
Supplementary Material:

Future projections and uncertainty assessment of precipitation

extremes in the Korean peninsula from the CMIP6 ensemble

Yonggwan Shin1, Yire Shin1, Juyoung Hong1, Maeong-Ki Kim2,

Young-Hwa Byun3, Kyung-On Boo3, Il-Ung Chung4, Doo-Sun R. Park5,

and Jeong-Soo Park1,∗

1: Department of Statistics, Chonnam National University, Gwangju 500-757, Korea.

2: Department of Atmospheric Science, Kongju National University, Gongju, Korea.

3: Innovative Meteorological Research Department,

National Institute of Meteorological Sciences, Seogwipo, Korea.

4: Dept of Atmospheric and Environmental Sciences,

Gangneung-Wonju National University, Korea.

5: Dept. of Earth Sciences Education, Kyungpook National University, Daegu, Korea.

*: Corresponding author, E-mail: jspark@jnu.ac.kr, Tel: +82-62-530-3445

August 26, 2020

1 Data and simulation models1

Figure S1 shows examples of time series plots of the observations, APHRODITE data [1], and2

the bias-corrected data, for the AMP1. The APHRODITE values of the AMP1 are smaller3

than the observations when comparing those data at near stations. Because of this difference,4

we applied a bias correction technique to the APHRODITE data, based on the observations5

of nearest neighbor stations.6

1



Table S 1: The list of 21 CMIP6 (Coupled Model Intercomparison Project Phase 6) models

analyzed in this study. The detaied information on each model are available at ESGF-node

https://esgf-node.llnl.gov/projects/cmip6/.

Model Name Institution Country
Resolution

(Lon × Lat Level)

MIROC6 JAMSTEC, AORI, NIES, R-CCS (MIROC) Japan 256×128

L81(T85)

BCC-CSM2-MR Beijing Clim Center China 320×160

L46(T106)

CanESM5 Canadian Centre Clim Model & Analysis, Canada 128×64

Enviro & Clim Change (CCCma) L49(T63)

MRI-ESM2.0 Meteoro Research Institute (MRI) Japan 320×160

L80(TL159)

CESM2-WACCM Nat Center for Atmos Res, USA 288×192

Clim & Global Dynamics Lab (NCAR) L70

CESM2 Nat Center for Atmos Res, USA 288×192

Clim & Global Dynamics Lab (NCAR) L32

KACE1.0-GLOMAP National Inst of Meteo Sci/Meteo Admin, Korea 192×144

Clim Res Div (NIMS-KMA) L85

UKESM1-0-N96ORCA1 MOHC & NERC, NIMS-KMA, NIWA UK, Korea 192×144

New Zealand L85

MPI-ESM1.2-LR Max Planck Inst for Meteo (MPI-M) Germany 192×96

L47(T63)

MPI-ESM1.2-HR Max Planck Inst for Meteo (MPI-M) Germany 384×192

L95(T127)

INM-CM5-0 Inst for Numerical Math, Russia 180×120

Russian Acad of Sci (INM) L73

INM-CM4-8 Inst for Numerical Math, Russia 180×120

Russian Acad of Sci (INM) L21

IPSL-CM6A-LR Institut Pierre Simon Laplace (IPSL) France 144×143

L79

NorESM2-LM NorESM Consortium of CICERO, Norway 144×96

MET-Norway, NERSC, NILU, UiB, UiO, UNI L32

NorESM2-MM NorESM Consortium of CICERO, Norway 288×192

MET-Norway, NERSC, NILU, UiB, UiO, UNI L32

EC-Earth3-Veg EC-Earth consortium, EU 512×256

Swedish Meteo & Hydro Inst/SMHI, Sweden L91(TL255)

EC Earth 3.3 EC-Earth consortium, EU 512×256

Swedish Meteo & Hydro Inst/SMHI, Sweden L91(TL255)

ACCESS-CM2 CSIRO, ARCCSS (Australian Res Council Centre of Australia 192×144

Excellence for Clim System Sci) L85

ACCESS-ESM1-5 Commonwealth Scientific & Australia 192×145

Industrial Res Organ (CSIRO) L38

GFDL-ESM4 National Oceanic & Atmos Admi, USA 360×180

Geophy Fluid Dynamics Lab L49

FGOALS-g3 Chinese Academy of Sciences (CAS) China 180×80

L26
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Figure S 1: Examples of time series plots of the observations, APHRODITE data, and the

bias-corrected data.

