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Çağlar Küçük 1,2, Sujan Koirala 1, Nuno Carvalhais 1,3, Diego G. Miralles 2,3

Markus Reichstein 1, Martin Jung 1
4

1Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany5
2Hydro-Climate Extremes Lab (H-CEL), Faculty of Bioscience Engineering, Ghent University, Ghent,6

Belgium7
3CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia,8

Universidade NOVA de Lisboa, Caparica, Portugal9

Key Points:10

• We provide observation based metrics from FVC time series over Africa, charac-11

terising the dynamics of vegetation during water limitation12

• The metrics, derived from daily FVC data with 0.0417◦, have strong diagnostic13

power to understand fine-scale vegetation–water interactions14

• Focused on water-limited periods, the metrics can be used to test hypothesis and15

constrain models on highly uncertain processes16
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Abstract17

Plant available water is a key driver of ecosystem processes in water-limited systems. The18

interactions between vegetation, soil moisture, groundwater, and lateral redistribution19

of moisture in landscapes are complex and very heterogeneous. This complexity, together20

with the scarcity of relevant observations, creates a major obstacle for large-scale eco-21

hydrological analysis and modelling. Here we exploit recent advancements in remote sens-22

ing at high spatial and temporal resolutions to extract relevant information on ecohy-23

drological functioning. Our approach focuses on characterising vegetation dynamics along24

the seasonal wet to dry season transition, i.e. with progressive water limitation.25

We present a set of observation-based metrics to characterise ecohydrological pat-26

terns across Africa at 0.0417◦ spatial resolution. These are derived from the daily time27

series of Fraction of Vegetation Cover (FVC) over the period 2004–2019 from the geo-28

stationary satellite Meteosat Second Generation. The metrics include (i) minimum and29

maximum FVC, (ii) start day, duration, and FVC integral of the dry season, and (iii)30

the decay rate of FVC during dry-down. The metrics reflect the potential state, tem-31

poral extent, and evolution of the limiting factors of FVC, which, in Africa, are predom-32

inantly associated with water availability. They provide information on the relevance of33

secondary moisture sources such as ground water access or ecohydrological buffering due34

to deep rooting. Analysis of the metrics reveals large-scale gradients with aridity, as well35

as regional patterns associated with topographic moisture variations. Our observation-36

based products have large potential for better understanding and modelling the complex37

vegetation-water interactions from regional to continental scales.38

Plain Language Summary39

Despite their importance on global carbon and water cycles, together with the ecosys-40

tem services, local-scale processes controlling vegetation dynamics under water-limitation41

are highly uncertain in large scale studies. This is particularly important in Africa due42

to the scarcity of ground measurements and stronger dependency of population on ecosys-43

tem services. In order to overcome this problem, we developed a set of metrics based on44

the fractional vegetation cover observed from the European geostationary satellite with45

daily temporal resolution. The metrics are suitable to diagnose local-scale processes thanks46

to their high spatial resolution of ∼ 5 km. First analyses show consistent continental47

gradients in the metrics together with strong local variations and corroboration with dif-48

ferent datasets from independent sources.49

1 Introduction50

Africa hosts the largest share of undernourished population, and livelihood of the51

majority of population relies on ecosystem services, ecosystem productivity and water52

availability (Müller et al., 2014). African ecosystems contribute strongly to variations53

in the global carbon cycle (Williams et al., 2007; Valentini et al., 2014; Palmer et al., 2019;54

Weber et al., 2009), in which large uncertainties remain due to limited observations to55

model complex ecohydrological interactions happening with a wide spectrum over Africa.56

Most of the ecosystems in Africa are clearly controlled by water availability not only in57

arid and semiarid regions, but also in tropical forest in Central Africa (Zhou et al., 2014;58

Guan et al., 2015). Therefore, understanding the vegetation–water interactions in Africa59

is crucial.60

Vegetation access to water is driven by rainfall but modulated by the interplay among61

hillslope topography (Fan et al., 2019), soil properties, groundwater (Maxwell & Con-62

don, 2016), and root traits (Maeght et al., 2013). Meanwhile ecosystem properties con-63

trolling water use are likely adapted to climate and local hydrological conditions (Gentine64

et al., 2012). Representation of such complex and fine-scale interactions between veg-65
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etation, soil moisture, and groundwater within diverse landscapes still poses a challenge66

for land surface modellers (Clark et al., 2015; Fisher & Koven, 2020), and is hampered67

by the scarcity of observational constraints, especially for Africa.68

Analysis of remotely-sensed vegetation indices provides opportunities to infer con-69

trolling environmental factors and land surface characteristics over large spatial domains.70

