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Key Points: 15 

● A statistical model is trained to predict whether a map of global extremes came from a 16 
RCP8.5 or stratospheric aerosol injection simulation 17 

● The timing of accurate predictions acts as a quantification of the time to detection of a 18 
geoengineered climate  19 

● Regional changes in extreme temperatures and extreme precipitation under SAI are 20 
robustly detected within 1 and 15 years of injection 21 
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Abstract 26 

As anthropogenic activities continue to drive increases in extreme events, the fundamental 27 

solution of reducing greenhouse gas emissions remains elusive. Thus, there is growing interest 28 

in stratospheric aerosol injection (SAI) to offset some of the most dangerous consequences of 29 

climate change. If SAI was deployed at a global scale, it would likely be easy to detect by some 30 

metrics. However, the detectability of SAI on extreme events might be more difficult, given the 31 

presence of natural climate variability. We examine this question in climate model simulations of 32 

SAI. Specifically, we train a logistic regression model to predict whether a map of global 33 

extremes came from climate simulations with or without SAI. The timing of accurate predictions 34 

is a quantification of the time to detection of SAI impacts. We find that regional changes in 35 

extreme temperature and precipitation are robustly detected within 1 and 15 years of initial SAI 36 

injection, respectively. 37 

 38 

 39 

Plain Language Summary 40 

In light of concerns regarding increasing extremes driven by human-induced climate change, 41 

and the limited progress to-date of climate change solutions, a key recommendation from a 42 

recent National Academies of Science, Engineering and Medicine report is that the U.S. should 43 

establish a transdisciplinary research program into proposed climate intervention techniques, 44 

including stratospheric aerosol injection (SAI). SAI would increase the number of small reflective 45 

particles in the upper atmosphere to cool the climate by reflecting a small percentage of 46 

incoming solar radiation back into space. If SAI were deployed, the question arises as to when 47 

and where we might first detect regional impacts of SAI on climate extremes. Here, we begin to 48 

examine this question by analyzing climate model simulations of the 21st century both without 49 

and with SAI deployment. We train a simple statistical method to predict whether a map of 50 

climate extremes came from a world with or without SAI. By looking at the ability of the 51 

statistical model to accurately identify the presence (or absence) of SAI deployment, we find 52 

that regional changes in extreme temperatures and precipitation under SAI are robustly 53 

detected within 1 and 15 years of initial SAI deployment, respectively.  54 

  55 
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1 Introduction 56 

Significant advances in the scientific understanding of climate change over the past several 57 

decades have made it clear that there has been a change in climate that goes beyond the range 58 

of natural variability (e.g., Santer et al. 2013a,b; Bonfils et al. 2020). The culprit is the 59 

astonishing rate at which greenhouse gas concentrations have increased in the atmosphere, 60 

mostly through the burning of fossil fuels and changes in land use, such as those associated 61 

with agriculture and deforestation (IPCC 2021). Greenhouse gasses are relatively transparent to 62 

incoming solar radiation while they absorb and reemit outgoing infrared radiation. The result is 63 

that more energy stays in the global climate system, raising not only temperature but also 64 

producing many other direct and indirect changes in the climate system, including changes in 65 

the frequency and intensity of extreme events (NASEM 2016).  66 

 67 

Heat waves, for instance, are exceedingly important to human systems and infrastructure, as 68 

well as natural systems. People and ecosystems are adapted to a range of natural weather 69 

variations, but it is the extremes of weather and climate that exceed tolerances (e.g., Curtis et 70 

al. 2017; Ummenhofer and Meehl 2017). Widespread changes in temperature extremes have 71 

been observed over the last 50 years. In particular, the number of heat waves globally has 72 

increased, and there have been widespread increases in the numbers of warm nights. Cold 73 

days, cold nights and days with frost have become rarer (IPCC 2021). Changes are also 74 

occurring in the amount, intensity, frequency, and type of precipitation in ways that are also 75 

consistent with a warming planet (Trenberth et al. 2003; 2017). This includes widespread 76 

increases in heavy precipitation events and risk of flooding, even in places where total 77 

