e.g., excursions from GPS tracks for SLB 2, 3, and 5). To explore their source, we examined
how the localizations improved if GPS-based distances were used in the trilateration process.
The resulting estimates matched the GPS locations to within GPS accuracy (Table 2) in Lake
Washington, which suggests that the errors in acoustic-based trilateration are a consequence
of uncertainty in time of flight due to sound speed variations, ray path length, and bottom
interactions, rather than unfavorable array geometry. We note that SLB to SLB connectivity
was significantly lower than SLB to µFloat connectivity when floats were deeper than 5 m,
with 57% of distance estimates requiring a bounce correction. Consequently, these errors
should be interpreted as an upper bound on µFloat localization errors.

Localization of the two grounded floats during Test 2 provided a measure of position un-
certainty in near-optimal SLB geometry. Uncertainty was 1.0 m, computed as the 68th

percentile Euclidean distance between instantaneous position estimates and the median po-
sition while grounded, with an approximately circular distribution. No pings received on the
two grounded floats were suspected of following an indirect path (i.e., no bottom bounce).
This uncertainty is similar in magnitude to GPS-trilateration accuracy and smaller than
the accuracy of individual GPS position estimates (± 2.5 m). This suggests error due to
clock-drift over the dive is negligible. This uncertainty can be treated as the lower-bound on
µFloat position accuracy for a single ping and, correspondingly, the lower limit of horizontal
spatial scales resolvable by the µFloats, barring appeal to other sensor streams (e.g., the
IMU).

Table 1: Overall nanomodem connectivity. Percentage received is relative to total possible.
Percentage indirect (i.e., paths with a suspected bottom interaction) is relative to total
received messages. Distance is the root-mean-square distance between source and receiver
device for all possible transmissions during the indicated test.

Possible Received Indirect Distance

LW - 1
SLB 15 190 4788 32 % 2744 57 % 850 m
µF 45 855 27 672 61 % 3538 9 % 650 m

LW - 2
SLB 3041 1950 64 % 1259 65 % 160 m
µF 2982 2695 90 % 448 17 % 110 m

Agate Pass
SLB 4817 2160 45 % 0 0 % 280 m
µF 13 812 7618 55 % 0 0 % 330 m



Table 2: Localization errors for SLBs in Lake Washington and Agate Pass. 50th percentile
position error (relative to GPS positions) and velocity error (relative to velocity computed
from GPS positions) for SLBs in Lake Washington and Agate Pass. Nominal SLB velocities
for each case are provided for context. For Lake Washington data, “raw” error statistics
include localizations using paths with bottom interactions, while the “cleaned” statistics use
corrected path lengths. No bounces were identified in Agate Pass. Subsequent filtering of
the cleaned acoustic data produces “smoothed” tracks, for which the corresponding errors
are reported. “GPS trilateration” errors are computed from localizations using GPS-based
distances.

Lake Washington Agate Pass
Data Type Test 1 Test 2

Position Error (m)

GPS trilateration 0.4 0.3 12.4
Raw 13.4 14.2 N/A
Cleaned 4.1 10.4 12.2
Smoothed 4.0 8.0 5.0

Velocity Error (m/s)
Cleaned 0.08 0.14 4.4
Smoothed 0.008 0.020 0.035

Nominal Velocity (m/s) 0.04 ± 0.03 m/s 0.07 ± 0.03 m/s 1.4 ± 0.7 m/s

Assessment of velocity accuracy during Lake Washington tests was challenging, as SLB
movement was driven by light winds and their speeds were consequently low and variable.
Nonetheless, the velocities estimated from the smoothed acoustic position data generally
match those computed from GPS-positions (Fig. 11b), with errors < 0.05 m/s. Errors in
velocity computed from instantaneous GPS-based trilaterations and cleaned but unsmoothed
acoustic data are greater than the nominal water velocity (Table 2) and omitted from the
figure for clarity. As with position data, we expect these errors to be an upper bound for
measures of float velocity, given the lower connectivity rates on SLBs relative to µFloats.



