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Abstract13

Large earthquakes are usually modeled with simple planar fault surfaces or a combina-14

tion of several planar fault segments. However, in general, earthquakes occur on faults15

that are non-planar and exhibit significant geometrical variations in both the along-strike16

and down-dip directions at all spatial scales. Mapping of surface fault ruptures and high-17

resolution geodetic observations are increasingly revealing complex fault geometries near18

the surface and accurate locations of aftershocks often indicate geometrical complexi-19

ties at depth. With better geodetic data and observations of fault ruptures, more details20

of complex fault geometries can be estimated resulting in more realistic fault models of21

large earthquakes. To address this topic, we here parametrize non-planar fault geome-22

tries with a set of polynomial parameters that allow for both along-strike and down-dip23

variations in the fault geometry. Our methodology uses Bayesian inference to estimate24

the non-planar fault parameters from geodetic data, yielding an ensemble of plausible25

models that characterize the uncertainties of the non-planar fault geometry and the fault26

slip. The method is demonstrated using synthetic tests considering checkerboard fault-27

slip patterns on non-planar fault surfaces with spatially-variable dip and strike angles28

both in the down-dip and in the along-strike directions. The results show that fault-slip29

estimations can be biased when a simple planar fault geometry is assumed in presence30

of significant non-planar geometrical variations. Our method can help to model earth-31

quake fault sources in a more realistic way and may be extended to include multiple non-32

planar fault segments or other geometrical fault complexities.33

1 Introduction34

With increasing availability and improving spatial and temporal resolution of geode-35

tic data, more details of earthquake fault geometries and slip can be determined. De-36

tailed estimates of fault model parameters are beneficial for better understanding of the37

earthquake mechanics at the different fault systems in the world. However, for the same38

earthquake, notably dissimilar coseismic fault-slip models have been produced by dif-39

ferent authors depending on their diverse estimation methods and modeling assumptions,40

e.g. regarding the fault geometry, elastic layering, smoothing parameters, etc. (Lay, 2018;41

Mai & Thingbaijam, 2014; Razafindrakoto, Mai, Genton, Zhang, & Thingbaijam, 2015).42

Bayesian inference of earthquake sources allows for constraining the posterior probabil-43

ity distributions of the different fault model parameters and can also take uncertain knowl-44

edge of the elastic layering, elastic parameters, etc. into account through model covari-45

ances or a priori constraints (Duputel, Rivera, Fukahata, & Kanamori, 2012; Dutta, Jónsson,46

Wang, & Vasyura-Bathke, 2018; Fukuda & Johnson, 2008, 2010; Matsu’ura, Noda, & Fuka-47

hata, 2007; Minson, Simons, & Beck, 2013; Yagi & Fukahata, 2008). Despite this flex-48

ibility, most studies to date have approximated the earthquake source either as a sin-49

gle planar fault or a combination of several planar fault segments. Furthermore, when50

more complex fault geometries are used, they are usually estimated a priori and have not51

been varied in the Bayesian estimation because parameterizing complex non-planar ge-52

ometries can result in hundreds of additional model parameters to be estimated together53

with a dramatic increase of Green’s function calculations.54

While most earthquake faults are considered planar in coseismic fault slip model-55

ing, multiple lines of evidence show that faults are typically more complex and can, for56

example, consist of en echelon segments, have bends, be curved, or warped at different57

spatial scales (e.g., Duman, Emre, Dogan, & Ozalp, 2005; Klinger, 2010; Maerten, Re-58

sor, Pollard, & Maerten, 2005; Martel, 1999; Wesnousky, 1988). The growth of non-planar59

faults can be explained by either linkage of pre-existing, discontinuous, non-coplanar struc-60

tures (Bürgmann & Pollard, 1994a; Cruikshank & Aydin, 1994; Segall & Pollard, 1980,61

1983), during propagation as non-coplanar shear fractures (Cox & Scholz, 1988a, 1988b;62

Vermilye & Scholz, 1998), or due to heterogeneous mechanical conditions along a fault63

(Martel, 1999). Elastic analyses show that faults remain planar only if the stress drop64
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across the fault is uniform, it is surrounded by homogeneous, and isotropic rock, and the65

far-field stress is uniform (Bürgmann, Pollard, & Martel, 1994b; Martel, 1999). Other-66

wise, the fault grows as a non-planar fault as the rupture propagates. Exhumed faults67

and mapped surface earthquake ruptures (e.g., San Andreas, Zirkuh, Chi-Chi, Wenchuan68

fault ruptures, etc.) show approximately self-similar or self-affine fractal characteristics69

that can continue to scales as large as tens to hundreds of kilometers, indicating that in70

general faults are non-planar (Candela et al., 2012; Power & Tullis, 1995).71

While earthquake fault complexities at the surface can be directly observed from72

fault maps and surface displacement discontinuities in geodetic data (Wesnousky, 2008),73

fault complexities at depth are indicated by aftershocks and other earthquake locations74

(Dutta et al., 2018; Improta et al., 2019; Kaven & Pollard, 2013). As the availability of75

high-resolution geodetic data from GNSS, InSAR and optical images increases, more and76

more details of non-planar earthquake fault geometries can be constrained, not only at77

the surface but also at depth. Many studies have used multiple planar fault segments78

to represent geometrical fault complexities, with the fault-strike and -dip angles of each79

segment estimated from the geodetic data considering uniform slip (e.g., Jónsson, Ze-80

bker, Segall, & Amelung, 2002; Reilinger et al., 2000; Shen et al., 2009; Sudhaus & Jónsson,81

2011). However, when planar fault segments are used to describe curved or warped sur-82

face fault ruptures or change in fault shape at depth, it usually results in unphysical gaps83

and/or intersections of fault segments leading to slip singularities at those geometric ir-84

regularities. In an attempt to address this problem, Maerten et al. (2005) used triangu-85

lar dislocation elements in an elastic half-space to construct a non-planar fault model86

for the 1999 Hector Mine earthquake and showed a 32% fit improvement to observed geode-87

tic data compared to when using planar fault segments. In addition, the 1995 Kozani-88

Grevena earthquake (Resor, Pollard, Wright, & Beroza, 2005) and the 2003 MW 6.8 Chengkung89

earthquake (Hsu, Yu, & Chen, 2009) were explained by faults with curvilinear tiplines90

that were constructed based on aftershock locations. Furthermore, non-planar geome-91

tries have been used for several other earthquakes leading to better fit to geodetic data,92

e.g., for the 2003 MW 6.8 Zemmouri (Belabbès, Wicks, Çakir, & Meghraoui, 2009), 1994-93

2004 Al Hoceima-Morroco (Akoglu et al., 2006), 2010 MW 6.9 Yushu (Jiang et al., 2013),94

2008 MW 7.1 Yutian (Furuya & Yasuda, 2011), 2008 MW 6.9 Iwate-Miyagi (Abe, Furuya,95

& Takada, 2013), and 2008 MW 6.4 Balochistan earthquakes (Usman & Furuya, 2015).96

For all the studies mentioned above and for most other estimation studies using97

non-planar earthquake fault geometries, the complex fault geometry was determined a98

priori before fault slip was estimated. The selection of the fault geometry has usually99

been based on other sources of information, e.g. aftershock locations, geological maps,100

mapped surface ruptures, seismic reflection/refraction profiles, borehole data and/or slab101

models for subduction-zone earthquakes. However, as there is a trade-off between the102

choice of fault geometry and the amount of fault slip estimated (Ragon, Sladen, & Si-103

mons, 2018; Razafindrakoto et al., 2015), the estimated slip would likely be biased when104

the fault geometry (whether planar or non-planar) is fixed and different possible geome-105

tries neglected. While varying planar geometries has often been carried out in earlier es-106

timation studies (Elliott et al., 2016; Fukahata & Wright, 2008), varying non-planar ge-107

ometries has rarely been attempted. Bathke, Nikkhoo, Holohan, and Walter (2015) var-108

ied non-planar geometry of the caldera ring-fault at Tendurek volcano (Turkey) to bet-109

ter explain ring-like InSAR displacements. Also, Wan, Shen, Burgmann, Sun, and Wang110