precipitation amounts have decreased (IPCC 2021). 78 

 79 

The reality is that changes in extreme events are likely to continue for decades into the future, 80 

because of the long lifetime of CO2 and the slow equilibration of the oceans. In other words, 81 

there is a substantial future commitment to further global climate change, even if decisive action 82 

is taken soon to reduce the global emissions of CO2 and other greenhouse gasses. While the 83 

potential to aggressively mitigate is real, progress in realizing that potential is slow, and global 84 

greenhouse gas emissions continue at very high levels (UNEP 2021).  85 

 86 

In light of these concerns and limited progress with solutions, including implementation of 87 

strategies to adapt to climate change impacts, research into climate intervention methods that 88 

could be used to offset the most dangerous consequences of human-induced climate change is 89 
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underway (NRC 2015a,b; NASEM 2019; 2021a,b). While there are concerns over the potential 90 

adverse effects that climate intervention schemes may have (Reynolds 2019), there is a 91 

growing realization of the need to research their impacts (e.g., Keith et al. 2017).  92 

 93 

A key recommendation from a recent National Academies of Science, Engineering and 94 

Medicine report (NASEM, 2021a) is that the U.S. should establish a transdisciplinary research 95 

program into one specific form of climate intervention - solar radiation modification (SRM) - as 96 

an important component of the nation's overall research portfolio related to climate change. A 97 

primary SRM strategy considered is stratospheric aerosol injection (SAI), which would increase 98 

the number of small reflective particles (aerosols) in the upper atmosphere to cool the climate 99 

by reflecting more incoming solar radiation away from Earth. In addition to the need to better 100 

understand the risks and benefits of SAI relative to the risks posed by climate change, the 101 

NASEM report highlighted several challenges, including our ability to detect the impacts of SAI 102 

relative to the background noise of natural climate variability. Specifically, NASEM (2021a) 103 

asked if interventions were deployed, could we confidently attribute specific climate outcomes—104 

including extreme weather events—to the SRM intervention versus natural (unforced) variability 105 

or anthropogenic climate change? Attributing climate outcomes in the presence of natural 106 

variability is primarily a question of signal-to-noise ratio. Detection of changes in climate relative 107 

to natural climate variability and forced climate change depends on the magnitude of the climate 108 

intervention, and the spatial scales and timescales considered. It also depends on the variables 109 

considered: measuring a significant decrease in global mean temperature would likely be 110 

relatively straightforward, but measuring shifts in regional climate or the statistics of extreme 111 

events may be more difficult to detect and thus attribute.  112 

 113 

In this paper, we begin to examine these questions by leveraging climate model simulations of 114 

climate change with and without SAI deployment. We train a simple machine learning model to 115 

predict whether a map of global extremes came from a control simulation with climate change, 116 

or a climate change simulation that includes SAI. The timing of accurate predictions acts as a 117 

quantification of the time to detection of climate intervention. We find that regional changes in 118 

extreme temperatures and precipitation under SAI are robustly detected within 1 and 15 years 119 

of initial injection, respectively. 120 

 121 

2 Data and Methods 122 

2.1 GLENS simulations 123 
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The Geoengineering Large-Ensemble (GLENS-SAI; Tilmes et al. 2018) is a 20-member 124 

ensemble of stratospheric sulfate aerosol geoengineering simulations between 2020-2097. It is 125 

conducted with the Community Earth System Model version 1 (Hurrell et al. 2013) with the 126 

Whole Atmosphere Community Climate Model as its atmospheric component (CESM1-127 

WACCM; Mills et al. 2017). The climate objectives of GLENS-SAI are to maintain the global-128 

mean surface temperature, interhemispheric surface temperature gradient, and equator-to-pole 129 

surface temperature gradient at 2020 values under the Representative Concentration Pathway 130 

8.5 (RCP8.5) scenario (Riahi et al. 2011). Sulfur dioxide (SO2) is injected at ~5km above the 131 

tropopause at four locations (15oN/S and 30oN/S) at each model time-step and the amount is 132 

adjusted by a feedback algorithm (MacMartin et al. 2014). The stratospheric SO2 then oxidizes 133 

to form sulfate aerosols.  134 

 135 

The importance of the ensemble approach arises from the presence of unpredictable natural (or 136 

internal) climate variability, which results in a range of possible outcomes for human-caused 137 

climate change (e.g., Deser et al. 2012; 2020).  We compare GLENS-SAI with its corresponding 138 