2 Methods7

2.1 Generalized extreme value distribution8

Assuming the data approximately follow a GEV distribution, the parameters can be estimated9

by the maximum likelihood method[2, 3] or the method of L-moments estimation. The L-10

moments estimator is more efficient than the maximum likelihood estimator in small samples11

for typical shape parameter values [4]. The L-moments method is employed in this study12
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using the ”lmom” package in R [5] because a relatively small number of samples are analyzed13

for each comparison period. Moreover, the formulae used to obtain the L-moments estimator14

are simple compared to that of obtaining the maximum likelihood estimator which needs an15

iterative optimization until convergence.16

2.2 Bias correction: Multivariate generalization of quantile mapping17

Some BC methods such as quantile mapping or delta change [6] make a perfect matching in18

the sense that the quantiles of the observations and the historical data are same. When the19

BC such as quantile mapping is used, most the model weights based on performance become20

equal because of a perfect matching, and consequently, the prediction is the simple average21

of bias-corrected model outputs. This is approximately true for the MBC [8] employed in22

this study because the MBC is a multivariate generalization of quantile mapping. Thus the23

historical data is not bias corrected. No-bias-corrected historical data are utilized to calculate24

the performance weight of a model.25

Chen et al.[7] found that the joint BC of precipitation and air temperature led to a much26

better performance than univariate BC, in terms of hydrological modelling for all their studying27

basins located in various climates except for the coldest Canadian basin. Cannon [8] proposes a28

multivariate generalization of quantile mapping (QM). It is an iterative method which concep-29

tually lays between univariate bias correction (BC) methods and the empirical copula-based30

correction (EC-BC) [9]. For a univariate BC, the quantile delta mapping (QDM) [10] is used,31

which preserves trends of model data32

It approximately preserves the multivariate dependence of the driving climate model. Here,33

an image processing technique–the N-dimensional probability density function transform (N-34

pdft)–designed to transfer color information from one image to another is adapted. In each35

iteration, univariate QM is first applied separately to each variable. Then a linear multivariate36

BC is applied by re-scaling the multivariate anomalies based on Cholesky decomposition of the37

covariance matrix. The algorithm ends when both the corrected marginals and the dependence38

structure are sufficiently close to their observed counter parts. A variant is based on ranks39

rather than on the actual values [6]. It provides a multivariate quantile delta mapping, referred40

to as MBCn (multivariate bias correction with N-pdft) algorithm. It consists, in each iteration,41

of a random orthogonal rotation of multivariate input data, a univariate quantile delta mapping42

on the rotated fields and the inverse rotation. This algorithm approximately preserves trends43

of model data. We used ’MBC’ package [11] in R for computation. The details are found in44

Cannon [8].45
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3 PI-weights46

Figure S 2: Arrangement of data and 7-year moving averages composed of the historical data

from 1850 to 2014 and the future data from 2015 to 2100 under SSP2, SSP3, and SSP5 scenarios

for computing the Spearman correlation coefficient between models.

3.1 Computing independence weights47

If a model has no close neighbors, then all Sij(i 6= j) are large, the denominator of the PI-48

weight is approximately one and has no effect. If two models i and j are identical, then Sij = 0,49

the denominator equals two, so each model gets half the weight.50

To calculate the model similarity Sij , we follow a technique among several methods pro-51

posed by Sanderson et al.[12]. A method employed in this study is based on empirical orthog-52

onal function (EOF) or principal component analysis. The following process is done for each53

grid: First, for each model, the historical data from 1850 to 2015 and the future simulation54

data from three scenarios are lined as one raw as in Figure S2. The bias correction is not ap-55

plied to all data for this process. One can choose the historical data only as did by Brunner et56

al.[13], but we deploy all simulation data for a maximum use of available information. For each57

time series induced from each model, 7-year moving averages are obtained. Then, a correlation58

matrix R among all M models is constructed by applying the Spearman correlation coefficients59
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to those M number of series of 7-year moving averages. That is, R is the correlation matrix60

of M models, with size M ×M .61

A singular value decomposition (SVD) is performed on R1/2 and truncated to t modes to62

obtain the dominant modes of multivariate ensemble variability such that63

R1/2 = UλV T , (1)64

where U is an orthogonal matrix of model loadings (size M by t) whose columns are the65

eigenvectors of the model correlation matrix R, λ (size t by t) are the eigenvalues of R, and V66

(size M by t) are the eigenvectors of R. The dimensions are sorted by decreasing eigenvalue,67

such that the basis set can be truncated to a smaller number of modes t [12]. Note t is often68

determined by selecting number of the eigenvalues greater than 1.69

The model loadings U now define a t-dimensional space (where t is the truncation length70

of the SVD) in which intermodel and observation-model Euclidean distances may be defined.71