Figure 11: Localization system accuracy during Lake Washington - Test 2 (a,b) and Agate
Pass (c,d). (a) and (c) compare acoustic localizations of SLBs relative to their known GPS
positions. In Lake Washington, positions based on trilateration using GPS-estimated dis-
tances are indistinguishable from the true GPS track and omitted. In Lake Washington,
“raw” localizations include calculations from paths with suspected bottom bounces, while
“cleaned” data uses corrected paths. No acoustic bounces were apparent in the Agate Pass
data, but localizations on land were “cleaned” (i.e. removed). SLBs are designated by num-
ber, with tracks from Agate Pass limited to SLB 2 and SLB 3 for clarity. (b) and (d) show
velocity estimated from the smoothed acoustic position data (only at locations with valid
position data) as compared to the velocity computed from the GPS tracks.



5 µFloat Swarm Demonstration

5.1 Field Deployment in Agate Pass, WA

The first full-scale scientific demonstration of the µFloat swarm was mapping horizontal
water velocities in Agate Pass, WA, a tidal channel approximately 10 m deep and 300
m wide, with peak currents exceeding 1.5 m/s. On 20 August 2020, twenty floats were
repeatedly deployed over an ebb-flood tidal cycle with a total of 9 survey periods, each with
a duration of approximately twenty minutes. An example flood deployment is pictured in
Figure 12. µFloat settings and SLB arrangements were determined by the primary objective
of volumetrically characterizing the velocity field. Based on buoyancy control benchmarks
from Lake Washington, a velocity limit of 0.3 m/s was implemented on all floats and floats
were deployed roughly 60 m upstream of the region of interest to allow time for initial piston
retraction. For a given survey, all floats were programmed to hold depth (depth targets
varied from 1-10 m) or to repeatedly profile from the surface to depth (maximum depths
varied from 3-10 m). Similarly informed by localization performance in Lake Washington,
the following strategies were implemented in Agate Pass to ensure consistent localization:
(1) SLBs were deployed within 500 m of the floats; (2) the ping offset was reduced to 1 second
to increase the position update rate; (3) we avoided maneuvering the vessels near the floats
to maximize SNR for localization pings. Auxiliary sensors on the µFloats were identical to
those described for Lake Washington tests. GoPros were oriented looking downward and
augmented with dive lights to survey the benthos, a rudimentary version of Roman et al.
(2011). During each deployment, water density and sound speed were measured mid-channel,
near the bridge crossing (Xylem CastAway CTD) and revealed minimal gradients (Fig. 12b).

5.2 Analysis of Swarm Deployment

While hydrodynamic mapping was primary objective of the Agate Pass tests, we first pro-
cessed the data to investigate how µFloat system performance changed in an energetic envi-
ronment. Float dives were analyzed using the same process as was used for Lake Washington
tests (Section 3.2) to evaluate depth control performance. Due to the increased turbulence
present in the channel, floats experienced significantly more vertical deviations than in Lake
Washington. Thus, the 0.25 m tolerance threshold for defining the start of the settled pe-
riod used in Lake Washington was relaxed to 0.5 m for Agate Pass dives. Note that all
depth-holding tracks were included in the analysis, but profiling deployments were excluded.

Localization analysis followed the same process as Lake Washington tests. A comparison of
GPS and acoustic path lengths indicated no distinguishable bottom bounces, which was con-
sistent with the well-mixed, shallow (<10 m) nature of the channel. Analysis of localization
accuracy in Agate Pass was restricted to a single flood deployment pictured in Fig. 12a.

For hydrodynamic mapping analysis, we assembled velocity data from all float tracks in
the example flood survey period into a 3D linear interpolation function. A comprehensive
analysis of velocity mapping and a comparison against other instruments (e.g., acoustic



Figure 12: µFloat system deployment in Agate Pass during flood tide (a,c). Water density
and sound speed as a function of depth during the test interval (b). � and 6 mark the
starting and final locations of the SLBs, respectively. µFloats, indicated by the grey dots in
(c), were deployed moving westward from SLB 3 to SLB 2 and followed trajectories similar
to the SLBs.



Doppler current profilers) will be included in a forthcoming manuscript.

