
1 
 

Hydrologic Model Parameter Estimation in Ungauged Basins using Simulated 1 

SWOT Discharge Observations 2 

 3 

Nicholas J. Elmer
1
, James McCreight

2
, Christopher Hain

3
 4 

 5 

1 
NASA Postdoctoral Program, NASA Marshall Space Flight Center, Huntsville, Alabama 6 

2
National Center for Atmospheric Research, Boulder, Colorado  7 

3
Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama 8 

 9 

Corresponding address: Nicholas J. Elmer, NASA Postdoctoral Program, NASA Marshall Space 10 

Flight Center, 320 Sparkman Drive, Huntsville, AL, 35805. Email: nicholas.j.elmer@nasa.gov 11 

 12 

Key Points: 13 

● SWOT observations are critical for calibrating hydrologic models in regions devoid of in 14 

situ observations 15 

● For an expected SWOT discharge error of 35%, multi-point parameter estimation is 16 

successful for 90% of polar and 70% of tropical sub-basins. 17 

● Multi-point parameter selection is preferred over single-point parameter selection, 18 

offering more robust results with less sensitivity. 19 

  20 

Keywords: SWOT, WRF-Hydro, Alaska, Parameter Estimation, Calibration  21 



2 
 

Abstract 22 

In situ gauge networks are often used in hydrological model calibration, but these networks are 23 

limited or nonexistent in many regions. The upcoming Surface Water Ocean Topography 24 

(SWOT) mission promises to fill this observation gap by providing discharge estimates for rivers 25 

with widths greater than 100 meters. Proxy SWOT discharge estimates derived from an 26 

observing system simulation experiment and Monte Carlo methods are used to assess SWOT 27 

observation utility for model parameter selection in regions devoid of in situ gauges the 28 

sensitivity of the parameter selection to measurement error and observation temporal frequency 29 

is also evaluated. Single-point and multi-point parameter selection is performed for ten sub-30 

basins within the Susitna River and upper Tanana River basins in Alaska. SWOT is expected to 31 

observe Alaskan river points 4-7 times per 21-day repeat cycle with 120 km swath coverage. For 32 

an expected SWOT discharge error of 35%, parameter estimation is successful for 60% and 90% 33 

of sub-basins using single-point and multi-point selection, respectively. Decreasing observation 34 

frequency to simulate lower latitudes resulted in success for only 20% of midlatitude and 10% of 35 

tropical sub-basins for single-point selection, whereas multi-point selection was successful in 36 

80% of midlatitudes and 70% of tropical sub-basins. Single-point parameter selection was much 37 

more sensitive to SWOT discharge error than multi-point parameter selection. The results 38 

strongly support the use of multi-point parameter selection over single-point parameter selection, 39 

yielding robust results nearly independent of observation error with approximately half the 40 

sensitivity to observation frequency.   41 
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1. Introduction 42 

 For decades, in situ gauge networks have been monitoring stream hydrology and are 43 

considered a robust observation with well-understood errors (Hirsch and Costa 2004, Boning 44 

1992), measurements of floods and droughts notwithstanding. Stream gauges aid in the modeling 45 

and forecasting of major hydrologic events by enabling model calibration and validation. 46 

Unfortunately, in situ stream gauge networks are concentrated to only a few regions globally, 47 

and these networks are on the decline (Pavelsky et al. 2014), limiting the availability of 48 

observations of streamflow. Furthermore, very few observations are available from satellite 49 

platforms since all current satellite missions, including Jason-3 and the second Ice, Cloud and 50 

land Elevation Satellite (IceSAT-2), theoretically capable of measuring river stage using radar 51 

and laser nadir altimetry (Kouraev et al. 2004, Papa et al. 2010, O’Loughlin et al. 2016, 52 

Biancamaria et al. 2017), have insufficient spatial and temporal resolutions for adequate 53 

sampling (Alsdorf et al. 2007, Biancamaria et al. 2016).  54 

 To fill this observation gap, the Surface Water Ocean Topography (SWOT) mission 55 

(Biancamaria et al. 2016) was designed and is expected to be launched in late 2021 to provide 56 

the first global inventory of Earth’s surface water, including rivers, lakes, and wetlands. A joint 57 

venture between the National Aeronautics and Space Administration (NASA), Centre National 58 

d’Etudes Spatiales (CNES), Canadian Space Agency, and the United Kingdom Space, SWOT 59 

supports a nadir altimeter and a bistatic Ka-band (35.75 GHz) Radar Interferometer (KaRIn) 60 

(Fjortoft et al. 2014). The nadir altimeter allows intercomparison with Jason measurements, will 61 

help to continue the data record of nadir altimeters, and fills the gap between the two 60 km 62 

KaRIn swaths, one on each side of nadir. KaRIn provides high-resolution water surface elevation 63 

(WSE, the height of the river surface above a reference geoid), width, and slope measurements 64 
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across a combined 120 km swath for rivers with widths greater than 100 m (Biancamaria et al. 65 

2016, Pavelsky et al. 2014, Rodriguez 2016). Since KaRIn uses Ka-band, instead of C- and Ku-66 

band used by Jason and IceSAT, there is less signal penetration into soil, snow, and vegetation 67 

(Fjortoft et al. 2014, Biancamaria et al. 2016) enabling SWOT to collect measurements at finer 68 

spatial resolutions. Therefore, KaRIn will be the first satellite instrument that can fully resolve 69 

terrestrial surface water bodies with high altimetric accuracy. 70 

In the United States (U. S.), U. S. Geological Survey (USGS) stream gauges measure 71 

stage data at 3 mm accuracy, which translates to discharge accuracy of 5-10% (Hirsch and Costa 72 

2004) under normal flow conditions. Generally, a 1% error in the effective stage input is 73 

equivalent to a 3% error in the computed discharge (Boning 1992). In comparison, SWOT WSE 74 

is expected to have a minimum error of 10 cm for most rivers (Biancamaria et al. 2016) with 75 

estimated discharge errors around 35% (Durand et al. 2016). However, even though expected 76 