As most of the ecosystems in Africa are subject to moisture limitations, patterns of veg-71

etation indices from remote sensing retrievals can be a proxy of underlying ecohydrolog-72

ical processes. In addition, annual recurrence of distinct wet and dry seasons over Africa73

provides a natural test bed to infer the effects of progressive water limitation and sec-74

ondary water resources.75

Characterising vegetation dynamics during dry season transition is challenging. Clas-76

sical phenological metrics (reviewed in Zeng et al., 2020), such as the start and the end77

of the growing season, developed from the perspective of energy limited ecosystems. How-78

ever, they are not tailored to the particularities of water-limited systems, i.e., vegeta-79

tion with the ability to access secondary water resources in hillslope scales. In contrast80

to temperature or radiation, soil moisture has a strong memory with a gradual decline81

of water over the dry season. Besides, the end of growing season varies with vegetation82

properties, e.g., rooting depth, and moisture storage capacity depending on climate, soil83

and topographic characteristics. As such, characteristics of vegetation dry-down reflects84

the underlying ecohydrological processes and the limiting factors.85

In this study, we characterise the dynamics of vegetation in the water-limiting pe-86

riod, i.e., the dry season, instead of those in the growing season. Here, the dry season87

is defined as the time period from the start of the effects of water limitations on vege-88

tation cover, i.e., the peak of growing season, to the end of water limitation, i.e., the on-89

set of the next growing season (see Fig. 1). The definition takes a vegetation perspec-90

tive and complements the more traditional approaches using atmospheric forcing like pre-91

cipitation thresholds. Furthermore, distinct temporal features of vegetation dynamics92

in the dry season provide indications of ecohydrological properties directly relevant to93

vegetation, such as ecosystem water storage capacity, access to secondary water resources94

due to groundwater or topographic moisture convergence, and ecosystem water use ef-95

ficiency during photosynthesis. Undoubtedly, mapping such ecohydrological character-96

istics in space facilitates a better understanding, and subsequent modelling of vegetation–97

water interactions. We are aware that many factors influence temporal dynamics of veg-98

etation cover and that the potential attribution to ecohydrological phenomena is con-99

tingent on the presence of predominately water-limited ecosystems such as over most of100

Africa.101

We provide a set of relevant ecohydrological metrics for the African continent at102

∼ 0.04◦ spatial resolution. As mentioned previously, these metrics were derived using103

the vegetation dynamics in the decay phase in the time series. It should here be noted104

that the vegetation decay in Africa is mostly associated with water availability. Through-105

out this manuscript, we, therefore, use decay interchangeably with dry season, and as-106

sociate both of them with vegetation dynamics under water limitation. The ecohydro-107

logical metrics were derived from the daily Fraction of Vegetation Cover (FVC) from geo-108

stationary satellite observations (see Sec. 2). The set of derived metrics (illustrated in109

Fig. 1) encompasses:110

1. the asymptotic values for minimum and maximum of the FVC,111

2. start day and duration of the dry season and the integral of FVC in the dry sea-112

son, and113

3. the exponential decay rate of FVC during dry-down.114

The spatial patterns in minimum FVC, hereafter FV Cmin, are likely related to the115

minimum amount of plant available water that would support vegetation activity via sec-116
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ondary water resources, i.e., deeper soil moisture and/or groundwater. The maximum117

FVC may be indicative of the maximum plant accessible water; and together with FV Cmin118

allows for assessing the seasonal changes in vegetation (associated with water limitation).119