5.3 Results

Swarm deployments in Agate Pass proved successful at mapping horizontal and vertical
gradients of tidal currents, as observed in Fig. 13. By combining data along the trajectories
of 18 floats (Fig. 13a), we observe an exit jet – a narrow region of high flow velocity extending
out the southern mouth of the channel into the bay (Fig. 13b). Vertical profiles are typical
of open channel flow (Fig. 13d). Also, the quasi-Lagrangian behavior of the floats revealed
interesting secondary flow features, with three floats entrained in an eddy on the periphery
of the exit jet (Fig. 13c).

System performance in Agate Pass was consistent with the quiescent benchmarks in Lake
Washington. Floats were able to reach and maintain depths on operationally practical
time scales, though some performance degradation was observed (and expected) due to
the increased turbulence in the tidal channel relative to the quiescent lake. Settling time
increased by about 10-20 s (Fig. 5a) and overshoot increased by 1 m on average (5b). Most
significantly, deviations while holding depth were much higher (0.25 - 0.5 m).

Nanomodem connectivity fell between the two Lake Washington tests (Table 2). This follows
the trend of source-receiver distance dominating connectivity effects, as the average sepa-
ration distance during Agate Pass (∼ 350 m) split the two Lake Washington deployments
(500 m and 150 m). Ambient noise in Agate Pass was only only marginally higher than
in Lake Washington (80 dB in the nanomodem communication band vs. 75 dB), Similarly,
smoothed position errors for SLBs in Agate Pass fell between Lake Washington tests (Ta-
ble 2), with 50% of position estimates within 5 m of the GPS values. However, examining the
unsmoothed estimates revealed a different primary error source. SLB position errors based
on trilaterated GPS-distances (12.4 m) were effectively equivalent to acoustic errors (12.2
m). Thus, accuracy degredation was more likely caused by poor SLB array configurations
resulting from their freely-drifting and converging paths rather than properties of the acous-
tic environment. The faster currents in Agate Pass provided a better signal for evaluating
velocity accuracy and revealed 50th percentile velocity errors (0.04 m/s) that were less than
3% of the nominal flow speed (1.4 m/s).

6 Discussion

6.1 Buoyancy Control

The µFloat buoyancy engine demonstrated robust and accurate depth control in both quies-
cent and energetic environments, a prerequisite for maintaining vertical distributions when
deployed in swarms. The large buoyancy engine capacity easily accommodated external sen-
sors (hydrophones and GoPros), with only a rough re-ballasting (within ± 50 g) required
to accommodate the extra weight and no adjustments to the controller necessary. The dy-



Figure 13: Horizontal velocity through Agate Pass during one flood tide survey. (a) depicts
all float trajectories colored by instantaneous horizontal velocity. (b) depicts horizontal
current speed interpolated over a plane at 3 m depth. (c) details float motion in an eddy off
the primary exit jet. Tracks end when the floats resurface. (d) depicts the vertical structure
of currents along the white line indicated in (b).



namics of floats with external sensors were indistinguishable from bare floats. In theory,
the buoyancy engine could tolerate a 3x increase in float volume before losing the ability
to accommodate an in situ density change from fresh to salt water, though any additional
drag would decrease profiling speed and potentially impact operational strategies. For short
duration deployments in high-flow conditions, understanding the µFloat’s transient control
dynamics is critical to planning effective swarm surveys. Here, implementation of a speed
limit on float vertical velocity was effective at preventing undesirable overshoot and increas-
ing the consistency of settling time across variably ballasted floats.

Testing revealed two potential improvements to the µFloat dynamics: reducing float com-
pressibility and refining the software control algorithm. Due to the float being more com-
pressible than water, it requires constant piston movement to maintain depth and precludes
isopycnal control strategies except in strongly stratified environments. A stiffer housing ma-
terial (e.g., aluminum) could help reduce actuation requirements, albeit at increased unit
cost. Additional drag surfaces could also improve flow-following ability of the µFloat for ap-
plications where Lagrangian behavior is particularly critical (e.g., mixing studies (D’Asaro
et al., 1996; D’Asaro, 2003)). Absent changes in housing composition, incremental improve-
ments to the control algorithm could reduce the high-frequency motor action when holding
depth.