SWOT errors are much larger than the error of in situ gauges, in the absence of in situ gauges 77 

SWOT measurements will provide the best estimates of stage and discharge available. This work 78 

also highlights that SWOT observations along many points in the stream network have better 79 

error characteristics than a single observation, as errors are not assumed to be correlated. 80 

Hydrologic models, including the National Oceanic and Atmospheric Administration 81 

(NOAA) National Water Model (NWM; OWP 2020) which is an instantiation of the Weather 82 

Research and Forecasting Hydrological extension package (WRF-Hydro; Gochis et al. 2018), are 83 

typically calibrated using in situ gauges. WRF-Hydro is a modeling framework that couples 84 

column land surface, overland and subsurface terrain routing, and channel routing models in a 85 

multiscale hydrologic process representation. WRF-Hydro is fully-distributed with multi-physics 86 

options and multi-scale capabilities, enabling it to represent processes on a wide range of spatial 87 
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scales (Yucel et al. 2015, Senatore et al. 2015, Arnault et al., 2018, Gochis et al. 2018). Since 88 

many parameterizations are used to characterize sub-scale processes in numerical models, 89 

parameter values are often hard-coded or contained in parameter tables. For example, 139 hard-90 

coded parameters and 71 standard parameters were identified within Noah-MP by Cuntz et al. 91 

(2016). Running Noah-MP coupled with WRF-Hydro, Cuntz et al. (2016) found that hydrologic 92 

output fluxes are sensitive to two-thirds of the standard parameters and surface runoff is sensitive 93 

to many parameters of snow processes, soil, and vegetation. Even after calibration, many 94 

parameter values can vary widely from basin to basin, even between neighboring watersheds. 95 

Calibration seeks to minimize an objective function as a measure of physical realism by 96 

optimizing the parameter values of the most sensitive model parameters. Traditionally, in situ 97 

observations are used to calibrate hydrologic models. Few, if any, alternatives are available if in 98 

situ observations are lacking. Following launch, SWOT will provide an additional source of 99 

discharge observations from a satellite platform, potentially providing more observations per 100 

basin than even some of the most robust in situ networks. This paper assesses the ability of 101 

SWOT discharge estimates to enable hydrological model parameter selection in regions devoid 102 

of in situ gauges. This paper also compares multi-point parameter selection (e.g., Cao et al. 2006, 103 

Niraula et al. 2012), which will be made possible with SWOT observations, to the traditional 104 

single-point calibration approach. 105 

 106 

2. Methodology      107 

2.1 Experimental Design 108 

The design of our fraternal twin parameter selection experiment is shown in Figure 1. 109 

This Observing System Simulation Experiment (OSSE) is based on Elmer et al. (2020). The 110 
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fraternal twins, the “truth run” and “calibration run”, simulate model error by employing 111 

different hydrologic model representations in the model chain that generates streamflow. The 112 

experiment addresses whether the unknown, best parameters for the calibration run can be 113 

reliably selected (purple box in Figure 1) from observations of the true run streamflow imparted 114 

with the expected observation error characteristics of the SWOT sensor. Successfully identifying 115 

the best parameters from observations is the core of model calibration. In this experiment, 116 

because we know the true streamflow values, we can evaluate under what conditions parameter 117 

selection is successful.  118 

Parameter, model, and observation errors are all ingredients of the experimental design. 119 

The parameter error is the quantity we seek to minimize in parameter selection and calibration 120 

via the objective function. The “truth run” was pre-calibrated to a single subdomain of the study 121 

and has a single realization (yellow box, Figure 1). In contrast, the calibration runs span the 122 

space of thirteen model parameters plus Manning’s roughness coefficient using 80 parameter 123 

sets. This is represented by the stack of calibration runs (red boxes) in Figure 1. Model error of 124 

the calibration runs relative to the truth run is generated by differences summarized by text in the 125 

respective boxes in Figure 1. These differences produce errors between the runs in terms of 1) 126 

the fixed boundary conditions or geometry for different land surface model (LSM) resolutions 127 

and channel routing networks, 2) the LSM and channel parameters, particularly infiltration 128 

parameters, which depend on spatial and temporal model resolutions, and 3) streamflow physics. 129 

We note that both the atmospheric forcing variables and LSM models are identical between the 130 

runs but that errors or differences in the model runs start with and accumulate over time within 131 

the soil moisture representation and its two-way coupling to the overland and subsurface runoff 132 
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models (Gochis and Chen 2003), which feeds back to LSM behavior and parameter differences. 133 

The differences between the fraternal twins are  described in further detail below. 134 

The SWOT observation errors are considered random. Therefore 10,000 realizations of 135 

observation errors are applied to the true states before use in parameter selection to avoid 136 

drawing conclusions from a particular set of errors. This set of 10,000 possible observation 137 

realizations is represented by the stack of observations (blue ovals) in Figure 1. Although results 138 

using as few as 100 realizations would have led to similar conclusions, 10,000 realizations are 139 

used for this study to ensure robust results. Over the 10,000 observation sets, the probability of 140 

selection (identification as the best parameter set via a version of Nash-Sutcliffe Efficiency based 141 

on the observations) is computed for each of the 80 parameter sets (purple diamond, Figure 1). 142 

Finally, in the evaluation step in (green diamond, Figure 1), NSE is computed from the true 143 

model states and the true rank of each parameter set is assigned, from best (low) to worst (high). 144 

The cumulative probability of parameter selection (under observation error) is plotted against 145 

rank. Do the true, best parameter sets have a reasonably high likelihood of selection in the 146 

presence of SWOT observation characteristics (and model error)?  147 

This paper focuses on sub-basins within the upper Tanana River and Susitna River basins 148 

in Alaska, which will be regularly observed by SWOT (Biancamaria et al. 2016) but have few in 149 

situ observations. These watersheds are delineated in Figure 2. The following subsections 150 

provide additional details for each step of the experimental design shown in Figure 1. 151 