RCP8.5 simulations, which include 3 members over 2010-2097 and 17 members over 2010-139 

2030. Supp. Fig. S1 shows the global mean 1000 hPa temperature for each available ensemble 140 

member for the GLENS-SAI and RCP8.5 simulations, demonstrating the success of the 141 

GLENS-SAI simulations in keeping the global-mean temperatures at 2020 values. 142 

 143 

2.2 Data 144 

The main focus of this study is on extreme temperature and precipitation over land (e.g. Tye et 145 

al., 2022). Two indices are analyzed (Fig. 1): warm days (TX90p) and wet-day precipitation 146 

(R95pTOT).  Following Sillmann et al. (2013a), we define TX90p to be the percentage of days 147 

when the maximum surface air temperature is above its reference 90th percentile value 148 

(centered on a 5-day window) and R95pTOT to be the annual accumulated precipitation on 149 

days when precipitation is above its reference 95th percentile value. Both indices are calculated 150 

using the 2021-2030 RCP8.5 simulation as the reference period. Additional analysis is 151 

conducted with 1000-hPa temperature and included in the supplementary materials (Supp. Fig. 152 

S1,S3,S4,S7,S10,S13).  153 

 154 

2.3 Logistic regression architecture and training 155 

We train a logistic regression model to take maps of extreme temperature or precipitation and 156 

predict the probability that the map came from the GLENS-SAI simulation (Supp. Fig. S2). The 157 
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input maps of 45 latitude grid points by 90 longitude grid points are first flattened into a vector of 158 

size 4050 grid points prior to being fed into the model. The logistic regression model takes a 159 

multi-linear regression setup where each of the 4050 grid points acts as a predictor. The learned 160 

parameters of the model consist of 4050 weights plus a single offset (“bias”) term. However, 161 

unlike standard linear regression, the sum of all of the terms is passed through the sigmoid 162 

function to rescale the output between 0 and 1. This allows us to interpret the output as a 163 

probability. A probability above 0.5 is defined as a prediction that the map came from GLENS-164 

SAI simulation, and a probability below 0.5 is defined as a prediction that the map came from 165 

the RCP8.5 simulation.  166 

 167 

We utilize ridge regularization (with an L2 parameter of 0.01 for extreme temperature and 0.075 168 

for extreme precipitation) to avoid overfitting and to ensure that the resulting maps of the 169 

regression weights are easily interpretable by eye. Our results are robust to this choice (Supp. 170 

Fig. S8, S9, S10). We train the regression weights by minimizing the binary cross-entropy loss 171 

using the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001 and a 172 

batch size of 32 under TensorFlow version 3.7. For the primary figures we show, we train on 173 

members #2-17 and validate on members #1, 18, 19, and 20 in both the GLENS-SAI and 174 

RCP8.5 simulations. However, due to the fact that only members #1, 2 and 3 continue beyond 175 

2030 under RCP8.5, there is only one RCP8.5 testing member (member #1) after 2030 while 176 

there are 4 GLENS-SAI testing members. Results are robust to the combination of ensemble 177 

members used during training (Supp. Fig. S5, S6, S7).  178 

 179 

Logistic regression is completely linear except for the final sigmoid function that scales the 180 

output between 0 and 1. We also tested simple non-linear neural network architectures but 181 

found nearly identical results to those obtained by logistic regression. Thus, we opted for the 182 

simplest prediction architecture here. 183 

 184 

3 Results 185 

The time series of global land averaged TX90p and relative change in R95pTOT (compared to 186 

the average 2010-2020 values under the RCP8.5 simulation) for the RCP8.5 and GLENS-SAI 187 

simulations are shown in Fig. 1a,b. Maps of the 2080-2099 ensemble mean values are shown in 188 