6.2 Localization

The nanomodem-based localization array proved to be a robust, accurate, and inexpensive
solution in quiescent and energetic environments. Nanomodem connectivity was sufficiently
consistent to provide regular position updates and permit accurate calculation of float veloc-
ity. While an encouraging demonstration, the results suggest several areas of improvement,
both in hardware and software.

In theory, the smallest time/length scales resolvable by the float are limited by float size
(O(10) cm) (D’Asaro et al., 1996; D’Asaro, 2003). In practice, resolution is limited by
the update rate of the localization system. Here, the strict scheduling required for non-
overlapping nanomodem messages restricted rates to 2 s in Lake Washington and 1 s in
Agate Pass. Additionally, the variable nature of the acoustic channel results in noisy and
gappy data, requiring smoothing to produce physically realistic float trajectories. Thus, the
time window used in the smoothing operation limits the resolvable motions (20 - 60 s). It
may be possible to overcome this programmatic limit by combining acoustic measurements
with short periods of dead reckoning from IMU data (Caron et al., 2006) and thus approach
the physical limit defined by the float size.

Improvements to localization accuracy are also possible. The two primary sources of error
observed were (1) variations in sound speed and (2) poor SLB array geometry relative to
receiving devices. The first was evident in Lake Washington, where the thermocline severely
degraded path length estimates. Sound speed variation is a persistent challenge due to the
variety of conditions exhibited in coastal waters. As such, errors and potential corrections
must be addressed on a case-by-case basis. The significance of unfavorable array geome-



try was demonstrated in Agate Pass, where trilaterations using GPS-measured path lengths
performed no better than those using acoustic path lengths. This could be improved by
increasing the number of SLBs, mooring the SLBs, or even actively manipulating SLB dis-
tributions, either manually or by equipping autonomous surface vehicles with nanomodems.
While insignificant for the short duration dives performed here, clock drift error may be an
issue for longer dives. If so, solutions include occasionally surfacing to re-sync with GPS
timing or using different localization algorithms (e.g., TDOA implemented by Neasham et al.
(2021) or Bayesian methods employed by Raggi (2019); Casagrande et al. (2019); Thomson
et al. (2019)).

Finally, an inverse localization architecture, with floats pinging to SLBs, would enable real-
time monitoring of float positions. The directionality used here, with SLBs pinging floats,
was dictated by the nanomodem scheduling requirement: a round robin TDMA cycle for the
five SLBs was significantly shorter than it would be for twenty floats pinging to the SLBs and
thus provided the shortest position update rate for the swarm. Fortunately, a new generation
of the nanomodems (v3) features binary-phased-shift-keyed signals permitting overlapping
ping receptions and providing a 10-fold increase in data rate, shorter pings, and improved
error handing. Underwater GPS for an AUV has already been demonstrated (Neasham
et al., 2021) and upgrade of the µFloats with v3 modems is currently underway.

6.2.1 Operations

µFloat operations proved straightforward and inexpensive. The sole vessel requirement was
sufficient deck space to fit equipment and minimal personnel (captain and up to two crew
members). Both µFloats and SLBs are lightweight and robust, permitting rapid deployment
by a single crew member, though a second person was helpful for programming and spot-
ting floats. Float recovery was sometimes challenging due to the small form factor. The
radio and cellular relay of GPS locations proved essential to guide recovery vessels within
visual distance, after which retrieval with a boat hook was simple. Glare, wave action, and
fog complicated float sighting and recovery. For the Agate Pass test, the interval between
recovery and redeployment ranged from 40-80 minutes and could be reduced further with
operational practice or multiple recovery vessels.

Endurance of the µFloats is constrained by both the hotel load and the buoyancy engine.
While floats for open ocean applications prioritize energy efficiency for longevity, the µFloat
system was designed for short-term deployments (< 1 day) and prioritized cost-effectiveness
and adaptability over energy efficiency. The hotel load is approximately 4 W and aver-
age buoyancy engine loads range between 3 and 4 W, resulting in a practical deployment
endurance of about 12 hours. Greater endurance could be achieved by redesigning the elec-
tronics suite around a lower power microcontroller, reducing buoyancy engine actuation time,
reducing float compressibility, and/or improving drivetrain efficiency.