 152 

2.2 Model configurations and parameters 153 

For both truth and calibration model runs in Figure 1, this study uses WRF-Hydro version 154 

5.0 (Gochis et al. 2018), which includes the NWM v2.0 configurations (OWP 2020). The Noah 155 
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land surface model with Multi-Parameterization options (Noah-MP; Niu et al. 2011) with a 1 km 156 

spatial resolution is used as the WRF-Hydro land surface model in both models, as well as 157 

Global Land Data Assimilation System (GLDAS) Version 2 (Rodell et al. 2004) meteorological 158 

forcing. Further details of the model configuration and physics parameterizations used are listed 159 

in Table 1, which also lists the differences between the truth run and the calibration runs. 160 

The truth (calibration) run configuration has a model timestep of 1 (3) hours, performing 161 

overland and subsurface routing on a 100m (250m) grid, and uses the Muskingum-Cunge 162 

(diffusive wave) routing scheme for simulating streamflow within a channel model. GLDAS 163 

forcing data is available at three-hour increments and ingested into both configurations equally. 164 

The WRF-Hydro terrain routing grids (100m and 250m) and channel networks were derived 165 

from the WRF-Hydro GIS Pre-processing Toolkit v5.1 (Sampson and Gochis 2015) using the 166 

Weather Research and Forecasting (WRF) (Skamarock et al. 2008) Preprocessing System 167 

geogrid file and the National Elevation Dataset (NED) (U. S. Geological Survey 2017) Digital 168 

Elevation Model (DEM) as inputs. Both the Muskingum-Cunge and diffusive wave schemes 169 

represent channels with an infinite depth, preventing overbank flow. However, the diffusive 170 

wave scheme allows backwater effects, whereas the Muskingum-Cunge scheme does not. 171 

Importantly, the channel networks are derived using different DEM spatial resolutions, leading to 172 

different spatial representations of the channel routing. 173 

Whereas we calibrate the truth run to in situ streamflow observations (described below), 174 

the calibration run configuration is uncalibrated: the point of our experiment being selection of 175 

parameters for the calibration run that most accurately simulate the truth run.  Eighty calibration 176 

parameter sets were created by perturbing Manning’s roughness coefficient (as a function of 177 

stream order) along with the thirteen most sensitive WRF-Hydro parameters (Cuntz et al. 2016; 178 



9 
 

Elmer 2019). As shown in Table 2, these parameters span the LSM, overland/subsurface routing, 179 

groundwater bucket, and channel routing components of the model (model variable names 180 

shown in parentheses): the Clapp-Hornberger B exponent (bexp), soil moisture maximum 181 

(smcmax), saturated soil conductivity (dksat), soil infiltration parameter (refkdt), soil drainage 182 

parameter (slope), retention depth (RETDEPRTFAC), saturated soil lateral conductivity 183 

(LKSATFAC), groundwater bucket model max depth (Zmax), groundwater bucket model 184 

exponent (Expon), canopy wind parameter (CWPVT), maximum carboxylation at 25°C 185 

(VCMX25) which is related to the vegetation height (HVT), the Ball-Berry conductance 186 

relationship slope (MP), and the snowmelt parameter (MFSNO). The ranges assigned to these 187 

parameters make up the calibration parameter space. From this parameter space, a sample of 188 

parameter sets were obtained by randomly assigning values within the valid parameter ranges 189 

listed in Table 2 using a uniform distribution. The result is a good representation of parameter 190 

space, as shown by depiction of the distribution of the sampled parameter sets using 191 

multidimensional scaling in Figure 3.   192 

The truth model is calibrated using in situ USGS stream gauge observations at the basin 193 

outlet using the parameter space described above (Table 2). The mean of the Nash Sutcliffe 194 

Efficiency (NSE; McCuen et al. 2006) and the logarithmic NSE (NSEln) was used as the 195 

calibration metric, denoted as the mean NSE (NSEmean). NSEmean is akin to the metric used in the 196 

calibration of the NWM and is given by: 197 

𝑁𝑆𝐸𝑚𝑒𝑎𝑛  = (𝑤)𝑁𝑆𝐸 + (1 − 𝑤)𝑁𝑆𝐸𝑙𝑛          (1) 

where w is the weight of 0.5. NSEmean ranges from negative infinity to unity, where a value 198 

greater than zero indicates that the model provides a better estimate than the observation mean. 199 

Thus, the maximum NSEmean is sought. For single point parameter selection, NSEmean is the 200 
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metric for evaluation. For multipoint parameter selection, a basin average NSEmean is calculated 201 

for evaluation, given by: 202 

𝑁𝑆𝐸𝑚𝑒𝑎𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑁𝑆𝐸𝑚𝑒𝑎𝑛𝑖
𝑃
𝑖=1

𝑃
          (2) 

where P is the number of observed points in the sub-basin or watershed. 203 

As the calibration process is computationally expensive, calibration of the truth 204 

simulation was only performed for the Chena River watershed (within the upper Tanana River 205 

basin; watershed outlet denoted by point I in Figure 2) and halted after 75 model iterations. The 206 

parameters identified using the Chena River calibration were transferred to the full domain. 207 

Although the Chena River calibration may not transfer well to the entire upper Tanana River and 208 

Susitna River basins, the resulting model output is treated as truth for this experiment and 209 

therefore a perfect calibration is not necessary. Certain parameters (e.g., infiltration parameters) 210 

are strongly scale dependent, so the calibration of the truth model, in which the model resolution 211 

and streamflow physics differ from the 250-m model, is not directly transferrable to the 250-m 212 

model. The truth run provides the “true” geolocation and discharge (q) for the purposes of this 213 

experiment.  214 

A spin-up period of eight years (March 2009 - March 2017) using default parameter 215 

values (Table 2) was performed, designed to allow for adequate accumulation of groundwater 216 

and snowpack and permitting each 250-m simulation to reach equilibrium. The March 2017 217 

restart files from the spin-up were used to restart the 250-m simulations at March 2011 using 218 

their respective parameter set and integrated forward in time in an open loop configuration. The 219 

periods of March – September 2012 for the Susitna River basin and March – September 2014 for 220 

the upper Tanana River basin were used during analysis to determine the utility of SWOT 221 

observations in model calibration. 222 
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 223 