Since the cumulative water stress is expected to shape plant adaptation to prevailing wa-120

ter conditions (Caylor et al., 2009; Good & Caylor, 2011), the identification of the start121

and duration of the dry season is fundamental for ecohydrology. The integral of FVC122

over the dry season essentially diagnoses the total vegetation activity during the dry sea-123

son, and is thus indicative of the vegetations dry season water consumption. The inte-124

gral can be used to diagnose ecosystems’ buffering capacity for progressive water lim-125

itation during dry season, say, due to deep root distribution.126

The time scale of FVC decay is estimated for dry-down events, i.e., when ecosys-127

tems are predominantly water-limited. To do so, we assume that the plant available wa-128

ter is a single-pool linear storage reservoir with an exponential decline over time. Such129

assumption has been previously applied to satellite retrievals of surface soil moisture, show-130

ing associations of the decay with soil texture and aridity (McColl et al., 2017). Simi-131

larly, the e-folding time of evapotranspiration observed from eddy covariance flux tow-132

ers revealed patterns of associations with plant height and seasonal aridity (Teuling et133

al., 2006; Boese et al., 2019; Mart́ınez-de la Torre et al., 2019). In order to satisfy the134

single-pool linear storage model, we considered only the convex part of the vegetation135

decay and referred to it as dry-down. In summary, the e-folding time of FVC is an emer-136

gent ecohydrological signature of the complex interactions between vegetation, climate,137

soil, and possibly groundwater.138

To derive the ecohydrological metrics for the African continent from high-resolution139

remote sensing data (Sec. 2), we developed of a robust methodology (Sec. 3) to deal with140

noise, gaps, widely varying dynamics, and data size. The quality diagnostics along with141

the derived metrics (Sec. 4), and open code for derivations, enables future advances in142

understanding and modelling ecohydrological processes and variability. Initial analysis143

and corroboration with independent data illustrates the potential of applications of the144

ecohydrological metrics (Sec. 5).145

2 Data146

2.1 Fraction of Vegetation Cover147

The FVC, derived from a spectral mixture analysis of the satellite retrievals, is a148

vegetation index summarising the coverage ratio of vegetation per unit total land area149

within a grid cell (Trigo et al., 2011). With a range of 0–1, FVC is often used to derive150

fundamental vegetation indices such as the Leaf Area Index. The FVC product used in151

this study was obtained from the Satellite Application Facility for Land Surface Anal-152

ysis (LSA-SAF) of the European Organisation for the Exploitation of Meteorological Satel-153

lites (EUMETSAT). The product is based on the retrievals of the Spinning Enhanced154

Visible and Infrared Imager (SEVIRI) sensor on board the Meteosat Second Generation155

(MSG) satellite (Trigo et al., 2011). As a geostationary satellite, the MSG has a circu-156

lar spatial coverage of Earth centred at 0◦ longitude, and it covers Europe and Africa157

entirely (see an example of the original FVC data for a day in Fig. A1). The SEVIRI158

is a multispectral optical sensor with 12 spectral bands, and a temporal resolution of 15159

minutes. Under the sub-satellite point (nadir), it has 3.1 km spatial resolution in the nor-160

mal bands, and a high-resolution band with 1 km spatial resolution. The spatial reso-161

lution of the retrieval decreases with distance from the nadir, as for all geostationary satel-162

lites. The FVC data product is available at daily temporal resolution spanning the time163

period from early 2004 to present. The FVC product, as well as its complete details, are164

available at https://landsaf.ipma.pt/en/products/vegetation/fvc/ .165
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For this study, we selected the spatial domain as the African continent. We resam-166

pled the original data to a spatial resolution of 0.0417◦ (∼ 5 km) with the nearest neigh-167

bour method (using gdalwarp function in GDAL (GDAL/OGR contributors, 2020)). In168

terms of temporal domain, we used nearly 16 years of data, from the beginning of the169

records in 2004, to the end of 2019.170

2.2 Ancillary data171

Climate:172

To characterise major climate conditions, we used the Köppen–Geiger climate clas-173

sification data (Rubel & Kottek, 2010) which is available at 0.0833◦ spatial resolution.174

For the sake of interpretability, we simplified the original climate classes into 6 major175

climate groups: arid desert (BW ), arid steppe (BS ), tropical humid (Af & Am), trop-176

ical with dry season (As & Aw), temperate humid (Cf ), and temperate with dry sea-177

son (Cs & Cw). A small number of grid cells with continental (D) or polar (E ) climates178

around Mount Kilimanjaro were discarded. A map of the simplified climate classes can179

be found in Fig. D1.180

Accessible water storage capacity and rooting depth:181

We compared the integral metric (Ids) against other proxies of plant accessible wa-182

ter. For that, we selected the rooting depth and plant available water storage capacity183

data from previous studies. For rooting depth, we used two data: Yang et al. (2016), at184