The intermodel distances can then be measured in a Euclidean sense in the loadings matrix,72

such that the distances Sij between two models i and j can be expressed as [12]73

Sij =

{

t
∑

l=1

[U(i, l)− U(j, l)]2

}1/2

. (2)74

U(i, l) is interpreted as a correlation or a dependency of the model i to the l-th principal75

component. Thus small Sij value means high dependency or similarity between models i and76

j.77

An example of the distances Sij between two models i and j calculated from Eq.(2) for78

some models is given in Table S2. Small value indicates high dependency or similarity between79

two models. In Table S2, the first 4 models show highest similarity whereas the last 4 models80

show lowest similarity.81

3.2 Computing performance weights82

To compute the performance of each model, T -year return levels are compared based on the83

GEVD fitting on the historical data and the observations. Let us denote riT and r0T as T -year84

return level obtained from the historical data of i-th model and the observations, respectively.85

These values are normalized as follows to make it scale-free, for i = 0, 1, · · · ,M :86

r̃iT =
riT −medi

Ri
, (3)87
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Table S 2: The similarity distance metric Sij between model i and model j calculated from

Eq.(2) for some models. Small value indicates high dependency or similarity between two

models.

CanESM5 ACCESS-CM2 UKESM KACE NorESM2-LM EC-Earth3 FGOALS INM-CM4

CanESM5 0 0.40 0.40 0.37 0.46 0.52 0.69 0.73

ACCESS-CM2 0.40 0 0.40 0.47 0.47 0.58 0.77 0.76

KACE-1-0-G 0.37 0.47 0.49 0 0.61 0.61 0.72 0.80

UKESM 0.40 0.40 0 0.49 0.50 0.59 0.73 0.75

IPSL-CM6A-LR 0.43 0.50 0.52 0.51 0.59 0.62 0.71 0.84

ACCESS-ESM1-5 0.48 0.48 0.51 0.54 0.59 0.63 0.76 0.87

NorESM2-LM 0.46 0.47 0.50 0.61 0 0.56 0.82 0.81

CESM2-WACCM 0.46 0.55 0.55 0.44 0.68 0.63 0.81 0.82

EC-Earth3-Veg 0.48 0.53 0.54 0.51 0.59 0.65 0.78 0.76

CESM2 0.54 0.55 0.53 0.54 0.63 0.64 0.83 0.81

EC-Earth3 0.52 0.58 0.59 0.61 0.56 0 0.85 0.81

NorESM2-MM 0.53 0.58 0.59 0.59 0.74 0.75 0.84 0.76

MPI-ESM1-2-LR 0.50 0.64 0.62 0.51 0.68 0.65 0.79 0.84

BCC-CSM2-MR 0.59 0.56 0.58 0.58 0.69 0.73 0.82 0.91

MPI-ESM1-2-HR 0.64 0.63 0.65 0.68 0.63 0.69 0.82 0.87

GFDL-ESM4 0.69 0.65 0.73 0.73 0.72 0.69 0.90 0.92

MIROC6 0.70 0.70 0.68 0.68 0.78 0.75 0.89 0.96

INM-CM5-0 0.62 0.73 0.69 0.70 0.74 0.74 0.94 0.87

MRI-ESM2-0 0.66 0.75 0.73 0.74 0.79 0.82 0.89 0.88

FGOALS-g3 0.69 0.77 0.73 0.72 0.82 0.85 0 0.99

INM-CM4-8 0.73 0.76 0.75 0.80 0.81 0.81 0.99 0

SUM 10.89 11.70 11.78 11.82 13.08 13.51 16.35 16.76

where88

Ri =

{

maxi −medi if riT ≥ medi,

medi −mini if riT < medi,
(4)89

and maxi, mini, and medi are the maximum, the minimum, and the median of i-th model90

data. Other ways of standardizations are also possible.91

The distance for performance measure is obtained by92

D2
i =

∑

T

(r̃iT − r̃0T )
2. (5)93

We set T = 2, 5, 10, 20, 30, 50, and 100. Note that Di does not depend on the shape parameter94

σD, and so obtained Dis are fixed for the next computation.95
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3.3 Computing the p-value in selecting σD96