6.3 Comparison to Other Floats

Through these benchmarking tests, we have demonstrated several advantages of the µFloat
relative to existing coastal floats. The most notable of these is cost: at $2.4k per float and $3k
per surface buoy, a swarm of 20 floats and 5 localization buoys costs ∼$65k. The M-AUEs are
comparable at $6k per float (Jules Jaffe, pers. comm.) but their smaller form factor reduces
buoyancy actuation. The second advantage is the µFloat’s comparatively large buoyancy
engine (9% actuation), which provides capacity for external sensors even in areas with sharp
density gradients. A recently developed high-capacity float (Gene Massion, pers. comm.) is
similar at 8% actuation and equipped with a suite of coastal oceanography instruments, but
is significantly larger and more expensive. The commercially produced ALAMO float (4.2%
actuation) can similarly traverse strong density gradients, but are an order of magnitude
more expensive. The third advantage of the µFloat system is the nanomodem-based acoustic
localization, which can provide position accuracy approaching that of GPS, as well as the
ability to send commands and data between floats and the surface. While the M-AUE
localization provides similar accuracy (± 1.2 m) and longer range (<5 km), the system is
restricted to one-directional localization (Jaffe et al., 2017) and cannot be used for general-
purpose swarm coordination. Roman et al. utilizes ultra-short baseline localization that has
lower accuracy (± 15 m) and shorter range (250-1000 m), but supports higher bandwidth
communications (14 kbit/s). Casagrande et al. (2019) recently investigated enhancements
to these floats via terrain-based particle filter with visual odometry to improve positioning
accuracy. The RAFOS localization system (Rossby et al., 1986) used with Argo and MLF
floats provides basin-scale tracking (1400 km range, 1 km resolution) and is thus ill-suited
for coastal-scale research. As such, the nanomodem array provides an appropriate balance of
range, accuracy, flexibility, and cost for distributed sensor platforms in coastal environments.
Lastly, the µFloat depth-holding accuracy (< 10 cm in quiescent water and < 50 cm in tidal
flows) is matched only by Roman’s hybrid propulsion approach (Snyder et al., 2018), albeit
with slower dynamics.

The µFloat system does have several limitations. First, relative to other floats, the stan-
dard sensor suite (pressure, temperature, and IMU) is minimal. At a similar cost, the
M-AUE includes a satellite modem for data transfer and recovery in regions without cellu-
lar networks, as well as a hydrophone for acoustic monitoring, though motor noise causes
significant contamination when changing or holding depth ((Jaffe et al., 2017), Jules Jaffe,
pers. comm.). The larger, more expensive floats (ALAMO, D’Asaro, Roman) have hosted a
variety of additional sensors (e.g., salinity, pH, dissolved oxygen, acoustic Doppler velocime-
ters, and optical cameras). The µFloat’s expansion capacity partially mitigates its sparse
standard suite. As many sensors of interest (e.g., dissolved oxygen, pH) are more expensive
than the µFloat itself, cost will primarily scale with the number of auxiliary sensors, and
can be adjusted to the needs and budget of the end user. The second primary limitation
is endurance, with the µFloats constrained to short duration (< 1 day) deployments. The
M-AUEs and Roman floats have similar endurance, but the ALAMO and D’Asaro floats
are better suited for studying long-duration phenomena. Third, only depth control has been
robustly demonstrated for the µFloat. Profiling (the primary Argo mode), isopycnal, and 3D
Lagrangian control (implemented by D’Asaro) are also desirable. Additional control modes



include bottom-tracking, as implemented on the Roman float for visual surveys of biological
communities (Roman et al., 2011; Snyder et al., 2018), and intermittent bottom-stationing,
which was first demonstrated by Langebrake et al. (2002) with an Argo-style float. Finally,
true Lagrangian behavior is optimized by reducing float size, and in this respect, the M-AUEs
are superior.