(2017) varied the listric geometry of the Beichuan fault segment constrained using geode-111

tic observations of the 2008 MW 7.9 Wenchuan earthquake.112

In this paper, we introduce a method for simultaneously estimating complex non-113

planar earthquake fault geometry and spatially-variable fault slip. We parametrize the114

non-planar fault geometry with a set of polynomial parameters that allow for fault cur-115

vature both along the fault strike as well as in the down-dip direction. Using Bayesian116

inference, an ensemble of fault model parameters corresponding to a posterior distribu-117
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Figure 1: Examples of non-planar fault geometry: (a) A fault with horizontal curvilinear
tiplines and a uniform dip angle (close to vertical). Inset shows the trace of the top edge
of the fault. (b) A fault with straight horizontal tiplines but curved in the down-dip di-
rection. Inset shows the profile of the curved vertical tipline. (c) A fault with both curved
horizontal and vertical tiplines such that the top-edge strike is generally different from
that of the bottom edge. Insets show (ii) the top and (iii) the bottom edge of the fault.
The X, Y and Z axes can have arbitrary units of length.

tion is estimated that accords to the data likelihood and a priori constraints. Such an118

ensemble of fault geometrical parameters yields both fault-location uncertainties and fault-119

dip angle uncertainties along both the strike and down-dip directions of the fault. We120

then demonstrate this simultaneous estimation of non-planar geometry and slip distri-121

bution using three synthetic test cases, and compare them with results when planar ge-122

ometries are used.123

2 Model Parametrization and the Forward Model124

We parametrize the complex non-planar fault geometry with only a few polyno-125

mial parameters (less than 10) to vary the non-planar fault geometrical structure either126

along the strike or the down-dip direction or both with various degrees of freedom. Since127

we consider a non-planar finite fault in our parametrization, the top and bottom edges128

of the fault are termed horizontal tiplines and other edges are termed vertical tiplines129

in this paper. The two horizontal tiplines each lie at a particular z-plane of the 3D Carte-130

sian coordinate system in which our finite fault is defined. Three examples of complex131

fault geometries are shown in Fig. 1. The first example is a fault with curvilinear hor-132

izontal tiplines and a constant fault-dip angle (close to vertical), whereas the second ex-133

ample is a fault with straight horizontal but curved vertical tiplines. The third exam-134

ple is a fault that includes both curved horizontal tiplines and a curvature in the down-135

dip direction. We later demonstrate how to simultaneously determine these fault geome-136

tries along with spatially-variable slip from geodetic data using Bayesian inference.137

The fault model parameters in our problem, denoted by θ in the M -dimensional138

model space M, are a combination of fault geometrical parameters m, fault-slip param-139

eters s, and hyperparameters σ2
1 , σ2

2 , · · · ,σ2
p, such that : θ = [m s σ2

1 σ
2
2 · · · σ2

p]T . The140

geometrical model parameters m constrain the 3D fault geometry with the fault surface141

comprising of both curved horizontal and vertical tiplines, while the slip model param-142

eters s are the slip values on this non-planar fault surface. The hyperparameters (σ2
i )143

control the weights of direct/indirect priors with respect to the data likelihood (see Sec-144

tion 3.2). Our problem utilizes geodetic data (e.g., GNSS and/or InSAR) denoted as data145

vector d in the N -dimensional data space N that relates to the model parameter vec-146

tors m and s through: d = G(m, s) + ε, where G(m, s) = G′(m)s is the predicted147

data and ε is the error vector. The finite non-planar fault constrained by our parametriza-148

tion is discretized using a fixed number of triangular dislocation elements (TDEs) so that149

the fault is meshed without any gaps or overlaps that can arise when using rectangular150

elements for a non-planar surface. This finite fault is placed within a homogeneous and151

isotropic elastic half-space and the predicted data G′(m)s is computed using an ana-152

lytic solution (Meade, 2007) with s describing the slip on the TDEs.153

The different types of non-planar fault geometries shown in Fig. 1 can be parametrized154

by the technique described below. However, the steps to follow to construct the non-planar155

–4–



manuscript submitted to JGR- Solid Earth

revision1/rev_figs/Figure2.jpg

Figure 2: Construction of a non-planar fault surfaces using multiple geometrical parame-
ters. Continued on the next page ...

Figure 2: (a) The green line shows the top edge of the fault at depth 1 z and dots de-
note its regular discretization with coordinates of three points A, B and P shown. The
inset shows strike ψi calculated at ith point F as the average of the angles ∠MEF (ψ

′

i−1)

and ∠NFG (ψ
′

i). (b) Green lines show the down-dip polynomials passing through the
discretized top-edge of the fault. Points A, 2A, ..., qA are the discretizations of the poly-
nomial passing through point A on the top edge. The inset shows the points F and q′F on
the line F q′F in the z = 1z plane passing through the ith point F on the top edge, where
the curve EFG is a portion of the top edge, also shown in the inset of (a). The x- and
y-coordinates of the polynomial in the down-dip direction passing through point F (ith

discretization on top edge) are obtained by discretizing the line F q′F which strikes at an-
gle (ψi−90◦) in the plane z = 1z. The z-coordinates are determined by Eq. (1) using the
geometric parameters D1 and D2. (c) Gray lines show the down-dip curves after adjusting
them such that the fault’s lower edge strikes differently from the top edge. Light green
and dark green lines show the previous and adjusted fault-bottom edges, respectively. The
inset shows a part of the fault’s bottom edge changing from curve qA qQ qF to curve qA
q∗Q qF depending on the geometric parameters S1 and S2 (see Eq. A.1). (d) The result-
ing fault geometry discretized using triangular dislocation elements (TDEs). Note: The
x- and y- coordinates in the cartesian system are denoted as double-indexed variable (for
e.g., 1x2), where the top-left index denotes the discretization in the down-dip direction
and the bottom-right index denotes that in the along-strike direction.

fault geometry and the number of parameters may differ for different types of non-planar156

faults depending on the complexity desired. Fig. 2 shows the parametrization steps for157

a fault geometry with curved horizontal and vertical tiplines and they are as follows:158

(i) We first determine the top edge of the fault surface (curve AP in Fig. 2a) and discretize159

this top edge at regular intervals (points A, B, · · · , P in Fig. 2a). We often have good160

a priori information about the fault trace, e.g., from geological maps, mapped surface161

ruptures, coseismic interferograms or image offsets. Such a fault trace can be consid-162

ered as a single linear segment or a set of several connected linear fault segments with163

different strike angles. In case of a buried fault, the top edge of the fault can be parametrized164

using a 2nd or 3rd degree polynomial. The top edge (curve AP in Fig. 2a) is then dis-165

cretized with equidistant points using piece-wise linear segments.166

(ii) To allow for curvature in the down-dip direction, we introduce two parameters D1 and
D2 (or three depending on the level of complexity desired in the down-dip direction)
to define polynomials that pass through the discretized points of the top edge (for e.g.,
curve A qA in Fig. 2b where point A is on the top edge). Each of these polynomials
follow the equations:

z = D2(x2 − (1xi)
2) +D1(x− 1xi) + 1 z;

y = tan(ψi)(x− 1xi) + 1yi,
(1)

where D1 and D2 are the two parameters that are the same for all these down-dip poly-167

nomials (curve A qA, B qB, etc.). The terms x, y and z are the x-, y- and z- coordi-168

–5–



manuscript submitted to JGR- Solid Earth

revision1/rev_figs/Figure3.jpg

Figure 3: Effects of the geometrical parameters in varying the complex non-planar fault
geometry. (a) Fault vertical cross-sections showing how parameter D1 controls the down-
dip slope of the down-dip polynomial. Inset shows the fault in 3D with different D1 val-
ues. (b) Parameter D2 controls the curvature of the fault in the down-dip direction. Inset
shows the fault in 3D with different D2 values. (c) Insets (i)-(iii) show S-shaped and
D-shaped faults in 3D with different S1 values. Inset (iv) shows the corresponding color-
coded fault-bottom tiplines. (d) Insets (i)-(iii) show the 3D faults with change in intensity
of the along-strike curvature for different values of S2. Inset (iv) shows the corresponding
color-coded fault-bottom tiplines. The X, Y and Z axes can have arbitrary units of length.