0.5◦ spatial resolution, derived from a carbon cost–benefit model, and potential rooting185

depth data from Fan et al. (2017), at 0.0083◦ spatial resolution, derived with a plant adap-186

tion perspective via inverse modelling of root water uptake. For water storage capacity,187

we again used two datasets based on hydrological or land surface models: data from Tian188

et al. (2019) at 0.25◦ spatial resolution, and that from Wang-Erlandsson et al. (2016)189

at 0.5◦ spatial resolution. For a consistent comparison across data at different resolu-190

tions, we aggregated all data to a common spatial resolution of 0.5◦ by simple averag-191

ing. Note that the spatial aggregation may result in the loss of the spatial variability preva-192

lent locally and potentially captured at a high resolution.193

Topography:194

To relate the variation of the metrics with local-scale heterogeneity and convergence195

of moisture caused by topography, we used the Height Above Nearest Drainage (HAND)196

data from Yamazaki et al. (2019). The HAND is a normalised metric derived from to-197

pography that is closely related with drainage topology and potential local-scale conver-198

gence of soil moisture and groundwater (Nobre et al., 2011). The HAND data used here199

is based on the MERIT digital elevation model at a spatial resolution of 3-arc second200

(∼ 90 m). We used the original high-resolution data after aggregating (simple average)201

to the resolution of our ecohydrological metrics (0.0417◦).202

Canopy height:203

Since canopy height is an important indicator of ecosystem functions and is asso-204

ciated mostly with water limitation (Tao et al., 2016), we analysed the covariation of canopy205

height with the decay rate of vegetation cover during dry-down. We used the lidarderived206

canopy height data from the retrievals of the ICEsat satellite at a spatial resolution of207

1 km (Simard et al., 2011). We used the data after aggregating (simple average) to 0.0417◦.208

3 Methodology209

The derivation of the ecohydrological metrics (see Table 1) is based exclusively on210

the daily FVC time series. The method can be divided into four main steps: (i) mask-211
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ing and retrieval of minimum and maximum FVC (FV Cmin and FV Cmax), (ii) detec-212

tion of start and end of the dry seasons (tds), (iii) estimation of the dry season FVC in-213

tegral and duration (Ids and D), and (iv) estimation of the FVC decay rate during dry-214

down (λ). Each methodological step is described in detail in the following subsections.215

Table 1: A summary of ecohydrological metrics derived from FVC time series in this
study.

Metric Quality Diagnostic

Minimum asymptotic value of vegetation cover (FV Cmin)
-

Maximum asymptotic value of vegetation cover (FV Cmax)

Duration of dry season (D) Variation
Starting day of year of dry season (tds) Variation

Integral of time series of vegetation cover in dry season (Ids) Variation

e-folding time of vegetation cover during dry-down (λ) Variation, number of converged estimations

3.1 Masking and retrieval of minimum and maximum FVC216

To remove the effect of outliers within a time series, we selected the 2nd and 98th217

percentiles of the entire records of the FVC data as the minimum (FV Cmin) and the218

maximum asymptotic values (FV Cmax). To maintain a reliable signal-to-noise ratio, we219

filtered out any grid cell with (i) FV Cmax < 0.1 (ii) more than one-third of the time220

series were missing before further steps. Due to the simplicity of the derivation of FV Cmin221

and FV Cmax metrics, quality diagnostics were deemed unnecessary, and not derived in222

this set of metrics.223

3.2 Detection of dry seasons224

Detection of the dry season was based on a procedure using the first derivative of225

the smoothed FVC (V ′) (see Algorithm 1). We smoothed daily time series of the FVC226

with a 31-day moving average (Vsm). Then each day in the time series was marked as227

decay, recovery or stable. To do so, we set two thresholds for dry and wet seasons as thdry228

and thwet, respectively. We used the 75th and 70th percentiles of the negative deriva-229

tive (V ′) as thresholds thdry and −thwet for each grid cell. The magnitude thdry is, thus,230

bigger than thwet. Only the magnitude of thwet was taken as a positive threshold to de-231

tect the increase in FVC.232

An observation was considered as decay if V ′ < thdry, recovery if V ′ > thwet,233