2.3. Generating Proxy SWOT Discharge 224 

Since real SWOT data are not yet available, proxy SWOT observations were generated 225 

for this analysis. Proxy SWOT data has been used by multiple studies to quantify assimilation 226 

impacts on river modeling and reservoir management (Andreadis et al. 2007; Biancamaria et al. 227 

2011, Munier et al. 2015) and develop procedures for estimating river bathymetry (Durand et al. 228 

2008, 2010, 2014; Yoon et al. 2012). Furthermore, Pedinotti et al. (2014) used synthetic SWOT 229 

data to optimize Manning roughness coefficients in the Interactions between Soil, Biosphere, and 230 

Atmosphere-Total Runoff Integrating Pathways System (ISBA-TRIP) continental hydrologic 231 

system using data assimilation, demonstrating that SWOT data can be used for calibration. 232 

The truth model q is corrupted with random white noise following a Gaussian distribution 233 

(N) with a zero mean and standard deviation 𝜎 to represent measurement error: 234 

𝑞′ = 𝑞 + 𝑁(0, 𝜎) = 𝑞 + 𝑁(0, 𝜖𝑞), (3) 

where 𝑞′ is the corrupted discharge (i.e., the proxy SWOT discharge estimate) and 𝜖 is the 235 

representative discharge error. For the analysis in Section 3.1, 𝜖 = 0.35 is used, which is roughly 236 

equivalent to the relative root mean squared error (RMSE) of instantaneous discharge estimated 237 

by Durand et al. (2016). Since an equivalent increase in water surface height will yield a larger 238 

increase in discharge for a river with a larger cross-section, uncertainty in q’ naturally increases 239 

as q increases. 240 

However, a single dataset of q’ does not provide an adequate sampling of measurement 241 

error by which to assess calibration potential. Rather, it gives a snapshot of only one possible 242 

scenario. Figure 3 illustrates this quite well. The blue dots indicate a single data set of q’, 243 

containing some points in which the measurement errors are small and depart very little from the 244 

truth value but also points that extend into the 2-σ error range. A single scenario may be biased if 245 
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only small random errors are present (𝑞′ ≈ 𝑞), especially at key points along the time series, 246 

which would enable superior parameter selection and suggest better results than could actually 247 

be expected. Conversely, a scenario containing frequent large errors, parameter selection would 248 

underperform. To sample a broad spectrum of the possible outcomes stemming from a SWOT 249 

observation set laden with error, Monte Carlo methods were employed to create 10,000 250 

randomly-perturbed sets of q’ per sub-basin. Based on the outcome of each of the 10,000 sets, 251 

the probability of successful sub-basin calibration was calculated. 252 

To obtain q’ with appropriate orbit characteristics, it was spatially sampled based on the 253 

CNES proxy SWOT orbit (Aviso+ 2015). First, the cross-track distance of each WRF-Hydro 254 

reach from the proxy SWOT orbit at each overpass was calculated. For each pass, only reaches 255 

with cross-track distances of 10-60 km (i.e., within the SWOT measurement range) and with a 256 

Strahler streamorder greater than or equal to five (used to approximate rivers with widths greater 257 

than 50 m) were extracted, following the methodology of Elmer et al. (2020), which showed that 258 

Alaskan rivers with a streamorder greater than or equal to five will generally be observable by 259 

SWOT. Figure 3 compares the truth and q’ for sub-basin E, where q’ is used to calibrate the 250-260 

m model following the method described in Section 2.3.  261 

 262 

2.3. Parameter selection from proxy SWOT discharge observations 263 

We purposely use the term "parameter selection" to differentiate our overall approach 264 

from calibration for the following reasons. The parameter sets run through the model and 265 

ultimately judged by the objective function are generated a priori through combinations of 266 

uniformly sampled distributions on each parameter. As such, the parameters sets being 267 

discriminated via the objective function are generally not "close" in parameter space (Figure 3). 268 
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A true calibration approach would consider points with a similar spacing in parameter space, but 269 

would also include parameter sets much closer together in the quest to find minima of the 270 

objective function. This paper does not study the ability to accurately find local minima of the 271 

objective function using SWOT observations. Doing so would require understanding the relative 272 

sensitivities of the objective function to observation error and to distance in parameter space. 273 

Rather, we examine the potential for SWOT observations to give a more regional, less detailed 274 

picture of the objective function. Given the observation and error characteristics of SWOT, 275 

including its spatially distributed nature, and a finite collection of parameter sets, can we 276 

accurately select the best parameter set in this collection? Our results provide an encouraging 277 

basis for pursuing model calibration using SWOT observations. 278 

To review and summarize the experiment design (Figure 1), the 250-m model described 279 

in Section 2.1 represents an uncalibrated hydrologic model of an ungauged basin (a single red 280 

box, Figure 1). For this basin, an infinite number of parameter sets can be selected from the 281 

parameter space for calibration and the correct solution (parameter set) is unknown. The goal is 282 

to find the best simulation of streamflow over a finite sample of parameter space. A sample size 283 

of 80 parameter sets (red stack of boxes, Figure 1) was chosen for this study to minimize 284 

computational requirements. While the parameter set can certainly be expanded to more fully 285 

represent the whole parameter space, the increased computational requirements may reduce the 286 

feasibility of this method for users without access to large computing systems. 287 