nates of these polynomials, respectively, which pass through the ith point of the top169

edge (1xi,
1yi,

1 z). ψi is the azimuth of the ith polynomial (see Fig. 2a).170

(iii) The polynomials are truncated at a desired depth and they are discretized at regular171

distance intervals in the down-dip direction. At this point, the curvature of the fault’s172

lower edge in the fault-strike direction is the same as that of the top edge of the fault.173

(iv) To change the curvature of the fault’s lower edge in the along-strike direction between174

points qA and qF (in Fig. 2c), we introduce two more parameters S1 and S2 defining175

a polynomial that has a different curvature compared to the corresponding top edge176

and that passes through these points (i.e., solid curve qA qF vs. dashed curve qA qF177

in Fig. 2c inset). The equations of these polynomials are explained in Appendix A. Sim-178

ilarly, as an example, the curvature between points qF and qP at the fault’s lower edge179

is also changed using two more parameters S3 and S4 (Fig. 2c).180

(v) The curvature difference between the lower and top edges of the fault is then linearly181

propagated in the up-dip direction for the discretized points (Fig. 2d).182

This procedure results in a finite non-planar fault surface with curved horizontal183

(along-strike direction) and vertical (down-dip direction) tiplines. The number of fault184

geometrical parameters used may however depend on the desired level in curvature com-185

plexity of the fault. Fig. 3 shows how the two parameters in the down-dip direction (D1186

and D2) and two parameters along strike direction (S1 and S2) can vary the curvature187

of the fault in those two directions. Parameter D1 changes the slope of the fault in the188

down-dip direction and parameter D2 effectively changes the curvature, as expected from189

Eq. 1. Thus, as shown in Fig. 3a-b, these parameters can be varied to generate a fault190

geometry with a constant dip angle or with varying dip angles. The parametrization is191

not limited to generating fault geometries with increasing dip angle with depth, but it192

can also be changed to include listric or arbitrarily dipping faults. Fig. 3c-d shows the193

curvature of the fault in the along-strike direction changing with varying parameters S1194

and S2. The curvature is S-shaped when the parameter S1 is between 0 and 2, while it195

is D-shaped curved either outward or curved inward when the value of this parameter196

is greater than 2 or less than 0, respectively. The parameter S2 either lessens or ampli-197

fies the along-strike curvature, with the curvature increasing with higher absolute value198

of S2. These two parameters S1 and S2 defined between control points at certain con-199

stant depth can be used to map a fault with varying dip angles along strike. Multiple200

pairs of such control points at different depths (including top edge) can also be used re-201

sulting in a complex fault with different curvature at different depths.202

After the complex non-planar fault is constructed and discretized, we use TDEs203

to tie the discretized points (see Fig. 2d) to avoid gaps or nonphysical crossings (or over-204
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lays). These TDEs however tend to have different sizes (i.e., different length of sides and205

hence different surface area) with respect to each other when the fault geometrical pa-206

rameters are varied. Due to the use of polynomial parameters, the fault curvature is usu-207

ally smooth both in the along-strike and down-dip directions except close to the control208

points.209

3 Bayesian Inference210

In this study, we use a stochastic (probabilistic) approach to estimate the model
parameters instead of a deterministic approach that yields a single best set of estimated
model parameters. Due to the non-uniqueness of the optimization problem and uncer-
tainties in data (and/or uncertainties in parametrization or modeling scheme), the de-
terministic result may not be robust and is potentially inaccurate. After being introduced
in the 1980s in geophysics (Tarantola & Valette, 1982), the stochastic approach has been
used in many fault model parameter estimations with various flavors (Dettmer, Benavente,
Cummins, & Sambridge, 2014; Duputel, Agram, Simons, Minson, & Beck, 2014; Dutta
et al., 2018; Fukuda & Johnson, 2008, 2010; Matsu’ura et al., 2007; Minson et al., 2014;
Monelli, Mai, Jónsson, & Giardini, 2009; Sudhaus & Jónsson, 2009; Yagi & Fukahata,
2011). Here, we use Bayesian inference, where the posterior probability distribution of
the model parameters for given data can be determined using two sources of informa-
tion on these parameters, namely, a priori information and a physical relation between
the data and the parameters (Tarantola, 2005). The multidimensional posterior prob-
ability density function (PDF) defined on the model parameter space, referred to as the
posterior density, can be estimated approximately by sampling using various Monte Carlo
methods. In addition, estimating the 1D/2D marginal densities of the model parame-
ters from the posterior density can be useful in characterizing the features and uncer-
tainties of each of those model parameters. The posterior density of the model param-
eters p(θ|d) is given as (Tarantola, 2005):

p(θ|d) ∝ p(θ) · L(θ), (2)

where p(θ) represents the prior density of the model parameters and L(θ) is the likeli-211

hood function.212

3.1 Likelihood Function213

The likelihood function acts as a goodness of fit of the model parameters with re-
spect to the data, including information about the uncertainties of the data measure-
ment process as well as uncertainties in the modeling scheme (or its parametrization)
or of other parameters (for e.g., Earth structure, etc.) that are not varied in the prob-
lem (Minson et al., 2013). The likelihood function can be given as (Duputel et al., 2014;
Tarantola, 2005):

L(θ) =

∫
Da

ρD(d|da) C(da|θ) dda, (3)

where da is the actual true displacement that we are interested in during the measure-
ment process. However, the measurements are affected by errors and the data d is only
a single realization of a stochastic data vector representing uncertain measurements. ρD(d|da)
is then the density of the data d conditioned on da and C(da|θ) is the probability den-
sity for da conditional on θ. In our problem, we assume that the observed data d has
Gaussian distributed measurement errors with zero mean. The variability in the data
is described by the covariance matrix σ2

1Σd, where the hyperparameter σ2
1 is a scaling

factor. This Gaussian probability density ρD(d|da) is then given as:

ρD(d|da) = (2πσ2
1)−N/2|Σd|−1/2 exp

[
− 1

2σ2
1

(d− da)TΣ−1d (d− da)

]
. (4)
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The conditional density C(da|θ) represents the correlation between the model pa-
rameters where uncertainties related to Earth structure (layer thickness, elastic param-
eters), or the problem scheme can be introduced (Fukuda & Johnson, 2008; Yagi & Fuka-
hata, 2008). Generally, when such model uncertainties are neglected, the conditional prob-
ability becomes: C(da|θ) = δ(da−G(m, s)), which we use in this study. However, high
error correlation resulting from modeling uncertainties are often present and ignoring
them can result in underestimated model uncertainties or bias in parameters estimated
(Dettmer, Dosso, & Holland, 2007). The correlated errors can be minimized by down-
sampling the data such that the distance between data points exceeds the correlation
length of the original data. However, for many fault parameter estimation problems, the
data are already downsampled or limited. Uncertainties in the earth structure (Dupu-
tel et al., 2014; Yagi & Fukahata, 2008) or fault geometry (Ragon et al., 2018) have been
quantified to estimate the covariance of the model prediction errors Σp, which was in-
corporated in the conditional probability C(da|θ) as following:

C(da|θ) = (2πσ2
2)−N/2|Σp|−1/2 exp

[
− 1

2σ2
2

(
da −G(m, s)

)T
Σ−1p

(
da −G(m, s)

)]
, (5)

where the covariance matrix Σp is scaled by the hyperparameter σ2
2 .214

The likelihood function is thus obtained by combining Eqs. (3), (4) and (5) as:

L(θ) = η(σ2
1 , σ

2
2)× exp

[
−1

2

(
d−G(m, s)

)T
Σ−1ψ

(
d−G(m, s)

)]
, (6)

where Σψ is the full covariance matrix, and η(σ2
1 , σ

2
2) is the normalizing factor defined

as (Duputel et al., 2014; Tarantola, 2005):

Σψ = σ2
1Σd + σ2

2Σp,

η(σ2
1 , σ

2
2) = (2πσ2

1σ
2
2)−N/2 |Σd|−1/2 |Σp|−1/2

∣∣(σ2
1Σd)

−1 + (σ2
2Σp)

−1∣∣−1/2 . (7)