and stable if thdry ≤ V ′ ≤ thwet. The resulting time series of classes (decay, stable,234

or recovery) were then smoothed by retaining the majority of decay and stable against235

recovery within a 5-day moving window. Dry season was then identified as the period236

from the beginning of a decay to the end of a stable period. In order to ensure the ro-237

bustness of the end of the stable period, especially in hyper-arid regions with poor signal-238

to-noise ratio, we extended the detected dry seasons until the next significant increase239

in Vsm (> 5% of the corresponding seasonal amplitude of FVC). Note that the selec-240

tion of the thresholds and the moving window sizes were based on extensive exploration241

and visual inspection of the FVC time series. The exploration was a necessary step to242

ensure the robustness against noise in the data, as well to address the diversity of FVC243

dynamics across African ecosystems. To highlight the complexity, some representative244

time series of FVC in selected grid cells across different climates are included in Appendix245

Appendix B.246
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After detection of all dry seasons in the time series, we only selected the longest247

one per calendar year. This is necessary for regions where vegetation may potentially248

have two growing (and drying) seasons within a year. The longest dry season within a249

year is likely to be the most indicative of the largest water limitation, and the under-250

lying ecohydrological mechanisms. When the detected dry season spanned over two cal-251

endar years, it was assigned as the dry season of the starting year. In total, the dry sea-252

son detection algorithm (Algorithm 1) yielded 16,423,339 dry seasons in 1,029,847 grid253

cells.254

Algorithm 1 Detection of dry seasons from the entire time series

1: Smooth FVC time series with 31 days moving average; to yield Vsm
2: Calculate the first derivative of FVC time series from Vsm with daily step size; to

yield V
′

3: Through the entire time series, set the threshold for decay as thdry=percentile(V
′
, 75)

where V
′
< 0

4: Through the entire time series, set the threshold for growth as thwet=-1 ×
percentile(V

′
, 70) where V

′
< 0

5: Mark each observation for their corresponding period as:
if V ′ < thdry then decay
else if V ′ > thwet then recovery
else stable

6: Smooth the classes with a 5-day moving window by majority voting
7: Label consecutive observations marked with decay and followed by stable ones as dry

season
8: Extend every dry season label until Vsm > min(Vsm) + 0.05× (max(Vsm)−min(Vsm))

is satisfied in the corresponding season
9: For each grid cell, keep only the longest dry season per year

3.3 Derivation of duration related metrics255

We calculated the integral of FVC during dry season (Ids) as the total area under256

the FVC time series from the start to end of the dry season, with the area under FV Cmin257

removed. This can be expressed as,258

Ids =

dryseason∑
FV C(t)− FV Cmin (1)

Removal of the baseline FVC value (FV Cmin) enhances the signal of seasonal de-259

cay of vegetation with respect to baseline vegetation activity. Note that, upon necessity,260

the full integral (total area under the curve) can be calculated as the sum of Ids and D×261

FV Cmin.262

From the yearly dry season detection, 16 (the number of years) values of D, tds and263

Ids we computed for each grid cell. We selected the median of the 16 values as the rep-264

resentative inference to be used for spatial analyses. The median was preferred over the265

mean to make the estimation robust against annual variations, for instance, by intermit-266

tent rain events in the dry season or issues related to FVC derivation. In addition, we267

also calculate and report the normalised robust Standard Error (SE) as an indicator of268

variability. The SE is calculated as,269

SE =
SDn√
n

(2)
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where SDn is the robust standard error, calculated from the Median Absolute De-270

viation (MAD) across years (with the assumption of a normal distribution, Rousseeuw271

& Croux, 1993), and corrected for the low number of samples (n = 16) as:272

SDn = MAD × 1.4826× n

n− 1
(3)

The robust standard error reflects variability of the metrics among years as well273

as methodological uncertainty, and is therefore suitable for customised filtering in the274

context of spatial analysis.275

3.4 Derivation of exponential decay rate276

Temporal decay of the FVC can be characterised using an exponential function as,277

FV C = (FV Cdd − FV Cmin)× e−t/λ + FV Cmin (4)

where FV Cdd is the initial FVC value in the beginning of a dry-down, and λ is the278

e-folding time (in days). Note that λ is merely an inverse of the exponential decay rate.279