This study ensures the 250-m model is blind to the calibration of the truth model so that 288 

the calibrated parameter set used by the truth model does not inform the selection of the 289 

parameter set sampling for the 250-m model. In the absence of in situ gauges, the only source of 290 

regular discharge observations for ungauged basins will be from the SWOT mission. The q’ 291 
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values derived in Section 2.3 are representative of the SWOT discharge observations that will be 292 

available post-launch, and are used to calibrate the model by finding the best parameter set from 293 

the 80 sample parameter sets. A comparison between the 100-m truth model, the 250-m 294 

simulations, and the proxy SWOT discharge estimates is provided in Table 3, with example data 295 

shown in Figure 4. For this particular point, there are 38 SWOT overpasses from March 1 – 296 

September 15, yielding an observation approximately every 5 days, or 4 observations per repeat 297 

cycle. 298 

Channel reaches were spatially matched between the truth and calibration model channel 299 

networks for evaluation, eliminating any matches separated by a 1 km or greater which are 300 

considered unrelated. Thus, a total of 10 basins and 991 channel reaches were evaluated. All 301 

basins were modeled simultaneously, but evaluated separately. Single-point parameter selection 302 

for the uncalibrated 250-m model is performed using NSESWOT, given as the NSEmean between 303 

the discharge for each simulation and q’ at each sub-basin outlet in Figure 2. Multi-point 304 

parameter selection is evaluated with 𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the basin average NSESWOT for all observed 305 

points P (Equation 2). The 250-m simulation with the maximum NSESWOT or 𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (the best 306 

match parameter set) is chosen, and the parameter set used by that simulation for the thirteen 307 

most sensitive WRF-Hydro parameters is selected as the “correct” parameter set. 308 

 309 

2.4. Evaluation of parameter selection 310 

The NSEmean was also calculated between each 250-m simulation and the truth model q 311 

(NSETRUTH) at each basin outlet for comparison with NSESWOT for single point parameter 312 

selection evaluation. Multi-point parameter selection is similar to single-point selection except 313 

that 𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (the basin-average values for all observable channel reaches within 314 
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each sub-basin) is used. The 250-m simulations are separately ranked according to their 315 

NSESWOT (𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) values for single point (multi point) parameter 316 

selection with the member with the best (maximum) value being assigned a ranking of one, and 317 

the member with the worst (minimum) value assigned a ranking of 80. Expressing the 318 

cumulative rank of NSESWOT (𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) as a function of NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) reveals whether 319 

single (multi) point parameter selection using SWOT observations is effective. For the purposes 320 

of drawing conclusions in this paper, a successful parameter selection is achieved for a 321 

watershed if the selected parameter set is contained within the best ten sets according to the 322 

NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) rank with a >80% probability. This criteria is subjective, thus plots 323 

showing the full range of probabilities are included. For example, in Figure 5a the y-axis shows 324 

the cumulative probability whereas the x-axis shows the parameter set rank. The cumulative 325 

probability is essentially the fraction of observation sets (10,000 sets in total). Thus, we see that 326 

for sub-basin G (pink line), approximately 0.95 (95%) of the 10,000 observation sets rank the 327 

true best parameter set in the top ten (indicated by vertical black dashed line). Since this value is 328 

above the 0.8 (80%) threshold, the parameter selection is successful. 329 

 330 

2.5 Sensitivity to measurement error and temporal frequency 331 

Additional analysis examines the sensitivity of the parameter selection results to 332 

measurement error (Section 3.2) and the temporal frequency of SWOT observations (Section 333 

3.3). Although the measurement error of SWOT instantaneous discharge is estimated to have a 334 

relative RMSE of 35%, the incorporation of ancillary data in the discharge algorithms to reduce 335 

error is being considered (Durand et al. 2016). Thus, determining the sensitivity of these results 336 

to measurement error is useful in evaluating the range of possible impacts for SWOT, in 337 
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particular with respect to model calibration. Thus, q’ is recalculated with 𝜖 = 0.20 rather than 338 

0.35. The temporal frequency of SWOT observations is inherently tied to latitude due to SWOT 339 

orbit characteristics (relatively narrow swath compared to satellite imagers and high inclination 340 

angle). Thus, polar regions are observed more frequently than the midlatitudes, and the 341 

midlatitudes are observed more frequently than the tropics. Biancamaria et al. (2016) show that 342 

SWOT will observe the tropics (0-30°) 1-2 times per repeat cycle, the midlatitudes (30-60°) 2-4 343 

times per repeat cycle, and polar regions (60-90°) 3-7 times per repeat cycle. 344 

To assess the sensitivity of parameter selection results to temporal frequency and 345 

determine whether this process is viable at lower latitudes, the same Alaskan sub-basins are 346 

considered but the observation frequency of q’ is reduced to mimic SWOT observation of mid- 347 

and low-latitudes basins. For the midlatitudes, the observation frequency of q’ was halved with 348 

respect to that of Alaska. For the tropics, the observation frequency was reduced by a factor of 349 

four. The sensitivity of model parameter selection to measurement error and the temporal 350 

frequency of observations is calculated by: 351 

𝑆 =
𝜕𝑌

𝜕𝑋
,          (4) 

where Y is the probability of selection and X is the measurement error ε or number of 352 

observations per repeat cycle. Error sensitivity is likely non-linear; thus, in evaluating error 353 

sensitivity these results are likely only valid for ε between 0.20 and 0.35. 354 

 355 

3. Results and discussion 356 

3.1. Parameter selection 357 

Figure 5a presents the cumulative probability that the true best parameter set is selected 358 

via NSESWOT at or above (equal or higher ranking) each rank position for a measurement error 359 
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ϵ=0.35 using single-point parameter selection. For example, if the rank 10 likelihood for a given 360 

basin is 80%, then the parameter set selected by NSESWOT is one of the ten highest-ranked sets 361 

with respect to the truth for 8,000 of the 10,000 Monte Carlo simulations. For six of the ten sub-362 

basins, the selected parameter set is ranked in the top ten with a >80% probability, meeting our 363 

criteria for success. These six basins also rank in the top five with a >60% probability. The 364 

selected member for two additional sub-basins (E and I) is ranked in the top ten (five) with a 365 