In our study, ignoring the model prediction errors results in the full covariance matrix215

defined as: Σψ = σ2
1Σd, and the normalizing factor η(σ2

1) = (2πσ2
1)−N/2|Σd|−1/2.216

3.2 Direct or Indirect Priors217

The Bayesian approach allows the inclusion of any prior information on the model
parameters defined by a prior probability density, which can restrict the model solution
space. Direct prior information restricts the model parameters firmly within a permis-
sible range (Matsu’ura et al., 2007). On the other hand, indirect priors regulate the struc-
ture of the stochastic model based on some physical consideration implemented in the
problem (e.g., regularization, spatial slip smoothness, etc.). In some past fault model pa-
rameter estimation studies, various direct a priori constraints on the fault model param-
eters have been used (Dutta et al., 2018; Hashimoto, Noda, Sagiya, & Matsu’ura, 2009;
Jackson, 1979; W. Xu, Dutta, & Jónsson, 2015), e.g., moment tensor solutions or loca-
tions of aftershocks to constrain the fault geometry, or the mainshock moment magni-
tude to constrain the total slip magnitude on the fault, etc. Here, we use slip smooth-
ness as an indirect prior constraint to reduce the roughness of the slip distribution, sim-
ilar to Fukuda and Johnson (2008, 2010). For this, the slip smoothness prior p(s|σ2

3), where
s is a vector containing the slip at ML TDEs, restricts rough slip changes between ad-
jacent TDEs (Maerten et al., 2005). This prior consists of slip model roughness (σ−23 ||Ls||2),
where σ2

3 is a hyperparameter that scales the smoothness constraint and L is the discrete
second-order finite-difference operator (Laplacian). The slip smoothness prior can be for-
malized as:

p(s|σ32) = (2πσ3
2)−ML/2|LTL|1/2 × exp

[
− 1

2σ32

(
Ls
)T(

Ls
)]
. (8)
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Instead of the general finite-difference formulation, we use the following approximation
of the discrete Laplacian operator (∇2) due to the use of TDEs (Maerten et al 2005):

∇2si =
2

Mi

3∑
j=1

sj − si
hij

, (9)

where for the ith TDE with adjacent elements j (where, j = 1, 2, 3), si represents slip218

value, and hij represents distance between centroids of the ith and jth elements, and Mi =219 ∑3
j=1 hij . We obtain the sparse-matrix smoothing operator L after superposing the above220

relation for all the TDEs of the fault.221

3.3 Posterior Distribution222

The posterior density p(θ|d) (Eq. 2) is obtained by combining Eqs. (2), (6), and
(8). Considering positivity constraints on the slip parameters or constraining them within
certain bounds, the posterior distribution can be given as:

p(θ|d) ∝

{
p(m) · p(s|σ32) · p(σ2

3) · p(σ2
1) · L(θ), if sα ≤ s ≤ sβ

0, otherwise
(10)

where the probabilities p(σ2
1) and p(σ2

3) are given such that σ2
1 ∼ LU [α1 β1] and σ2

3 ∼223

LU [α3 β3] are log-uniformly distributed with αi and βi corresponding to lower and up-224

per limits of the logarithmic scale, which are chosen subjectively. Probability p(m) is225

given such that m ∼ U [mα mβ ] is uniformly distributed between the bounds mα and226

mβ that are subjectively chosen. The terms sα and sβ are the lower and upper bounds227

of the slip parameters.228

3.4 Sampling Technique229

Multidimensional posterior probability densities, where the posterior outcome is230

estimated only point-wise through a numerical/analytic method, are typically sampled231

using Markov Chain Monte Carlo (MCMC) sampling techniques (Gelman et al., 2013;232

Gilks, Richardson, & Spiegelhalter, 1995). MCMC sampling of a target probability dis-233

tribution consists of generating a reversible Markov chain, such that the resulting equi-234

librium distribution is similar to that of the target distribution. Most of these MCMC235

methods are not effective when the posterior probability densities are high-dimensional,236

multi-modal, very peaked, flat, etc.. Here, we use a variant of the CATMIP algorithm237

(Minson et al., 2013) that is based on the Transitional Markov Chain Monte Carlo al-238

gorithm of Ching and Chen (2007). This method belongs to the class of sequential par-239

ticle filter methods (Chopin, 2002), which combines transitioning (tempering of simu-240

lated annealing) and resampling (replication and mutation of genetic algorithm) with241

MCMC sampling.242

This method implements the idea proposed by Beck and Au (2002) to construct
a series of intermediate probability densities that transitions from the prior probability
density p(θ) to the target probability density p(θ|d) by increasingly sampling the inter-
mediate probability densities in the following way:

pj(θ) ∝ p(θ) · p(d|θ)
γj ,

j = 0, ..., J and 0 = γ0 < γ1 < · · · < γJ = 1
(11)

where j is the transition stage number and p(d|θ) is the data likelihood. In cases when243

the geometry of the target probability density p(θ|d) is dramatic (e.g., high-dimensional,244

strongly correlated, highly peaked, flat or multi-modal), it is not easy to sample it. Hence,245

small changes in geometry of consecutive intermediate probability densities, i.e. from pj(θ)246

to pj+1(θ), leads to efficiently obtaining the samples. These adaptive intermediate prob-247

ability densities are chosen depending on the criteria that if the target probability den-248

sity drastically varies from the prior probability density, there are more transition stages249
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as compared to when the variation is low. The transitional stages (for example transi-250

tion from stage j to stage j+1) are controlled by the coefficient γj+1 corresponding to251

the next stage, which is chosen adaptively such that the coefficient of variation of p(d|θj)γj+1−γj
252

is equal to a chosen threshold (Beck & Zuev 2013). At the next stage, the samples from253

the intermediate probability density at the current stage are resampled according to the254

weights determined by the ratio of the corresponding data likelihoods at the next and255

current stages (p(d|θj)γj+1−γj ). This causes unlikely models to be rejected in favor of256

more likely models making this technique more robust against the dimension of the tar-257

get probability density. To make the samples from each stage distinct from each other,258

we employ MCMC sampling (adaptive Metropolis Hastings algorithm) technique (Haario,259

Saksman, & Tamminen, 2001) within each stage that samples the corresponding inter-260

mediate probability density. Appendix B summarizes the different steps in this sampling261

technique.262

The resulting ensemble of model samples representing the posterior distribution
p(θ|d) can then be inferred by estimating the maximum a posteriori (MAP) model θ̂,
mean model θ, or 1D/2D marginal probability densities. Theoretically, maximum a pos-
teriori model θ̂ estimate is the mode of the posterior distribution and mean model θ es-
timate is its mean, which can be obtained by:

θ̂ = arg max
θ

p(θ|d)

θ =

∫
M
θ
′
p(θ

′
|d) dθ

′
(12)

The 1D marginal posterior probability density of a specific parameter can be obtained
by integrating the posterior probability density over the entire model parameter space,
except for the model parameter of interest:

Mi(θi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(θ|d)

N∏
j=1, j 6=i

dθj . (13)

4 Synthetic Tests263

In this section, we test the method of simultaneously estimating non-planar fault264

geometry and spatially-variable slip as discussed in Section 2 for three synthetic fault265

slip models. First, synthetic data generated from these fault models were used to esti-266

mate slip distributions on pre-assumed planar and non-planar faults. Then, Bayesian anal-267

yses were used to estimate non-planar geometries simultaneously with spatially-variable268

slip and the results compared with those when planar geometries are assumed.269

4.1 Normal faulting example270

For the first synthetic test, we consider a fault-slip model consisting of a checkerboard-271

like slip pattern on a listric normal fault (Fig. 4a). The synthetic data for this normal272

fault were generated by firstly constructing the geometry such that the fault has the fol-273

lowing features: (i) the top edge of the fault is at 1 km below the surface, (ii) the bot-274

tom edge of the fault is at 9 km, (iii) the down-dip curvature of the fault resembles that275

of a listric fault, and (iv) the fault’s lower edge is curved in the along-strike direction (Fig. 4a).276

The fault dips steeply at Plane B compared to at Plane A (Fig. 4b). After determining277

its geometry, the fault was discretized using triangular dislocation elements and a normal-278

component slip imposed in a checkerboard pattern with maximum slip of 4 m and a min-279

imum of 0 m (Fig. 4a). The slip was slightly spatially smoothed to avoid sharp changes280

from 0 to 4 m. The moment magnitude of the resulting listric normal faulting event is281