Fig. 1c-f. In agreement with the CMIP5 multi-model changes (Sillmann et al. 2013b), both 189 

global-mean extreme temperature and precipitation indices under RCP8.5 in CESM1 are 190 

projected to increase throughout this century under global warming. In contrast, they remain 191 
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steady in GLENS-SAI, suggesting that SAI can largely offset the adverse effects from 192 

anthropogenic forcing (Fig. 1a,b). This is also the case regionally. A substantial increase in 193 

warm days is projected by the end of this century (Fig. 1c), and most of it is avoided when SAI is 194 

deployed (Fig. 1e). Likewise, extreme precipitation becomes more intense under RCP8.5 (Fig. 195 

1d), especially in northern high-latitudes and over some regions (e.g., the Himalayas, northeast 196 

Africa and the Arabian Peninsula, and Antarctica). Such intensification largely disappears under 197 

GLENS-SAI, except over northeast Africa and the Arabian Peninsula (Fig. 1f).  198 

 199 

Even within the first decade of simulated deployment, the number of days with extreme heat 200 

increases under the RCP8.5 forcing scenario, and GLENS-SAI reduces this increase 201 

substantially in the ensemble mean by 2030 (Fig. 2d). However, for a single given year in a 202 

single ensemble member, such forced changes are likely to be masked by natural climate 203 

variability (Fig. 2a,b), leading to more days in 2030 with extreme heat under GLENS-SAI than 204 

without (Fig. 2c). This illustrates that even if SAI acts to stabilize climate warming compared to 205 

RCP8.5, its effects on climate extremes can be masked by natural climate variability, thus 206 

potentially hinder detection efforts.  207 

 208 

The logistic regression model, however, is able to distinguish GLENS-SAI maps of temperature 209 

extremes from those of RCP8.5 with perfect accuracy by 2025, only five years after simulated 210 

deployment (Fig. 3a). We plot the testing accuracy of the logistic regression model by showing 211 

the total number of members correctly identified for each year from 2020-2080 (Fig. 3a). Color 212 

shading denotes the percentage of ensemble members correctly identified, while the white text 213 

denotes the actual number of members correctly identified. Note that after 2030 there is only 214 

one testing member for RCP8.5 while there are four for GLENS-SAI. Even by 2021, one year 215 

after deployment, 97% or more of the temperature extreme maps across all following years are 216 

correctly identified. The logistic regression model achieves this performance by learning 217 

regional patterns (Fig. 3b,c) that act as robust indicators that distinguish the GLENS-SAI 218 

simulation from that of RCP8.5 – even in the presence of natural climate variability.  219 

 220 

Focusing on the year 2030, a decade after initial GLENS-SAI simulated deployment, we explore 221 

which regions of the globe contribute most significantly to the logistic regression model’s correct 222 

prediction of the simulation. Mean contributions are defined as the ensemble mean of the 223 

logistic regression model weights multiplied by the 2030 input maps. Put another way, for each 224 

ensemble member, each grid box’s contribution is defined by that grid box’s regression weight 225 
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multiplied by the value of the input map at that location. Positive contributions are interpreted as 226 

regions that drive the logistic prediction toward one (i.e. toward predicting GLENS-SAI) and 227 

negative contributions are interpreted as regions that drive the logistic prediction toward zero 228 

(i.e. toward predicting RCP8.5). For the 2030 maps under GLENS-SAI (Fig. 3b), southeast Asia, 229 

Eastern Africa and Saudi Arabia, and the Eastern United States all increase the model’s 230 

predicted probability that the map is from the GLENS-SAI simulation. For the 2030 maps under 231 

RCP8.5 (Fig. 3c), the eastern United States and the southern tip of South America dominate the 232 

contributions and increase the model’s predicted probability that the map is from the RCP8.5 233 

simulation (i.e. lower the probability that the map is from GLENS-SAI).  234 

 235 

Some of the regions that act as indicators of the simulation (Fig. 3b,c) generally align with 236 

regions of high signal-to-noise ratio (Fig. 3d). Here, we define the signal as the absolute value of 237 

the ensemble mean difference between the 20 ensemble members of the GLENS-SAI and 238 