The formulation in Eq. 4 uses λ as it is easier to interpret. In simple terms, λ denotes280

the number of days needed to have a decrease in the seasonal amplitude of FVC (FV Cdd−281

FV Cmin) to 1/e of its original value during a dry-down event.282

Due to the S-shaped character of temporal vegetation dynamics, functions allow-283

ing different convexity, e.g., logistic functions, have been used to characterise the veg-284

etation decay. As exponential decay functions are strictly convex, the concave part of285

the decay is not considered in this study. Note that curvature is concave mostly at the286

beginning of dry season, which is of smaller relevance to the metrics presented here. In287

addition, the selected exponential decay function takes into account an asymptotic value288

of the FVC, as FV Cmin (see Sec. 3.1) is explicitly included in the formulation (Eq. 4).289

At the beginning of a dry season, when water demand of the ecosystem is still largely290

supported by surface soil moisture, the FVC typically does not decay at an exponential291

rate. To identify the dry-down period, for which λ is estimated, we infer insights from292

the mathematical properties of the exponential decay function. As the curvature of the293

exponential decay function is strictly convex, the first derivative is negative, and the sec-294

ond derivative is positive. Therefore, we first discarded the time steps with concave ob-295

servations (negative first and negative second derivative). Afterwards, we filtered out the296

convex observations before the inflection point of the FVC, that mostly associated with297

low signal-to-noise ratio at the beginning of the dry-down. After marking the observa-298

tions as either convex or concave, we searched for local minimum of V ′ in the first third299

of the dry season, and identified the inflection point as the start of the dry-down. Note300

that, in the above process, second derivative of the FVC (V ′′) was also smoothed with301

a 31-day moving window.302

This procedure effectively removes observations with concave shape in the dry sea-303

son, especially at the beginning of an event. For each event, if more than half of the data304

points showed convexity, we estimated λ, together with FV Cdd, based on an asymptotic305

regression model that minimises least squares error with the Levenberg–Marquardt al-306

gorithm (Moré, 1978; Elzhov et al., 2016)). We used both the Nash–Sutcliffe modelling307

efficiency (NSE; Nash & Sutcliffe, 1970) and the standard error of the model (SEm) to308

assess the estimates of the model fitting. From the multiple λ estimates, only those with309

successful convergence of the Levenberg–Marquardt algorithm with NSE > 0.5 and310

SEm(λ) < 0.5×λ were selected, the median of which was taken as the representative311

final λ for a grid cell.312
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Algorithm 2 Identification of dry-down periods and modelling of the exponential decay

1: Smooth V
′

with 31 days moving average; to yield V
′

sm

2: Calculate the second derivative of FVC time series from V
′

sm with daily step size; to
yield V

′′

3: Smooth V
′′

with 31 days moving average; to yield V
′′

sm

4: Mark each observation with V
′

sm < 0 as:
if V

′′

sm > 0 then convex
else concave

5: Ignore convex observations before the inflection point of FVC time series, if there is
any

6: Ignore concave observations within the dry season and keep the rest as the dry-down
period

7: Discard any event having more concave observations than convex
8: Use Eq. 4 on dry-down period of the dry season to estimate λ
9: Filter out the estimations with NSE < 0.5 OR SEm(λ) > 0.5× λ

After defining the final λ, we estimated the variation as done in Sec. 3.3. Unlike313

in Sec. 3.3, the sample size per grid cell (n) may change, as λ estimation may not con-314

verge in cases with high noise. We, therefore, also report the number of successful con-315

vergences of the Algorithm 2 as an additional quality diagnostic that can be used for fil-316

tering λ (mapped in Fig. G1).317

4 Ecohydrological metrics from vegetation time series dynamics318

In this section, we present and discuss the ecohydrological metrics derived in this319

study (see Table 1). Here we present the metrics independently, but we summarise their320

cross-comparison in Fig. C1. For each metric we show the variation in continental scale321

by maps along with zoomed inset plots (see Sec. Appendix D for further information and322

visual impression by corresponding Google Earth cut-outs) to visualise regional variabil-323

ity. Box plots for major bioclimatic regions (see Sec. 2.2 for the definition) provide in-324

sights on the co-variation with large scale climate.325

4.1 Minimum and maximum FVC326

The spatial distributions of FV Cmin and FV Cmax, histograms of the distribution327

in the full domain, and six zoomed insets focusing on selected regions are shown in Fig.328