>50% (>40%) probability. Notably, two sub-basins (B and D) display much poorer results than 366 

the other sub-basins. Sub-basin B selects a parameter set in the top 70 with less than a 30% 367 

probability, indicating that the best parameter set as determined by NSETRUTH is regularly ranked 368 

as one of the worst ten sets by this calibration approach. A major difference between B and D 369 

and the other better performing sub-basins is the ability of the sampled parameter set to represent 370 

the truth.  371 

Figure 6 compares the NSETRUTH for each sub-basin shown in Figure 2. The NSETRUTH 372 

curves for both B and D are flatter than for the other sub-basins, indicating that the sample 373 

parameter set spread is narrower. Thus, there is less variation among the simulations, resulting in 374 

lower ranked parameter sets based on NSETRUTH to be more frequently ranked highly based on 375 

NSESWOT. Additionally sub-basin B has the lowest NSETRUTH of any sub-basin for its highest 376 

ranked set with a value less than 0.75. Figure 7 maps the true rank of each parameter set selected 377 

by NSESWOT and displays a histogram of these ranks for all SWOT observable channel reaches in 378 

the domain. Results are generally very good for the entire upper Tanana basin and most of the 379 

Susitna basin, with the selection of a highly-ranked (top 10) parameter set for most  of channel 380 

reaches. However, the worst performance occurs in the same outlying sub-basins B and D from 381 

Figure 6, with sub-basin B clearly demonstrating the poorest results. Thus, it is apparent that the 382 
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simulation does not capture the physical processes of these sub-basins as well as for the other 383 

sub-basins, indicating that the sample parameter set does not contain the true parameter set and 384 

resulting in the inability to achieve a good parameter selection using the approach in this paper. 385 

However, this shortcoming highlights several potential issues with parameter selection. Adequate 386 

model spin-up and configuration are necessary to ensure significant physical processes are being 387 

adequately captured by the model and that physical realism is adequate. Second, parameter sets 388 

which appropriately cover the parameter space may also be key to differentiating model 389 

simulations (Sharma et al. 2019, Hagedorn et al. 2012, Weigel et al. 2008, 2009). A larger 390 

parameter set or a parameter sampling strategy that undertakes large searches across parameter 391 

space may benefit the parameter selection at several sites in this study. 392 

 Figure 8a, interpreted in the same manner as Figure 5a, presents the cumulative 393 

probability of successful parameter selection for a measurement error 𝜖 = 0.35 using multi-point 394 

parameter selection. Results improve compared to single-point parameter selection. For nine out 395 

of ten of (70%) of the sub-basins, the selected parameter set has a true rank in the top ten with a 396 

>80% probability, meeting our criteria for successful parameter selection. The only sub-basin 397 

that again does not achieve successful calibration is sub-basin B. Seven basins also identify 398 

parameter sets in the top five true parameter sets with >60% probability.  399 

 400 

3.2. Sensitivity to measurement error 401 

 Reducing the discharge error ε from 0.35 to 0.20 results in the success probabilities 402 

shown in Figures 5b and 8b for single-point and multi-point parameter selection, respectively. As 403 

expected, the probability that the selected parameter set is highly ranked increases as error 404 

decreases, with the exception of sub-basin B for reasons discussed in Section 3.1. For single-405 
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point parameter selection, 70% of sub-basins are assigned a top-ten ranked parameter set with a 406 

>95% cumulative probability, while 80% of sub-basins meet the definition of successful 407 

parameter selection. 60% of sub-basins also display a >95% probability of selecting a parameter 408 

set ranked in the top five. These statistics are improved further using multi-point parameter 409 

selection with 90% of sub-basins achieving successful parameter selection all with a >95% 410 

cumulative probability.  Table 4 summarizes the effect of decreasing 𝜖, showing that as error 411 

decreases the likelihood of successful calibration increases, regardless of observation frequency. 412 

 The sensitivity of the probability of successful parameter selection is evaluated by 413 

considering a 0.10 decrease in observation error ε, centered on ε=0.35.  The mean sensitivity is 414 

calculated over all sites. The mean sensitivity for each rank position is shown in Figure 9 in blue 415 

with single-point and multi-point selection sensitivity as solid and dashed lines, respectively. For 416 

single-point parameter selection, the probability is most sensitive between ranks 3-10, with a 417 

mean sensitivity of 7% per 0.10 decrease in 𝜖. Thus, a sizeable improvement in parameter 418 

selection can be expected if the SWOT observation error can be reduced through the use of 419 

ancillary datasets.  Sensitivity gradually declines for ranks beyond 10, which is to be expected 420 

since the cumulative probability, as shown in Figure 5, begins to level off for lower rank 421 

positions. Sensitivity to reductions in 𝜖 decreases with for multi-point parameter selection. 422 

Sensitivity peaks at rank 3 with a sensitivity of 5% per 0.10 decrease in 𝜖, but quickly drops 423 

below 2% by rank 10. Thus, the use of multi-point parameter estimation yields a more robust 424 

result nearly independent of observation error given sufficient observations, as shown in Table 4, 425 

assuming observation error is uncorrelated. 426 

 427 

3.3 Sensitivity to temporal frequency of SWOT observations 428 
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Single-point parameter selection is very sensitive to the temporal frequency of SWOT 429 

observations. As shown in Table 4, successful parameter selection is reduced from 60% to 10% 430 

of sub-basins for 𝜖 = 0.35 and from 80% to 40% of sub-basins for 𝜖 = 0.20. For multi-point 431 

parameter selection, probability of success is reduced from 90% to 70% of sub-basins for 432 