7. The three components of the ground displacements as GNSS stations would yield due282

to the normal-slip on this fault were then calculated on a rectangular ground surface grid283

using the analytical TDE solution by Meade (2007). Finally, to make the synthetic data284
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figures/Figure4.jpg

Figure 4: The non-planar fault model used in the first test of simultaneously estimating
non-planar geometry and spatially-variable slip. (a) The listric normal fault geometry
in 3D with a checkerboard slip distribution. The green line is the projection of the top
edge of the fault on the surface. (b) Fault profiles at the vertical planes A and B shown in
(a). (c) Quadtree subsampled synthetic surface displacements resulting from the normal
faulting in (a), with arrows showing the horizontal displacements and colored squares the
vertical displacements. The green and black lines are the surface projection of the top and
other edges of the fault, respectively.

more realistic, Gaussian noise with standard deviation proportional to the displacement285

magnitude was added to the ground displacements. We used Quadtree sub-sampling of286

this dense surface displacements to reduce the number of data points (Fig. 4c), yield-287

ing about 100 observation locations.288

4.2 Bias in Slip Estimates using Planar Faults289

We first used these synthetic ground displacement observations to estimate spatially-290

variable slip for several different fault geometries, which we fixed before the estimation,291

using linear regularized non-negative least-squares (RNNLSQ) optimization (Altman &292

Gondzio, 1999). Figure 5 shows the resulting spatially-variable slip estimates using the293

following four different fault geometries: (a) the reference listric fault geometry curved294

in both down-dip and along-strike directions that was used to generate the synthetic data,295

(b) the reference fault geometry without any geometrical variations in the along-strike296

direction, (c) the planar fault geometry that is the best 3D fit to the reference fault ge-297

ometry, and (d) the planar fault geometry that is the best 3D fit to the deeper parts (be-298

low 5 km) of the reference listric fault geometry. We use a weighted measure of variance299

reduction (Suppl. 1) to compare how well the fault-slip model explains the synthetic sur-300

face displacement observations.301

Not surprisingly, the fault slip model with the reference fault geometry (Fig. 5a)302

can explain the synthetic dataset the best with about 99.6% variance reduction. How-303

ever, planar faults are the most common assumption for fault slip estimation studies world-304

wide, and here the two planar fault slip models (Fig. 5c,d) have lower variance reduc-305

tions of 95 % and 91.1%. Although these planar fault models appear to resolve both the306

shallow and deeper slip asperities with more than 90% variance reduction, the estimated307

slip distributions are quite different from the reference one. For example, slip on the shal-308

low and deeper slip patches of the planar faults is over-estimated by 100% and 50%, re-309

spectively. In addition, there is also a bias in the depths at which the slip asperities are310

estimated. The fault slip model with the simplified reference non-planar fault geome-311

try with no along-strike variations also exhibits all the four slip asperities, but the max-312

ima slip values are over-estimated where the dip angle is different from the reference fault313

(Fig. 5b).314

4.3 Simultaneous Bayesian Estimation315

We now apply our proposed method of simultaneously estimating non-planar finite-316

fault geometry and spatially-variable slip. For this, we used the Bayesian inference de-317

scribed in Section 3 to estimate the variability of the fault geometrical and slip param-318

eters. The geometrical parametrization we used is with 4 parameters (as explained in319

Section 2) to vary the non-planar finite-fault geometry with the top edge fixed. We as-320
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revision1/rev_figs/Figure10.jpg

Figure 5: Results of linear least-squares slip inversions (RNNLSQ) with different pre-
defined fault geometries. (a) The reference fault geometry with variable dip angle, both
down-dip and along-strike. (b) The reference fault again, but with varying dip angle only
in down-dip direction. (c) A planar fault that best fits the reference fault geometry. (d) A
planar fault that fits the shallower parts (below 5 km depth) of the reference fault geome-
try. (e-f) Profiles of the different fault geometries along cross-sections A and B are shown.
The insets show the change in dip angle of the faults with depth along the corresponding
planes.

figures/Figure5.jpg

Figure 6: Marginal prior probability densities of the model parameters. (a) Uniform prior
probability densities of the geometrical parameters and hyperparameters with dashed
magenta lines indicating the reference values. (b) Marginal prior probability densities of
the slip parameters overlaid on the correlation of the corresponding slip patch and the slip
patch outlined by red line. The inset shows an example of the bimodal prior slip prob-
ability density of the slip patch outlined by magenta line. (c) Fault geometry and slip
distribution corresponding to the prior median fault geometrical and slip parameters.

sume the top edge of this fault is well constrained based on the discontinuity of the sur-321

face displacement due to the fault reaching close to the surface. In this example, we also322

fix the fault-bottom depth at 9 km below the surface. The two geometrical parameters323

S1 and S2 vary the curvature of the fault in the along-strike direction and parameters324

D1 and D2 vary the curvature of the fault in the down-dip direction. This non-planar325

geometry was discretized with 96 TDEs, i.e., larger patches than the one used to gen-326

erate the synthetic surface displacement observations, and we only estimated the normal-327

component slip assuming there is no strike-slip. Thus the geometrical parameters (D1,328

D2, S1 and S2), the 96 slip parameters (for 96 TDEs) and the hyperparameters (σ2
1 and329

σ2
3) resulted in a total of 102 parameters to estimate.330

As mentioned in section 3.2, Bayesian estimation allows the use of any a priori in-331

formation about the fault geometrical or slip parameters along with the physical rela-332

tion of the data with the model parameters. Despite this flexibility, we chose a uniform333

distribution as the prior probability for the geometrical parameters and log-uniform prior334

distribution for the hyperparameters (Fig. 6a). However, the prior probabilities of the335

slip parameters have to be set such that there are enough probable samples to start the336

sampling and we also want the slip values that are strictly positive. For this, Minson et337

al. (2013) used a Dirichlet distribution as the prior probability for each slip patch such338

that the total moment of the slip parameter ensemble followed a Gaussian distribution339

about a plausible event moment magnitude. Instead of using the moment magnitude340

based Dirichlet prior probability for the slip patches, we used the synthetic observations341

to determine this prior probability density. For this, the ensemble of non-planar fault342

geometries following the uniform (prior) probability as mentioned above was used to ob-343

tain an ensemble of slip distributions, such that each slip distribution corresponding to344

a sample non-planar fault geometry was estimated by using the observed synthetic data345

(in Fig. 4c) and linear RNNLSQ optimization (Altman & Gondzio, 1999). The ensem-346

ble of such slip distributions was then used as the prior probability of each of the slip347
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figures/Figure6.jpg

Figure 7: A few samples of fault geometries and corresponding slip distributions of the
prior distribution ensemble.

revision1/rev_figs/Figure7.jpg

Figure 8: Progression of the fault geometry and slip distribution during the estimation
process showing the posterior median sample of the fault parameters at several transition
stages of the SMC sampling.

revision1/rev_figs/geopar_evol.jpg

Figure 9: 1D marginal densities of the geometrical parameters and hyperparameters
obtained at several different intermediate stages of the sampling process.

patches. Co-incidentally, the prior probabilities of the slip patches follow a bi-modal dis-348

tribution where each mode represents a Dirichlet distribution (Fig. 6b). The resulting349

slip prior ensemble correlations of each slip patch with the rest of the slip patches are350

more than 0.7 (Fig. 6b). Although highly correlated, such prior probability for the slip351

patches ensures that the sampling technique initiates with probable samples and a to-352

tal moment close to the final moment estimate. Otherwise, the data likelihoods cause353

the starting samples to be rejected in the first resampling stage resulting in failure of the354

sampling. Fig. (6c) shows that sample of the slip distribution and the fault geometry,355

which corresponds to prior median values of the fault geometrical and slip parameters.356