2a and 2b (see Fig. E1 for the seasonal dynamics expressed as FV Cmax − FV Cmin).329

At the continental scale, both FV Cmin and FV Cmax follow the climate gradient with330

the highest and the lowest values in humid and arid regions, respectively. Nevertheless,331

compared to FV Cmax, FV Cmin has a stronger spatial gradient associated with climate332

seasonality within each major climate group (see Fig. 2c). Understandably, the climatic333

groups with a distinct dry season have a lower FV Cmin. This highlights the effect of wa-334

ter limitation on vegetation dynamics in regions with distinct seasonality of water avail-335

ability (see Fig. D1 for map of simplified climate classes as well as Google Earth views336

of the insets).337

In addition to the climate-associated large scale gradients, the metrics also exhibit338

a substantial local-scale heterogeneity. In arid regions, FV Cmin is higher in areas closer339

to the water sources, as can be seen near the Senegal and Gambia rivers (Box-A in Fig.340

2a). Positive effect of seasonal flooding on FV Cmin is also evident near large inland deltas341

(e.g., the Okavango Delta and the Sudd swamp, Box-D and Box-F in Fig. 2a, respec-342

tively). Such local-scale heterogeneity clearly exhibits the importance of secondary wa-343

ter sources in water-limited systems, especially on top of the large climate-driven spa-344

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

tial variations, and highlights the usefulness of vegetation-based asymptotic metrics for345

ecohydrological studies.346

4.2 Dry season duration related metrics347

The dry season duration, D, also follows the climatic gradient at the continental348

scale, with the shortest dry season in tropical humid, the longest in arid, and interme-349

diate values in the temperate climates (Fig. 3a). Even for tropical and temperate cli-350

mate, D consistently increases when the sub-climate includes a dry season (Fig. 3c). The351

decrease in D from arid steppe to arid desert climate suggests that the Algorithm 1 may352

still be sensitive to very low signal-to-noise ratios in some of the hyper-arid regions with353

low FVC and rare, episodic rainfall. Though, such occurrences can be well identified and354

filtered using the variation of D, as the values in some hyper-arid regions are relatively355

high (Fig. 3b).356

At local scales, variations in D emerge as a combined effect of climate and other357

local ecohydrological factors, such as proximity to the nearest drainage or occurrences358

of shallow water table depth. This, once again, is particularly the case in semi-arid cli-359

mates. For example, shorter dry seasons appear in seasonally flooded areas like Barotse360

Floodplain, the Okavango Delta, and the Sudd swamp, where shallow water tables of the361

floodplains support vegetation for longer periods (Box-D and Box-F in Fig. 3a). In these362

regions, lateral water transport and moisture convergence in the floodplains provide an363

important buffer for vegetation against the climate-driven dryness, which would not be364

detectable from precipitation data.365

Ids shows on average smaller values in humid tropical and arid desert compared366

to the other climates of intermediate dryness. However, variation of Ids within climate367

groups is much larger when subject to intermediate dryness (Fig. 4a and 4c). The re-368

gional inset plots show the impact of shorter dry season duration on Ids in seasonally369

flooding wetlands (Box-D and Box-F of Fig. 4a). However, Ids does not only follow the370

patterns of D. For example, the variation of Ids in the Lower Zambezi and its tributaries371

does not coincide with that of D (Box-E of Fig. 4a and Fig. 3a). The highest values of372

Ids in the Lower Zambezi, bear strong similarity with the rooting depth product of (Wang-373

Erlandsson et al., 2016), and the previously reported seasonal hydrologic buffer (Kuppel374

et al., 2017) in these regions (see Sec. 5.1 for further corroborations).375

4.3 Exponential decay rate376

The λ, presented in Fig. 5a, has a mean value of 41 days with a positively-skewed377

distribution at the continental scale. We find the lowest λ values throughout the humid378

regions and partially in the arid regions, such as edges of the Sahara desert or the Horn379

of Africa. The highest λ values are found in the semi-arid and arid regions. Though vari-380

ation of λ (Fig. 5b) suggests that the low values of λ in some hyper-arid regions are as-381

sociated with higher uncertainty due to low signal-to-noise ratio.382

Besides the coherent continental-scale spatial patterns, λ also has strong variations383

at the local scale. Stronger lateral moisture convergence positively affects the λ in the384

arid regions, as seen in the Senegal (Box-A, Fig. 5a) and the Niger (partially in Box-B,385