6.4 Science Applications

While single drifting sensor packages provide considerable data of scientific interest, the
µFloat system was developed specifically for swarm sensing. In the Agate Pass test, we
demonstrated three-dimensional mapping of tidal currents relevant to coastal oceanography
in general and to tidal energy resource extraction in particular (Blunden and Bahaj, 2007;
Polagye and Thomson, 2013). Tidal energy sites are typically narrow (< 10 km across) and
shallow (< 100 m deep) (Haas et al., 2011), with fast currents (> 1.5 m/s) and strong gra-
dients in both horizontal and vertical directions that make navigation with propeller-driven
AUVs impractical. The µFloats proved to be an excellent platform for these environments,
reaching target depths in an operationally practical time frame, and maintaining target
depth within 1 m in minimally- or non-stratified water. When conditions support robust
connectivity, the localization system provides along-track resolution of 1-10 m, depending
on acoustic ping rate and local water speed. This matches the horizontal spatial resolution
of vessel-mounted acoustic Doppler current profilers (5-10 m horizontal).

The µFloat system is also well suited to observing tidal plumes, fronts, and tidal bores.
These systems have spatial extents on the order of 50 m to 5 km wide (Horner-Devine et al.,
2015), with dynamics evolving on tidal time scales (0.25 to 12 hours), matching the sensing
scale and endurance of the swarm. Density gradients in these regions can range from mild
in well-mixed regions to nearly step-changes between fresh and salt water across tidal bores
– extreme conditions unmanageable for previous floats but accommodated by the µFloat’s
buoyancy engine. For example, a swarm of µFloats instrumented with salinity sensors could
volumetrically map salinity to improve salt flux estimates (MacDonald et al., 2007; McCabe
et al., 2008).

Hydrophone-equipped floats could be useful for studying underwater soundscapes, a critical
parameter for the health of many ecosystems (Duarte et al., 2021). While traditional acoustic
surveys use vertical or horizontal arrays of hydrophones (Wilson et al., 2013; Macaulay et al.,
2017), the µFloats would allow more flexible array configurations. Further, the Lagrangian
nature of the float should reduce flow-noise across the hydrophone element (Bassett et al.,
2014; Gobat and Grosenbaugh, 1997; Lighthill, 1954), improving fidelity of low-frequency
noise measurements, though this will require modifications to the µFloat design to minimize
self-noise from motor actuation.

Lastly, the µFloats are a compelling platform for preliminary evaluation of environmentally-
aided navigation techniques (Langebrake et al., 2002; Jouffroy et al., 2011; Huynh et al., 2014;
Smith and Huynh, 2014) in which the float selects target depths based on hydrodynamic
models of the local currents to perform navigation tasks (e.g., station-keep, move between



waypoints). Such a technique could enable float persistence in an energetic area of interest.
By utilizing the bidirectional nanomodem capabilities, µFloats could share environmental
information across the swarm, enabling real-time coordination of float activity and adaptive
sampling. While an area of active research for more mobile AUVs, such adaptive sampling
has not yet been demonstrated for buoyancy-actuated float swarms. With improvements
in system efficiency and co-deployment with other autonomous platforms, such as surface
vehicles (Liu et al., 2016; Kimball et al., 2014) for robotic swarm management (e.g., recovery
and redeployment), the µFloat could become an integral part of coastal autonomous sampling
networks (Curtin et al., 1993; Curtin and Bellingham, 2009).

7 Conclusion

Understanding the health and dynamics of our coastal waterways is of vital importance. Ob-
servational platforms, both remote and in situ, are critical to this endeavour. This research
expands the suite of tools available to scientists studying coastal waters and their phenom-
ena with the introduction of the µFloat. The µFloat is an inexpensive ($2.4k) float with
a high-capacity buoyancy engine that enables float swarm sensing in coastal environments.
Fundamental performance characteristics have been detailed: the buoyancy engine provides
depth control within ± 0.5 m, automatic ballasting from fresh to salt water, and accom-
modation of external sensors; consistent underwater acoustic localization was demonstrated
with median position error of 5 m; and the three-dimensional hydrodynamic mapping capa-
bility of a swarm of twenty floats was demonstrated in a tidal channel with water speeds of
2 m/s. This work lays a foundation for the continued use of float swarms toward exploring
the dynamics, physical properties, and soundscapes of our coastal waters.
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