RCP8.5 simulations and the noise is defined as the range (maximum minus minimum) of the 239 

GLENS-SAI simulations in 2030 over the 20 ensemble members. However, the indicator 240 

regions are not identical to the map of signal-to-noise in part because the logistic regression 241 

model can leverage relationships between regions, unlike signal-to-noise which is computed 242 

gridpoint by gridpoint. In addition, the learned indicator patterns capture regions with high 243 

signal-to-noise ratio throughout the entire simulation period (not just a specific year, which can 244 

vary substantially; Supp Fig. S11) in order to distinguish an RCP8.5 world from a world with SAI.  245 

 246 

Identifying the correct simulation using maps of extreme precipitation is a much harder task, due 247 

both to a smaller relative difference in the forced response to climate change (Fig. 1b, 4d) as 248 

well as its larger natural variability (Fig. 1b, 4a,b,c). In the case of member #1, large differences 249 

in extreme precipitation are found in 2030 between the RCP8.5 and GLENS-SAI simulations 250 

(Fig. 4c), and the majority of the differences can be attributed to natural climate variability (Fig. 251 

4d). Even so, the logistic regression model is able to distinguish between the two simulations 252 

with nearly perfect accuracy within 15 years after simulated deployment of SAI (Fig. 5a). That is, 253 

by 2035 the model is able to correctly detect whether the precipitation extremes are occurring in 254 

a world with or without SAI in 97% or more of the maps in the years following.  255 

 256 

As for temperature extremes, the logistic regression model learns regional patterns that act as 257 

reliable indicators of GLENS-SAI simulated deployment (Fig. 5b,c). In 2040, for instance, the 258 

regions that contribute most to the model’s correct prediction of GLENS-SAI include Greenland, 259 
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the Tibetan Plateau, and central Africa (Fig. 5b). That is, extreme precipitation anomalies in 260 

these regions act as indicators of simulated SAI deployment. For the 2040 maps under RCP8.5, 261 

these same regions are also the main contributors to the model’s correct prediction (Fig. 5c). 262 

Extreme precipitation under RCP8.5 exhibits large increases over Central Africa (Fig. 1d), 263 

where the signal-to-noise ratio is also large (Fig. 5d; Alamou et al. 2022), and this appears to 264 

translate to large contributions to the logistic regression model’s predictions (Fig. 5b,c). The 265 

same holds for Alaska and Greenland. Over most global land, GLENS-SAI exhibits little-to-no 266 

change in extreme precipitation following SAI deployment, demonstrating the success of the 267 

controller in stabilizing the climate to 2020 temperatures. One notable exception is the large 268 

ensemble-mean increase in extreme precipitation over Egypt and Libya. Note that the logistic 269 

regression model does not highlight this region as an important indicator. This is due to the fact 270 

that a similar change is seen under RCP8.5 (Fig. 1d,f). 271 

 272 

4 Discussion & Conclusions  273 

It is well established that, for time horizons of several decades into the future, the dominant 274 

source of uncertainty in model projections of future, regional climate is natural variability: those 275 

fluctuations in climate that occur even if there are no changes in the radiative (“external”) forcing 276 

of the planet (Hawkins and Sutton 2009). Deser et al. (2012; 2020), for instance, have used 277 

large ensembles of simulations with climate models to show that natural variability can dominate 278 

regional changes in seasonal-mean temperature and precipitation over the coming decades. 279 

Similarly, Keys et al. (2022) show that the signal of SAI forcing can be strongly masked by 280 

natural variability over large regions of the globe. The presence of natural climate variability has 281 

thus been a challenge for studies attempting to detect regional climate changes due to external 282 

forcing. This problem is exacerbated further when climate extremes are considered, even 283 

though changes over time in temperature and precipitation extremes are often connected to 284 

simultaneous changes in large-scale mean temperature and atmospheric moisture content 285 

(Seneviratne et al. 2021).  286 

 287 

Because of such challenges, it has been anticipated that it would be difficult to detect the 288 

influence of SAI on climate extremes until many decades after a hypothetical SAI deployment 289 

