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Wave energy has received significant attention in both academic and industrial areas Subcycling v.s. Non-subcycling Free-slip
during the past few decades [1]. Among all of Wave Energy Devices (WEC) devices, many Sub-cycling refers that data at different levels are advanced with different timesteps. |
researchers focus on modelling the point absorber since it can provide a large amount of Since coarser levels have a larger grid space than finer levels, timestep on coarser levels can A :
power in a small simple device when compared with other technologies (Fig 1). be larger than that on finer levels if the CFL number is kept as a constant on different levels. 7 - o~ :
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(SAMR) code (Fig 2) based on the AMReX framework [2] to model the interactions between restricted by that on the maximum level [3]. Compared with the subcycling, non-subcycling Damping
the wave and pointer absorber by directly solving the Naiver-Stokes equation in a has a smaller timestep for each step and advances relatively slowly. Zone
conservative manner. Specially, both subcycling and non-subcycling methods are embedded .
in the SAMR framework. £+ At0 f i f ‘ | Inlet No-slip
Besides validating the proposed algorithm, we find that using AMR can significantly | | | | d
reduce the computational cost. It is also noticed that the potential theory over-predicts the
heave amplitude of the WEC when compared with our fully resolved simulation. t +At! ¢
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Figure 1: A prototype of OPT’s PowerBuoy Figure 2: Sketch of SAMR Velocities are prescribed at the inlet boundary o0z 3 . — _ o
wave energy generation system NREL PIX 17114 [1] based on the linear wave theory and smoothed by 2" £ 00021
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