Fig. 7 shows some starting sample fault geometries and slip distributions belonging to357

the prior probability of the fault model parameters. These sample fault geometries show358

the extent to which the fault can be warped or twisted in both directions, along-strike359

and down-dip.360

The multi-dimensional posterior probability density of the fault geometrical and361

slip parameters, which contains information of the indirect/direct priors and the data362

likelihood, can be sampled to obtain the most probable fault parameter values as described363

in section 3.4. Here we sampled the posterior probability density using the SMC tech-364

nique with 20,000 Markov chains and a chain length of 150, a sampling procedure that365

took 28 stages and was robust such that the obtained samples converged to the poste-366

rior probability density (Fig. S2). During the intermediate stages, the prior probabil-367

ity density transitions itself to the posterior probability density with increasing contri-368

bution of the data likelihood (Figs. 8, 9, 10, S4, S5, S6, S7). Fig. 8 shows the median369

fault geometry and slip distribution at several of these transitional stages of the sam-370

pling. While the SMC sampling progressively explores through more probable estimates371

of the fault model parameters, during the earlier stages of the sampling it converges to372

probable estimates of hyperparameters (Fig. 9). At the intermediate stages, the sam-373

pling converges to constraints of the fault geometrical parameters (Fig. 9), and finally374

to constraints of the spatially-variable slip (Fig. 10).375
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revision1/rev_figs/slip_evol.jpg

Figure 10: 1D marginal densities of the four selected slip asperities (slip patch indices 3,
33, 51 and 81) at several different intermediate stages of the sampling process.

revision1/rev_figs/Figure8.pdf

Figure 11: Modeling results for the fault geometry. (a) 1D/2D marginal posterior prob-
ability densities of the fault geometrical parameters and the hyperparameters. (b) The
posterior median sample of the fault geometry and slip distribution. (c) Comparison of
the reference fault geometry with the posterior ensemble at Plane A, and (e) at Plane B.
(d) Comparison of the fault-dip angle of the reference fault geometry with the posterior
median sample at plane A, and (f) at Plane B.

The resulting 1D marginal probability density of the geometrical parameters are376

mostly skewed or multi-modal describing the highly non-linear relation of the data with377

these parameters (Fig. 11a). The 1D marginal probability densities of the hyperparam-378

eters on the other hand exhibit log-normal distributions. The two parameters control-379

ling the curvature in the down-dip direction (D1 and D2) are positively correlated to each380

other. This correlation demonstrates that the steeper faults are more curved in the down-381

dip direction, and vice versa. The negative value of S1 shows the listric fault is curved382

as D-shape (inward) in the along-strike direction. This parameter S1 is negatively cor-383

related to the parameter S2 that determines the intensity of the curvature in the along-384

strike direction. However, the correlation coefficient for S1 and S2 is lower in magnitude385

for the more probable samples than that for the less probable samples showing a non-386

linear correlation of these two fault geometrical parameters (Fig. 11a).387

The estimated fault geometry is listric like the reference fault (Fig. 11). The es-388

timated fault-dip angle matches the reference dip angle better for deeper portions of the389

fault. While the estimated geometrical parameters do not agree with the reference val-390

ues, the reference geometry lies within their 95% confidence intervals. The estimated fault391

geometry agrees within the 95% confidence interval with the reference fault geometry392

for depths greater than 6 km, while at shallower depths, it is steeper than the reference393

geometry. This can be explained as being due to the coarse fault discretization and the394

subsampling of the data used in this estimation (Supp. 3, Figs. S9 and S10). The un-395

certainty of the estimated fault geometry increases with depth, as expected (Fig. 11c,e).396

But, the higher uncertainty of the fault geometry at ∼3.5 km depth, compared to that397

at ∼7 km depth, can be attributed to the inaccurate location of the fault at shallower398

depths.399

The estimated posterior median fault slip model has slip asperities that agree well400

with slip maxima of the reference model, recovering the checkerboard pattern success-401

fully (Fig. 12a). The maxima slip values are approximately 4 m, with a few patches with402

lower or higher slip values likely due to the coarse discretization of the fault. Fig. 12a403

shows the median and the 1D marginal probability densities of the slip values at each404

of the TDEs. The 1D marginal probability densities of the slip values are mostly Gaus-405

sian or truncated Gaussian distributions (due to positivity or maximum cut-off constraints406

on slip values). The standard deviation is high (>1 m) for slip asperity patches at larger407
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revision1/rev_figs/Figure9.jpg

Figure 12: Modeling results for fault slip. (a) 1D marginal posterior probability densities
of the fault slip overlaid on the corresponding posterior median slip of each fault patch.
(b) An example probability density in more detail for one selected fault patch (from top-
left). (c) The posterior standard deviation of the fault slip values. (d) The synthetic data,
modeled predicted data and the data residuals corresponding to the posterior median of
fault parameters. (e) Distribution of variance reduction obtained from the ensemble of
fault model parameters.

revision1/rev_figs/Figure13.jpg

Figure 13: Modeling results for a thrust faulting case. (a) Reference slip model with
checkerboard-like thrust slip pattern on a non-planar fault. (b) Posterior median sample
of the estimated result. (c) The estimated non-planar fault geometry and its uncertainties
compared to the reference geometry at plane A and (d) at plane B.

revision1/rev_figs/Figure14.jpg

Figure 14: Modeling results for a strike-slip faulting case. (a) Reference slip model with
checkerboard-like strike-slip pattern on a non-planar fault. (b) Posterior median sample
of the estimated result. (c) The estimated non-planar fault geometry and its uncertainties
compared to the reference geometry at planes A and B.

depths, whereas at shallower depths it is about 0.5-0.9 m (Fig. 12c). For the patches with408

low slip values, the standard deviation at larger depth is about 0.5 m and at shallower409

depths it is about 0.2-0.3 m. The ensemble of the fault slip models has a variance reduc-410

tion ranging from 98.6 % to 99.3 % (Fig. 12e), with a median value of 99.03 %. The spatially-411

variable slip is estimated robustly and is similar to the reference slip without any sig-412

nificant biases related to inaccurate fault geometry.413

4.4 Thrust and strike-slip faulting examples414

We tested the simultaneous Bayesian estimation of non-planar fault geometry and415

spatially-variable slip on two other cases that included thrust and strike-slip faulting.416

For each of these tests, fault slip models consisting of checkerboard-like slip patterns were417

considered (Figs. 13a, 14a, S11, S14). For the thrust-faulting reference model, the fault-418

dip angle varies in both the along-strike and down-dip directions such that the fault is419

shallower dipping at plane B compared to that at plane A (Fig. 13c,d). From these mod-420

els, we calculated 3D surface displacements with added Gaussian noise, which we then421

used in the Bayesian estimation of the geometrical and slip parameters.422

The modeling results show that in the thrust-faulting case the non-planar fault ge-423

ometry is mostly recovered, with a down-dip curvature that agrees well with the refer-424

ence model geometry for depths shallower than 20 km, but deviates slightly below that,425

where the fault-dip angle is steeper than in the reference model. Not surprisingly, the426
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spatially-variable slip is better constrained at shallower depths on the fault than at greater427

depths, where it does not agree well with the reference model (Fig. 13b).428

For the strike-slip faulting test case, the reference fault has variable fault-dip an-429

gle ranging from 85◦ to 70◦ in the along-strike direction, but constant fault-dip angle in430

the down-dip direction (Fig. 14a). The modeling results when compared with the ref-431

erence fault model show that the estimated geometry at both the planes A and B are432

similar (Fig. 14c). The estimated fault-slip pattern resembles the reference fault slip patches,433

although the slip maxima patches of the posterior median sample shows higher slip by434

about 25%.435

5 Discussion436

Many fault-slip models are usually published after each well-recorded major earth-437

quake, but the resulting slip models are often quite different from each other. The rea-438

son is related to a combination of factors, such as what datasets were used, how the earth439

structure and the fault geometry were parameterized, how the model parameter estima-440

tion was set up, and what optimization scheme was used (Razafindrakoto et al., 2015).441