𝜖 = 0.35 and from 90% to 80% of sub-basins for 𝜖 = 0.20. Figure 10 compares the cumulative 433 

probability curves for the midlatitudes and the tropics using multi-point parameter selection, 434 

which alongside Figure 8a, shows that most sub-basins are unaffected by the decrease in 435 

observation frequency. 436 

The sensitivity due to a single additional SWOT observation per repeat cycle for each 437 

rank position is shown in Figure 9 in orange with single-point and multi-point parameter 438 

selection identified by the orange solid and dashed lines, respectively. In calculating sensitivity 439 

to observation frequency, five observations per repeat cycle (21 days) is assigned to the polar 440 

region, three observations per repeat cycle is given to the midlatitudes, and 1.5 observations per 441 

repeat cycle  is used for the tropics. For example, in calculating sensitivity between the 442 

midlatitudes and tropics, 𝜕𝑋 = 3 − 1.5 = 1.5. The magnitudes and patterns are similar to that of 443 

observation error sensitivity, in which maximum sensitivity is observed between ranks 3-10, 444 

peaking near 7% per additional observation for single-point parameter selection and 5% for 445 

multi-point parameter selection. While the number of SWOT observations per repeat cycle 446 

strongly affects the likelihood of successful parameter selection using single-point parameter 447 

selection, multi-point selection is much more robust, in that a large majority of sub-basins 448 

achieved successful parameter selection regardless of observation frequency. This is particularly 449 

true when observation error is reduced, limiting the effect of lower observation frequency. 450 

 451 
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4. Conclusions 452 

Using Monte Carlo methods, we evaluate parameter selection for an uncalibrated 250-m 453 

WRF-Hydro model. We examine single- and multi-point objective function parameter selection 454 

using simulated SWOT observations in regions unserved or underserved by in situ gauges. The 455 

model parameter space is sampled to create an assortment of parameter sets for which the 250-m 456 

model is run. Proxy SWOT discharge estimates were derived from an OSSE following the 457 

methodology of Elmer et al. (2020). As the true values of streamflow are known, we can 458 

evaluate the selection of model parameters based on the comparison of model discharge 459 

simulations with proxy SWOT streamflow observations.  460 

The results indicate that the use of multi-point parameter selection is advantageous over 461 

single-point parameter selection. In effect, the spatially distributed nature of the SWOT 462 

observations compensates for its observation errors. In fact, successful parameter selection is 463 

largely independent of observation error with approximately half its sensitivity attributable to 464 

observation frequency. The high spatial coverage of observations from SWOT also compensates 465 

for the lack of their temporal frequency in mid-latitude and tropical basins, perhaps due to 466 

spatiotemporal correlations in streamflow (Paiva et al. 2015, Yang et al. 2019, Fisher et al. 467 

2020). Even with larger errors than in situ gauges, this study shows that SWOT discharge 468 

estimates provide adequate accuracy and temporal sampling to enable parameter selection for 469 

SWOT observable river basins globally. In regions devoid of in situ observations or with 470 

relatively scarce stream gage networks, this study demonstrates that SWOT will provide  471 

valuable observations for calibrating hydrologic models.  472 

This study does not account for reprocessing of discharge estimates occasionally 473 

throughout the SWOT mission, which is a planned activity to improve accuracy. Actual SWOT 474 
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observations are expected by mid-2022, so these results are timely in preparing to apply SWOT 475 

data immediately following launch. While SWOT has many societal and research applications 476 

that rely on near-real-time SWOT measurements (e.g., data assimilation, inundation mapping), 477 

the use of SWOT observations for model parameter selection or calibration is not constrained by 478 

product latency or mission lifetime, but extend beyond the mission end.  479 
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Figure 7. a) Map and b) histogram depicting the true rank of selected parameter set for 𝜖 = 0.35 665 

in Alaska. All SWOT observable channel reaches are shown. Basin borders match those in 666 

Figure 2. Zero indicates the best true rank. 667 
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Figure 9. Mean sensitivity (% change per unit) of the probability that the selected parameter set 670 

is ranked at or above each rank position with respect to changes in proxy SWOT discharge 671 

error ε (blue) and SWOT observation frequency (orange) for single-point (solid) and multi-672 

point (dashed) parameter selection. Since error sensitivity is likely non-linear, note that this 673 

evaluation is only valid for ε between 0.20 and 0.35. Units are shown in the legend in 674 

parentheses, and rank is determined by NSETRUTH and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The vertical dashed line 675 

marks the 10th-ranked member. 676 

Figure 10. As in Figure 8a, but for proxy SWOT mimicking observation frequency for a) 677 

midlatitudes and b) tropics as opposed to Alaska. Results are for multipoint parameter 678 

selection. 679 
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Tables 681 

Table 1. Noah-MP and WRF-Hydro parameterization options used. More information about 682 

these options are available in Niu et al. (2011) and Gochis et al. (2018). 683 

Noah-MP Namelist Option Namelist Value 

Dynamic Vegetation Option 4 (table leaf area index, maximum GVF) 

Canopy Stomatal Resistance Option 1 (Ball-Berry) 

BTR Option 1 (Noah) 

Runoff Option 3 (free drainage) 

Surface Drag Option 1 (M-O) 

Frozen Soil Option 1 (linear effects) 

Supercooled Water Option 1 (no iteration) 

Radiative Transfer Option 3 (two-stream applied to vegetated fraction) 

Snow Albedo Option 2 (CLASS) 

PCP Partition Option 1 (Jordan 1991) 

TBOT Option 2 (original Noah) 

Temp Time Scheme Option 3 (semi-implicit) 

Glacier Option 2 (original Noah) 

Surface Resistance Option 4 (Sakaguchi and Zeng for non-snow, snow surface resistance for snow) 

WRF-Hydro  

Channel Routing Option Truth run: 2=Muskingum-Cunge,  

Calibration runs: 3=Diffusive Wave (gridded) 

Overland Flow Routing Option 1 (D8) 

Groundwater/Baseflow Routing Option 1 (Exponential Bucket) 

Resolutions  

LSM Timestep Truth run: 1 hr 

Calibration runs:3 hr 

LSM Spatial 1 km 

Overland/Suburface Spatial Truth: 100 m 

Calibration runs: 250 m 

 684 
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Table 2. Parameter table listing the model parameters comprising parameter space. The listed 686 

value was applied either as a multiplicative factor (Mult) or as an absolute (substituted) value 687 

