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1.- Research Objectives
The study focuses on the observation of Arctic mixes-phase clouds and sea ice

leads to address the following research questions:

• Are cloud properties influenced by the presence
of sea ice leads?

• Does coupling/decoupling of clouds to moisture-
layers impact the cloud’s properties?

We focus is wintertime/early spring legs 1 to 3 of the MO-
SAiC expedition [1]. Instrumentation and data set are pro-
vided by the Atmospheric Radiation Measurement’s (ARM)
Mobile Facility 1 (AMF-1) and by the OCEANET-Atmosphere
container from TROPOS.

2.- Coupling of Sea Ice and Clouds

Figure 1: Sea ice interaction with observed clouds. Adapted from [7]

Daily sea ice lead fraction (LF) is obtained based on the diver-
gence calculations from consecutive Sentinel-1 SAR scenes [4]. Sea
ice concentration (SIC) is provided by the University of Bremen [5].
Fig. 2 summarizes the LF and SIC during MOSAiC wintertime.

Figure 2: Left: LF and SIC, vertical dashed-grey lines mark the
Sentinel-1 data gap. Right: case study 18 Nov 2019.

We relate sea ice lead fraction to cloud observations above RV Po-
larstern following:

LF products is analyzed within 50 km around the RV Polarstern (red star in
Fig. 2, right) with updated coordinates every minute.

Sea ice - atmosphere coupling conceptual model
Vertical gradient of water vapour transport (∇WV T ) is calculated from specific
humidity qv [g g−1] and horizontal wind ~vw [m s−1] from radiosonde profiles, fol-
lowing
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The direction of maximum transport (see grey lines in Fig. 2) is used to relate LF
with zenith observations at RV Polarstern .

Planetary boundary layer height (PBLH)
Estimated via the bulk Richardson number 2, PBLH is used as top layer below
which the maximum∇WV T is localized:
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3.- Cloud-sea ice coupled case study 18th Nov 2019
Cloudnet target classification is used to determine cloud macro- and microphysical properties. Radiosondes are

used to obtain information on the thermodynamic states of the atmosphere, e.g. θv,∇WV T , wind vectors, and Rib.
Synergy of the ship-based zenith observations are needed to apply the Cloudnet classification algorithm.

Figure 3: From top to bottom: ARM
KAZR cloud radar reflectivity, ARM
ceilometer backscattering coefficient,
liquid water path from HATPRO
microwave radiometer [2]. Figure 4: Top: Cloudnet classification from the

measurements in Fig. 3. Bottom: LWP and IWP
for the lowest layer detected. Note that only of
mixed-phase clouds are considered.

Figure 5: Top: Rib for lowest 1.5 km,
PBLH critical Rib=1. RS denotes times
of radiosonde launches. Bottom: Close-
up of Fig. 4 with PBLH (dashed-light-
green), max ∇WV T (green), and cloud
bottom and top heights (black lines), and
cloud base by the ceilometer (dotted-
grey). Coupled status is shown along the
x-axis.

The wind direction at max ∇WV T provides the relevant information to link sea ice LF to the cloud observation above RV Polarstern . LF is considered from a region
determined by the wind direction with center at RV Polarstern to 50 km radius (grey lines in Fig. 2, right).

Figure 6: LF extracted from Fig. 2 (right) based on 1-
minute wind direction at the max ∇WV T . For refer-
ence the wind vectors at max∇WV T (top panel) and
SIC for the same region is also shown in light-blue
(right y-axis).

From Fig. 6 the 1-minute LF statistics can be related to the corresponding micro- and macrophysical
properties of clouds derived from Cloudnet. In order to reduce variability the following results are

averaged in 15 minutes intervals i.e. every point represents ≈ 15 observations and bars are their variance.
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Figure 7: [a] mean single cloud layer LWP vs. LF (black-line in Fig. 6) with colour-
coded cloud top temperature. [b] Same but for IWP of same cloud layer. [c] Γcloud as
defined in Eq. 3 vs. LF with colour-coded cloud thickness.
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Fig. 7 [c] shows the gradient of cloud temperature defined as Eq. 3. The most neg-
ative Γcloud are close to a moist adiabatic lapse-rate. Positive values indicate a tem-
perature inversion at cloud top.

4.- Statistical Results
Based on the analysis in Box 2 & 3 and applied to the whole wintertime data

from Nov 2019 to April 2020, the following results are found:
Cloud coupling classification: criteria based on the virtual potential temper-

ature θv and location of maximum ∇ WV T below PBLH. The θv is analyzed to
classify cases where the WVT is coupled or decoupled to the cloud mixing layer.
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Figure 8: PDF for cloud-base height [a], -layer thickness [b], -top tem-
perature [c], and [d] number of occurrences of coupled (red) and de-
coupled (blue) observations.

Figure 9: Statistics for LWP vs LF (top left) and LWP vs SIC (top
right), and IWP vs LF (bottom left) and IWP vs SIC (bottom right)

5.- Conclusions
• Relating cloud observations with LF upwind with water vapour transport

as conveying mechanism for the coupling as a plausible approach,

• When Leads are present, coupled clouds with larger LWP are more frequent,

• Increasing of LWP with LF (decreasing of SIC),

• Ice water shows no clear relation with sea ice LF or SIC,

• Cloud top temperature is warmer and cloud layer thicker for coupled obs.,

• Confirmation that coupled clouds are mainly low level clouds (similar for
Utiqiaǵvik, Alaska [6]),
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