Even in Bayesian estimations of fault-slip models that are used to address possible fault-442

model discrepancies, some aspects of the model are usually pre-assumed, e.g., the Earth443

structure (layer thickness, elastic parameters, etc.), the fault geometry, etc. Efforts of444

integrating uncertainties in the Earth structure (Duputel et al., 2014) or uncertainties445

in fault geometry (Ragon et al., 2018) as model prediction covariances in confluence with446

the data uncertainties have shown to reduce bias in fault slip estimations. In our work,447

we extend previous studies by parameterizing a non-planar fault geometry such that it448

can be estimated simultaneously with the slip distribution. With this geometry param-449

eterization one can estimate spatially-variable fault-strike and -dip angles, both in the450

along-strike and down-dip directions, such that the fault surface is allowed to twist and451

warp to explain the observed data. This flexibility eliminates the need for a priori as-452

sumptions about the fault geometry and the Bayesian inference provides all the associ-453

ated uncertainties of the estimated fault parameters.454

Estimations of variable non-planar fault geometries have usually been avoided in455

earthquake fault estimation studies as they require calculating the Green’s function for456

every perturbation in the fault geometry, making such flexibility computationally im-457

practical in kinematic source model estimations. Instead, researchers have usually es-458

timated or assumed simple planar fault geometries before determining spatio-temporal459

details of the fault slip. However, when the Green’s function calculation is fast and ro-460

bust (such as in static finite-fault estimations), it is possible to allow for local variations461

in geometry as well as estimating the slip. While this has been done in a few studies,462

uncertainties in fault position and dip angle in both down-dip and along-strike directions463

have rarely been considered. This is important to do as the simultaneous estimation of464

local variations in both fault geometry and slip can be far from robust. While simple pre-465

assumed planar or non-planar fault geometries can be good first-order approximations466

of the real fault geometries, the increasing availability, resolution, and quality of geode-467

tic data (e.g., InSAR and image offsets) allow resolving of fault parameters such that the468

estimation of local fault geometry complexities are warranted.469

As demonstrated by our results of the listric normal fault, estimated fault slip as-470

suming planar faults may explain observed displacement data well (more than 90% vari-471

ance reduction in our example), even when the true source fault is non-planar. However,472

the estimated spatial variations in slip can be under- or over-estimated of the different473

parts of the fault due to the planar approximation of the local fault location and dip an-474

gle. Using geodesy, fault slip variations are typically better resolved at the shallower fault475

depths than deeper (e.g., Simons, Fialko, & Rivera, 2002), but even shallow slip values476

can be strongly biased if the local fault location or dip angle is inaccurate (Ragon et al.,477
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2018). Using the fault geometry parameterization presented here, where variable fault-478

dip angle and location can be estimated along with the slip, thus helps to eliminate this479

potential bias in slip estimations. Also, the non-planar fault geometry can be estimated480

solely based on the observed data or it can be constrained using prior physical informa-481

tion in the Bayesian framework. While it is known that the estimated geometry and slip482

are generally less well constrained at larger depths, Bayesian inference also helps to quan-483

tify these uncertainties and provides confidence levels for all the estimated fault param-484

eters. The different synthetic test cases in our study demonstrate that our approach works485

well in estimating the overall non-planar fault geometry simultaneously with the spatially-486

variable slip to 20 to 30 km depths for earthquakes with different slip mechanisms and487

moment magnitude ranging between 7 and 8. However, the quality of the estimation re-488

sult can vary depending on the style of faulting and the depth of the source fault. In ad-489

dition, lack of data coverage, e.g., in case of an event occurring offshore, extensive wa-490

ter bodies, or InSAR decorrelation, would influence the estimation results.491

Estimating complex non-planar fault geometries has rarely been attempted before492

due to the high computation cost of each forward calculation of the model (i.e., the com-493

putation of G(m, s) in our study), making the MCMC sampling impractical. However,494

in our study for the listric normal faulting test scenario, the average computation time495

of G(m, s) was only about 0.3 seconds. This means that for the 28 stages of the SMC496

sampling and 20000 Markov chains of length 150, the total computation time was about497

7000 CPU core hours. This computation time scales up with more data observations,498

finer fault discretizations, and more sampling stages. When studying large earthquakes499

(MW 7.5 and larger), more data points and a larger number of TDEs would typically be500

needed than we used in this study. Also, more sampling stages would be needed for con-501

vergence due to the increased complexity in the fault geometry and slip. For example,502

it took 49 stages with 10000 Markov chains of length 150 for the finer discretizations of503

384 TDEs (i.e., 4 times of the normal faulting case) to be resolved from the same dataset504

in Supp. 3. The resulting computational time was about 17150 CPU core hours (i.e., 2.5505

times of the normal faulting case). The high computation cost can be kept within ac-506

ceptable bounds by parallelization of CPU clusters (Minson et al., 2013) or GPU archi-507

tectures (Lee, Yau, Giles, Doucet, & Holmes, 2010). In addition, as the fault geometry508

parameterization has only a few parameters, the Green’s functions (G′(m) in Section509

2) can be pre-computed and stored (Heimann et al., 2019; Vasyura-Bathke et al., 2020).510

The pre-computed Green’s function databases could then be used during the Bayesian511

inference, leading to drastically reduced computation costs.512

In cases when there is scarce surface displacement data, using non-planar geome-513

tries may seem like an over-parameterization of the problem. Such over-parameterizations514

can lead to unrealistic models that fit noise features in the data or models with unre-515

alistically high uncertainties, whereas using overly simple models with fewer parameters516

(under-parametrization) can result in biased solutions as mentioned above. However, the517

model parametrization scheme for the fault model estimation problem (e.g., the num-518

ber of control points pairs to constrain the fault-top/bottom edge curvature, or the coarse-519

ness of the fault-slip discretization, etc.) can be either selected ad hoc or based on some520

model selection metric. The different parameterization schemes can be statistically com-521

pared by calculating the Bayesian evidence (i.e., the denominator in the Bayes’ theorem),522

which quantitatively embodies Occams’ razor (Knuth, Habeck, Malakar, Mubeen, & Placek,523

2015; Madigan & Raftery, 1994; Von der Linden, Dose, & Von Toussaint, 2014). The ev-524

idence, which is an integral over the entire parameter space of the product of the prior525

and likelihood, can be estimated directly from posterior sampling (Berkhof, Van Meche-526

len, & Gelman, 2003; Chib & Jeliazkov, 2001; Chib & Ramamurthy, 2010) or other nu-527

merical techniques (Knuth et al., 2015). Apart from the measure of Bayesian evidence,528

different measures, e.g., Akaike and Bayesian information criteria (Burnham & Ander-529

son, 2004), Akaike’s Bayesian information criterion (Funning, Fukahata, Yagi, & Par-530

sons, 2014; Yabuki & Matsu’Ura, 1992), deviance information criterion (Kowsari, Hall-531
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dorsson, Hrafnkelsson, & Jonsson, 2019), etc., provide a faster alternative to balance the532

model parametrization accuracy against complexity. These model selection techniques533

can thus help determining the appropriate complexity of the model given the prior in-534

formation and the quantity, coverage, and quality of the available data.535

The complex non-planar fault in our synthetic tests is modeled within an isotropic536

and homogeneous elastic half-space. More realistic earth models that consider depth-537

dependent elastic parameters typically show deeper slip centroid estimates and more slip538

at depth compared to solutions that use homogenous medium (Hearn & Bürgmann, 2005)539

and there can be considerable differences in how well the models fit observed data (Wang540

& Fialko, 2018). The effect of uncertain depth-dependent elastic parameters can be in-541

cluded in slip estimations through model prediction error covariances (Duputel et al.,542

2014), which requires determination of sensitivity kernels of how model predictions change543

with elastic parameter modifications. While not used in our synthetic tests here, sim-544

ilar sensitivity kernels of the model prediction could be included in determining Σp (Eq.545

5) during the simultaneous Bayesian estimation of fault geometry and spatially-variable546

slip.547

A major question in the earthquake source estimation community has been what548

causes the shallow slip deficit seen in many fault-slip estimation solutions for major earth-549

quakes (Fialko, Sandwell, Simons, & Rosen, 2005). The shallow slip deficit is the reduc-550

tion (usually more than 10%) in inferred fault slip at shallower depths compared to slip551

at intermediate depths in the crust. Various explanations for this apparent shallow slip552

deficit have been proposed, such that low initial tectonic stress in the low-rigidity shal-553

low crust (Rybicki, 1992; Rybicki & Yamashita, 1998), bulk inelastic yielding of the near-554

fault host rocks in the shallow crust (Fialko et al., 2005), shallow velocity-strengthening555

fault friction leading to shallow post-seismic afterslip and interseismic creep (Kaneko &556