(NASEM 2021a).  We have begun to test this assumption by tasking a simple machine learning 290 

model, a logistic regression model, with predicting whether maps of temperature and 291 

precipitation extremes came from a RCP8.5 climate change simulation or from a simulation 292 

under RCP 8.5 but with a simulated SAI deployment. We find that the logistic regression model 293 
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is able to accurately detect the global impacts of SAI in temperature and precipitation extremes 294 

within 1 and 15 years, respectively. Although we train the logistic regression model using maps 295 

from many GLENS ensemble members, the logistic regression model only takes as input a 296 

single annual map at a time, and so, it must learn the regional fingerprints of SAI that distinguish 297 

it from the RCP8.5 simulation amidst a background of natural climate variability. Our approach 298 

is thus more than a gridpoint by gridpoint signal-to-noise calculation, which can vary depending 299 

on which time period and simulation is used to define the signal and which is used to define the 300 

noise (Fig. S11, S12). Instead, by framing SAI impact detection as a prediction problem over 301 

many years of data, we leverage time-evolving, regional combinations of the signal to best 302 

identify the timing of identifiable SAI impacts.  303 

 304 

Finally, we caution that our results apply to only a single scenario of SAI forcing: the GLENS-305 

SAI experiments performed with CESM1 (Tilmes et al. 2018). The setup of GLENS-SAI requires 306 

steadily increasing sulfur injections to counteract the RCP 8.5 forcing from continually 307 

increasing greenhouse gas concentrations in order to keep the climate at 2020 conditions. The 308 

purpose of this setup was not to suggest a realistic application, but to identify the side effects, 309 

risks, and limitations of SAI forcing. Future work will be to examine the detection of climate 310 

extremes under different SAI scenarios, including ones with more modest levels of both 311 

greenhouse gas and sulfate aerosol forcing, as well as exploring detection of regional signals 312 

which may require more complex machine learning approaches. 313 
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 465 
Figure 1: (a) Time series of global-mean warm days (TX90p) and (b) relative change in wet-day 466 
precipitation (R95pTOT). Relative change in wet-day precipitation is defined as the percentage 467 
change relative to the average 2010-2020 values under the RCP8.5 simulation. (c,d) 468 
Anomalous warm days and relative change in wet-day precipitation averaged over 2080-2089 in 469 
the RCP8.5 simulations. (e,f) As in (c,d) but for the GLENS-SAI simulations.  470 
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 475 
 476 
Figure 2: TX90p. Percent of days in 2030 with extreme heat for ensemble member #1 of the (a) 477 
RCP8.5 and (b) GLENS-SAI simulations. (c) The difference in the percent of days with extreme 478 
heat between GLENS-SAI and RCP8.5 for ensemble member #1. (d) As in panel (c) but for the 479 
difference in the ensemble means (20 members for each simulation).  480 
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 483 
Figure 3: TX90p. (a) The number of testing samples correctly classified by the logistic 484 
regression model as a function of year. The colored shading denotes the fraction of available 485 
testing members, split into five bins from light-to-dark: 0%, 25%, 50%, 75% and 100% correct. 486 
(b) Ensemble-mean contribution across all GLENS-SAI ensemble members for the year 2030. 487 
(c) Ensemble-mean contribution across all RCP8.5 ensemble members for the year 2030. 488 
Contribution is defined as the weights*input, where positive contributions drive the logistic 489 
prediction toward one (i.e. predicting GLENS-SAI) and negative contributions drive the logistic 490 
prediction toward zero (i.e. predicting RCP8.5). (d) Signal-to-noise ratio where the signal is 491 
defined as the absolute value of the ensemble mean difference between the 20 ensemble 492 
members of the GLENS-SAI and RCP8.5 simulations. The noise is defined as the range 493 
(maximum minus minimum) of the GLENS-SAI simulations in 2030 over the 20 ensemble 494 
members.  495 
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 499 
Figure 4: R95pTOT. As in Figure 2 but for extreme precipitation (R95pTOT). 500 
  501 
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 505 
Figure 5: R95pTOT. As in Figure 3 but for extreme precipitation (R95pTOT) for 2040 in panels 506 
b-d.  507 