(Abs). 688 

Component 
Parameter (Variable 

name) 
Variable name Scaling 

Minimum 

Value 

Maximum 

Value 

Default 

value 

LSM 

Clapp-Hornberger B 

exponent 

bexp Mult 0.4 1.9 1.0 

Soil moisture maximum smcmax Mult 0.8 1.2 1.0 

Saturated soil conductivity dksat Mult 0.2 10.0 1.0 

Soil infiltration parameter refkdt Abs 0.1 4.0 0.6 

Soil drainage parameter slope Abs 0.0 1.0 0.1 

Canopy wind parameter CWPVT Mult 0.5 2.0 1.0 

Maximum carboxylation at 

25°C 

VCMX25 Mult 0.6 1.4 1.0 

Ball-Berry conductance 

relationship slope 

MP Mult 0.6 1.4 1.0 

Snowmelt parameter MFSNO Abs 0.5 3.5 2.0 

Overland/ 

subsurface 

Retention depth RETDEPRTFAC Abs 0.1 10.0 1.0 

Saturated soil lateral 

conductivity 

LKSATFAC Abs 10 10 000 1000 

Bucket 

Groundwater bucket 

maximum depth 

Zmax Abs 10 250 25 

Groundwater bucket 

exponent 

Expon Abs 1.0 8.0 1.75 

Channel 
Manning’s roughness 

coefficient 
MannN 

Abs Minimum 

Value 

Maximum 

Value 

Default 

value Order 

1 0.45 0.65 0.55 

2 0.25 0.45 0.35 

3 0.125 0.25 0.15 

4 0.085 0.125 0.10 

5 0.060 0.085 0.07 

6 0.045 0.060 0.05 

7 0.035 0.045 0.04 

8 0.025 0.035 0.03 

9 0.015 0.025 0.02 

10 0.005 0.015 0.01 
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Table 3. Comparison between truth model, 250-m model, and proxy SWOT time series. 690 

 Truth (100-m) model 250-m model Proxy SWOT 

Overland Routing 

Spatial Resolution 
100 m 250 m Not Applicable 

Channel Routing 

Scheme 

Muskingum-Cunge 

(vector) 

Diffusive Wave 

(gridded) 
Not Applicable 

Temporal 

Resolution 
1-hour 3-hour Irregular 

Calibration 

Based on Chena River 

watershed calibration 

using USGS gauges 

Uncalibrated Not Applicable 

Sets 1 80 10,000 

 691 

Table 4. Percent of sub-basins successfully calibrated using SWOT observations for single-point 692 

and multi-point calibration methods, with a successful parameter selection defined as a >80% 693 

probability that the selected parameter set is ranked within the top ten sets (top 12.5%) as 694 

determined by NSETRUTH and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ rank. 695 

Calibration 

Method 

ε Alaska / Polar Midlatitudes Tropics 

Single-point 
0.20 80 60 40 

0.35 60 20 10 

Multi-point 
0.20 90 80 80 

0.35 90 80 70 
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Figures697 

 698 

Figure 1. Design of “fraternal twin” experiment for evaluating the utility of (simulated) SWOT 699 

for hydrologic parameter selection with the WRF-Hydro model: Do the space-time sampling and 700 

observation error characteristics of SWOT permit accurate calibration?  701 
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 702 

 703 

Figure 2. Study area within the Susitna River and upper Tanana River basins. Sub-basins A-J 704 

indicated by the letters and colors correspond with Figure 6. Streams of order five and greater are 705 

designated in blue. 706 

  707 
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 708 

Figure 3. Distribution of the sampled parameter sets (green) used in this study visualized using 709 

multidimensional scaling (MDS). For reference, the calibrated parameter set for the truth model 710 

is shown in black. 711 

  712 



38 
 

 713 

Figure 4. 250-m simulations, truth simulation, 1-σ and 2-σ discharge error ranges, and a sample 714 

proxy SWOT discharge observation set (i.e., hydrograph) for a single point corresponding to the 715 

sub-basin E outlet. 716 
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 718 

(a)      (b) 719 

Figure 5. Percent of sub-basins with successful single-point parameter selection for a given 720 

cumulative probability and parameter set rank for a discharge error ε of a) 0.35 and b) 0.20. Rank 721 

is determined by NSETRUTH. The vertical dashed line marks the 10th-ranked member. 722 

  723 
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 724 

Figure 6. NSETRUTH for each point A-J in Figure 2. Parameter set rank is determined by 725 

NSETRUTH at the basin outlet (single-point). 726 
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 728 

(a)      (b) 729 

Figure 7. a) Map and b) histogram depicting the true rank of selected parameter set for 𝜖 = 0.35 730 

in Alaska. All SWOT observable channel reaches are shown. Basin borders match those in 731 

Figure 2. Zero indicates the best true rank. 732 
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 734 

(a)      (b) 735 

Figure 8. Same as Figure 5, but for multi-point parameter selection showing results for a) ε=0.35 736 

and b) ε=0.20. 737 

 738 
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 740 

Figure 9. Mean sensitivity (% change per unit) of the probability that the selected parameter set 741 

is ranked at or above each rank position with respect to changes in proxy SWOT discharge error 742 

ε (blue) and SWOT observation frequency (orange) for single-point (solid) and multi-point 743 

(dashed) parameter selection. Since error sensitivity is likely non-linear, note that this evaluation 744 

is only valid for ε between 0.20 and 0.35. Units are shown in the legend in parentheses, and rank 745 

is determined by NSETRUTH and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The vertical dashed line marks the 10th-ranked 746 

member.  747 

 748 
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 749 

(a)      (b) 750 

Figure 10. As in Figure 8a, but for proxy SWOT mimicking observation frequency for a) 751 

midlatitudes and b) tropics as opposed to Alaska. Results are for multipoint parameter selection. 752 