The p-values in the manuscript are computed by a Monte-Carlo simulation in which random97

numbers of weights are generated from the Dirichlet distribution [14]. When the parameters98

are all equal to 1, the Dirichlet distribution is same as the multivariate uniform distribution99

with values between 0 and 1, which represents the null hypothesis. We used ‘MCMCpack’100

package [15] in R to generate the random weights satisfying H0.101

The detailed steps of computing the p-value for given σD and χ2
0(σD) are:102

Step 1: Generate random weights P
(k)
i from the Dirichlet distribution with all parame-103

ters equal to 1 (under H0), for i = 1, · · · ,M104

Step 2: Compute χ2 =
∑M

i=1
( 1
M

−P
(k)
i

)2

1/M , and denote it χ2
(k)105

Step 3: Iterate the above two Steps K (=1,000 for example) times106

Step 4: Calculate p− value(σD) =
∑K

k=1

I [χ2
(k)

> χ2
0(σD)]

K ,107

where I[A] denotes the identity function which takes 1 or 0 according that the condition A is108

satisfied or not. Note that P
(k)
i s generated in Step 1 do not depend on σD.109

4 Result: Future projection of extreme rainfall110

The relative change of 20-year return level in the period P1 relative to the reference period P0111

is defined as:112

δR20(P1) =
R20(P1)−R20(P0)

R20(P0)
× 100, (6)113

where R20(P ) is the 20-year return level in the period P.114

4.1 Return period and exceedance probability115

We have experienced some technical flows in computing the waiting time or the return periods116

corresponding to a return value. For example, the resulting return period sometimes turns out117

to be greater than 500 years even though it is expected to correspond to 50 years. It may be118

due to the cumulation of truncation or rounding errors in computer, related to inverting the119

quantile function of the GEVD. A trouble caused by this flow does not vanish even applied120

to unequally weighted regional frequency analysis (RFA). In this study, we thus adopted the121

trimmed mean [3] in RFA in which unfairly very high estimates of return periods are deleted122
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Table S 3: Statistics of 20-year and 50-year return levels of the annual maximum daily precip-

itation (unit: mm) averaged over 46 grids in the Korean peninsula for the observations (OBS)

and the future periods; P1 (2021-2050), P2 (2046-2075), and P3 (2071-2100) under the SSP2,

SSP3, and SSP5 scenarios.

SSP2-4.5 SSP3-7.0 SSP5-8.5

Statistic OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 216 230 240 249 226 244 263 232 256 285

20- Q1 185 203 206 224 195 217 236 194 224 259

year Median 230 243 251 254 238 255 281 249 269 295

Q3 250 260 273 285 259 276 300 271 301 322

Mean 267 279 293 305 273 297 322 280 313 351

50- Q1 231 254 257 280 235 273 296 235 276 319

year Median 276 285 306 319 285 308 331 291 327 366

Q3 303 309 332 345 306 334 363 319 357 392

in computing the weighted average. The defects of return periods are described in Serinaldi123

[16].124

The spatially averaged estimates of exceedance probability are presented in Figure S6 and125

in Table S6.126

5 Results: Quantifying uncertainty127

From the analysis of variance, Figure S7 shows the interaction plots of 20-year return levels128

from 21 CMIP6 for 3 SSP scenarios over 3 periods. In this figure, the return levels of some129

models such as CESM2-WACOM, ACCESS-ESM1-5, NorESM2-MM, MiCRO6, MRI-ESM2-0,130

and GFDL-ESM4 decrease from the SSP2 to the SSP3, contrary to the expectation. Moreover,131

the return values of some models such as MPI-ESM1-2-HR, MPI-ESM1-2-LR, and NorESM2-132

LM decrease from the SSP3 to the SSP5. Figure S8 shows the interaction plots between 21133

CMIP6 and the latitude in which the latitude changes from 33o to 43o, for 20-year return levels134

(unit: mm).135
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Figure S 3: Schematic box-plots of 50-year return levels of the annual maximum daily pre-

cipitation (unit: mm) averaged over 46 grids in the Korean peninsula for the future periods

P1 (2021-2050), P2 (2046-2075), and p3 (2071-2100) under the SSP2, SSP3, and SSP5 sce-

narios. OBS and HIST(NBC) stand for the observations and the historical data without bias

correction. The box-plot for p0 represents the bias-corrected historical data.
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Table S 4: Relative change (unit: %) in 20-year and 50-year return levels of the annual
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Figure S 4: Isopluvial maps of 50-year return levels of the annual maximum daily precipitation
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Table S 6: spatially averaged the exceedance probability for the annual maximum daily precip-

itation (AMP1) from 50mm to 300mm, obtained from the observations (OBS) and the CMIP6

models under the three scenarios for three future periods.