Fialko, 2011), and slip estimation bias due to lack of near-field data (X. Xu et al., 2016).557

Here we show that the depth of inferred slip can be biased when planar fault geometries558

are used in slip estimations for source faults that are in reality non-planar. In the case559

related to the normal listric fault presented in our study, the estimated slip asperities560

are deeper and there is less estimated shallow fault slip than in the reference non-planar561

fault slip model, resulting in a clear shallow slip deficit (Fig. 5). While this type of fault-562

slip biases does not resolve the slip-deficit question, it offers yet another possibility for563

the apparent shallow slip deficit and might help explaining some cases of shallow slip deficit.564

The non-planar fault parameterization introduced here can be useful when study-565

ing earthquakes occurring in subduction-zones, on listric normal faults, on faults with566

varying dip angle along strike, and in other cases of non-planar faulting. In addition, this567

parameterization can be extended to multiple fault branches, with the geometry of each568

fault branch described by its own set of polynomial parameters. Estimating complex non-569

planar geometries does not only eliminate fault slip biases in many cases, but it can also570

have consequences for studies that are based on biased results. For example, Barrien-571

tos and Ward (1990) used a planar fault to estimate the fault slip for the 1960 (MW 9.5)572

Chile megathrust earthquake and reported that the fault slip occurred on isolated fault573

slip patches at 80-110 km depth. They then suggested that the isolated fault areas left574

unruptured had experienced postseismic aseismic slip. However, Moreno, Bolte, Klotz,575

and Melnick (2009) showed that no such isolated slip patches result when using a more576

realistic non-planar fault geometry, demonstrating that the isolated slip patches were merely577

an artifact of using a planar fault. Using non-planar faults instead of planar faults can578

also lead to more realistic near-fault ground motion calculations (Passone & Mai, 2017),579

help the understanding of the physics of fault ruptures (Aochi, Fukuyama, & Matsu’ura,580

2000), and hence improve seismic hazard assessments (Aochi & Fukuyama, 2002).581
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6 Conclusions582

We have introduced a method to parametrize non-planar earthquake fault geome-583

tries using a few polynomial parameters, which can be estimated simultaneously with584

spatially-variable fault slip from geodetic data using Bayesian inference. The non-planar585

fault surfaces are discretized with triangular dislocation elements and the surface is re-586

meshed each time the geometrical fault parameters are updated in the estimation pro-587

cess. The Bayesian inference allows the incorporation of prior information about the fault588

surface, such as from mapping of surface fault ruptures or from aftershock locations, or589

about the smoothness of the fault slip. It also provides the full posterior probability dis-590

tribution of the estimated geometrical and fault slip parameters, yielding information591

on how well these parameters are constrained by the data and how they are correlated592

to one another.593

We demonstrate the applicability of the method by using three synthetic tests of594

normal, thrust, and strike-slip fault models, all with variable fault-dip and -strike an-595

gles and with a checkerboard-like fault slip distribution. While the resulting ensemble596

of estimated geometrical parameters exhibits multi-modal and skewed distributions with597

strong correlation between parameters, the complex non-planar fault geometry and the598

main slip asperities are mostly well resolved. Our results also show that when planar fault599

geometries are assumed in presence of non-planar faulting, significant fault slip estima-600

tion biases can result with strong over- or under-estimation of fault slip asperities as well601

as incorrect determination of the locations of these asperities.602

A Model Parametrization603

In Section 2, parameters S1 and S2 control the curvature between points qA and qF, while
parameters S3 and S4 control it between qF and qP at the bottom of the fault (Fig. 2c).
In the example in Section 2, these along-strike parameters define two polynomials, be-
tween qA qF and qF qP (Fig. 2). For S1 and S2 and the corresponding control points
qA and qF, we first consider the Z-plane in which these control points lie, i.e., the z =
qz plane. The x- and y-coordinates (2D Cartesian coordinates) of the control points in
this Z-plane are (qx1,

qy1) and (qxi,
qyi), respectively. The 2D Cartesian coordinate sys-

tem at this Z-plane is then transformed using an isotropic scaling factor K and rotation
angle ω:

K =
2√

(qxi − qx1)2 + (qyi − qy1)2
and ω = tan−1

(
qyi − qy1
qxi − qx1

)
. (A.1)

The transformation matrix for the x-y coordinates can then be given as:

A = K ·
[

cosω sinω
− sinω cosω

]
. (A.2)

In the new 2D Cartesian coordinate system, the coordinates of points qA and qF604

are (0,0) and (2,0), respectively. For different pairs of control points at different depths,605

the scaling factor K and rotation angle ω change according to the coordinates of these606

control points. However, the transformed coordinates of the control points are still (0,0)607

and (2,0). The curve qA qF is then obtained from the polynomial: y′ = S2 · x′(x′ −608

2)(x′−S1), where x′ and y′ are the coordinates of the polynomial in the transformed609

coordinate system. The coordinates of the new polynomial is then transformed back to610

the original coordinate system using the transformation matrix A−1. In this original co-611

ordinate system, the new polynomial is tied to the rest of the discretized fault. For this,612

it is discretized at its intersection with the vertical projection of down-dip polynomials613

passing through the discretized top edge (curve Q qQ in Fig. 2c). Then the difference614

in the distance between the original curve and the modified curve (i.e., distance between615
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points qQ and q∗Q in Fig. 2c inset) is then decreased linearly at nearby depths to gen-616

erate a gradual change in the along-strike curvature with depth. The same procedure617

is followed for different sets of control points (that might be located also on the top hor-618

izontal tipline) and polynomials, which can be generated depending on the correspond-619

ing along-strike parameters.620

B SMC Sampling621

The posterior probability density p(θ|d) in our study (Eq. 9) is sampled using Sequen-622

tial Monte Carlo sampling (Sec. 3.4). This sampling technique can be summarized in623

the following steps:624

(i) Set j = 0 and coefficient γ0 = 0. Generate K samples of geometrical parameters mj =625

{mj,1, · · · ,mj,K} and hyperparameters (σ2
i )j = {(σ2

i )j,1, · · · , (σ2
i )j,K} from a uni-626

form prior probability density p
′

0({m, σ2
i }) and estimate K sets of spatially-variable627

slip solutions sj = {sj,1, · · · , sj,K} on the corresponding K samples of non-planar fault628

geometries using the synthetic data and linear regularized non-negative least-squares629

optimization (RNNLSQ) at stage j = 0. Set the ensemble of samples θj = {θj,1, · · · ,θj,K}630

for stage j, such that the kth element θj,k = {mj,k, sj,k, (σ
2
i )j,k}.631

(ii) Set j = j + 1 and choose γj+1 such that the coefficient of variation of wT is equal
to a threshold value, where wT = {w1, · · · , wK} is a weight vector given as:

wk (θj,k) =
pj+1(θ)

pj(θ)
=
p(θj,k) p(d|θj,k)γj+1

p(θj,k) p(d|θj,k)γj

= p(d|θj,k)γj+1−γj
(B.1)

(iii) Resample the samples obtained at the previous stage j, i.e., (θj) using the probabil-
ities pj to obtain resampled samples Θj , where

pj,k =
wk(θj,k)∑K
l=1 w(θj,l)

(B.2)

(iv) Evaluate the weighted sample covariance with θj and pj using the following relations:

θ̄j =

K∑
k=1

pj,kθj,k

Cj =

K∑
k=1

(θj,k − θ̄j)(θj,k − θ̄j)T pj,k

(B.3)

(v) Use resampled samples Θj as seeds for generating Nsteps samples of the intermediate632

probability density using Metropolis Hastings algorithm with a Gaussian proposal den-633

sity that has covariance δ2Cj . The covariance is adapted within a Markov chain and634

is controlled by coefficient δ, where δ = a + bR, and R is the acceptance rate. The635

parameters, a and b are chosen according to the dimension of the problem. In our case,636

they were empirically chosen as a = 1
90 and b = 89

90 .637

(vi) Collect the final sample from each of the K Markov chains and assign them as sam-638

ples (θj+1) for stage j + 1.639

(vii) Repeat the steps (ii) to (vi) until γj+1 ≥ 1.640
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