AMP1 OBS SSP2-4.5 SSP3-7.0 SSP5-8.5

50 mm 0.989 0.989 0.990 0.991

100 mm 0.531 0.704 0.687 0.705

Period 150 mm 0.149 0.240 0.222 0.238

1 200 mm 0.048 0.069 0.069 0.063

250 mm 0.019 0.024 0.021 0.022

300 mm 0.008 0.009 0.008 0.010

50 mm 0.989 0.988 0.990 0.992

100 mm 0.531 0.712 0.748 0.789

Period 150 mm 0.149 0.238 0.300 0.312

2 200 mm 0.048 0.080 0.097 0.110

250 mm 0.019 0.027 0.034 0.038

300 mm 0.008 0.013 0.018 0.019

50 mm 0.989 0.990 0.992 0.993

100 mm 0.531 0.755 0.793 0.822

Period 150 mm 0.149 0.262 0.343 0.384

3 200 mm 0.048 0.086 0.127 0.161

250 mm 0.019 0.032 0.048 0.062

300 mm 0.008 0.015 0.019 0.033
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Table S 7: The expected waiting time (unit: year) until reoccurrence or the return period

of specific the annual maximum daily precipitation (AMP1) values from 50mm to 300mm,

obtained from the observations (OBS) and the CMIP6 models under the 3 scenarios for 3

future periods.

SSP2-4.5 SSP3-7.0 SSP5-8.5

AMP1 OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

50 mm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 mm 1.9 1.4 1.4 1.3 1.5 1.3 1.3 1.4 1.3 1.2

150 mm 6.7 4.2 4.2 3.8 4.5 3.3 2.9 4.2 3.2 2.6

200 mm 20.8 14.5 12.5 11.6 14.6 10.4 7.8 15.9 9.1 6.2

250 mm 52.6 41.2 37.3 31.6 47.8 29.5 20.8 46.1 26.4 16.1

300 mm 118.8 107.0 79.4 65.0 123.5 57.4 52.1 99.4 53.2 30.5

Table S 8: The expected frequency of reoccurring years during 30 years for specific the an-

nual maximum daily precipitation (AMP1) values from 50mm to 300mm, obtained from the

observations (OBS) and the CMIP6 models under the 3 scenarios for 3 future periods

SSP2-4.5 SSP3-7.0 SSP5-8.5

AMP1 OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

50 mm 29.7 29.7 29.6 29.7 29.7 29.7 29.8 29.7 29.8 29.8

100 mm 15.9 21.1 21.4 22.6 20.6 22.4 23.8 21.1 23.7 24.7

150 mm 4.5 7.2 7.1 7.9 6.7 9.0 10.3 7.1 9.4 11.5

200 mm 1.4 2.1 2.4 2.6 2.1 2.9 3.8 1.9 3.3 4.8

250 mm 0.6 0.7 0.8 1.0 0.6 1.0 1.4 0.7 1.1 1.9

300 mm 0.2 0.3 0.4 0.4 0.2 0.5 0.6 0.3 0.6 1.0

14



Figure S 5: Isopluvial maps of for the relative changes (unit: %) of 20-year and 50 return

levels relative to 1973–2014 for the annual maximum daily precipitation for 46 grids over the

Korean peninsula for the future periods P1 (2021-2050), P2 (2046-2075), and p3 (2071-2100)

under the SSP2, SSP3, and SSP5 scenarios.
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Figure S 6: The exceedance probability plots for the annual maximum daily precipitation

(AMP1) from 50mm to 300mm, obtained from the observations (OBS) and the CMIP6 models

under the three scenarios for three future periods.

16



ACCESS−CM2

ACCESS−ESM1−5

BCC−CSM2−MR

CanESM5

EC−Earth3

EC−Earth3−Veg

GFDL−ESM4

INM−CM4−8

INM−CM5−0

IPSL−CM6A−LR

KACE−1−0−G

MIROC6

MRI−ESM2−0

NorESM2−MM

UKESM

FGOALS−g3

NorESM2−LM

MPI−ESM1−2−HR
MPI−ESM1−2−LR

CESM2

CESM2−WACCM

220

240

260

280

SSP2−4.5 SSP3−7.0 SSP5−8.5

Scenario

2
0

−
ye

a
r 

re
tu

rn
 le

ve
l (

m
m

)

Figure S 7: Interaction plots of 20-year return levels from 21 CMIP6 for 3 SSP scenarios,

averaged over 3 periods and 46 grids.
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Figure S 8: Interaction plots between 21 CMIP6 and the latitude in which the latitude changes

from 33o to 43o, for 20-year return levels (unit: mm).
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