Fig. 5a) rivers in the arid climate. However, lateral moisture convergence does not al-386

ways affect λ positively, as seen in the Upper Zambezi and the Okavango rivers and their387

tributaries. The λ is high around the Cuando river, the Okavango Delta and the Liny-388

ati swamp, but low in the Barotse Floodplain (Box-D in Fig. 5a). Such non-trivial pat-389

terns suggest the role of complex interactions between the vegetation traits and local mois-390

ture conditions (Fan et al., 2019), which also effect λ (see Sec. 5.2 for further corrobo-391

rations and discussions).392
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5 Corroborating products and potential applications393

5.1 Relationship between Ids and plant available soil water holding ca-394

pacity395

Conceptually, plant water storage capacity is related to the vertical distribution396

of roots, and the water holding capacity of the soil that is determined largely by texture397

and organic carbon content. The root profile of water-limited ecosystems appears to adapt398

to the prevailing hydrologic and soil conditions while being constrained by other ecosys-399

tem properties and traits (Guswa, 2008; van Wijk, 2011; Fan et al., 2017; Schenk, 2008;400

Schenk & Jackson, 2002; Laio et al., 2006). Plant water storage capacity controls the propen-401

sity and sensitivity of ecosystems to drought stress in dry periods. Various modelling ap-402

proaches to infer rooting depth or plant water storage capacity have been proposed (explained403

in detail in Wang-Erlandsson et al., 2016), as it cannot be observed directly but still con-404

tains a critical information for global-scale models (Kleidon & Heimann, 1998).405

The integral of the FVC during dry season should be positively correlated with plant406

accessible water storage of the soil, as larger water storage would facilitate vegetation407

activity for longer period during water-limited conditions. The continental scale pattern408

of Ids (Fig. 4a) with the largest values in strongly seasonal semi-arid Savannah systems409

of both hemispheres is qualitatively consistent with the previous observation-based anal-410

ysis (e.g. Schenk & Jackson, 2002) as well as the optimality-based models (e.g. Kleidon411

& Heimann, 1998). Ids declines in hyper-arid regions like the Sahel, Horn of Africa, South-412

ern Africa, as well as the Congo rainforest. A similar pattern would be expected for op-413

timal rooting depth, which increases in regions with small differences between rainfall414

and potential evaporation in annual scales but large differences in seasonal scales (Laio415

et al., 2006; van Wijk, 2011). The inset plots in Fig. 4a clearly reveal the landscape scale416

patterns of Ids, presumably, due to topography-driven large variations of moisture. This417

may reflect enhanced and continued moisture supply due to topographic moisture con-418

vergence or shallow water tables along with possible adaptations of rooting depth to these419

local hydrological conditions (Fan et al., 2017).420

We compared Ids with 4 products of plant storage capacity (Wang-Erlandsson et421

al., 2016; Tian et al., 2019) or rooting depth (Yang et al., 2016; Fan et al., 2017) at 0.5◦422

across Africa. As shown in Fig. H1, there is qualitative agreement of high values of Ids423

and the storage capacity from Tian et al. (2019) and Wang-Erlandsson et al. (2016) in424

the Miombo woodlands and, to a lesser extent, also in the northern savannahs. All three425

also agree on low values in hyper-arid regions like the Sahel, Horn of Africa and in South-426

ern Africa. A pairwise comparison of Spearmans correlation coefficient among the five427

estimates (Fig. 6) reveals that the strongest agreement is between Ids and storage ca-428

pacity from Wang-Erlandsson et al. (2016). The overall low-to-moderate correlation val-429

ues among the previous observation-based products demonstrates the scale of the chal-430

lenge in estimating plant water storage capacity or rooting depth (Fig. 6).431

All four independent products utilised meteorological input data for water balance432

estimation, and also use remotely-sensed vegetation products in some way. While the433

products of Wang-Erlandsson et al. (2016) and Tian et al. (2019) are constrained by hy-434

drological earth observations, the rooting depth products of Fan et al. (2017) and Yang435

et al. (2016) originate largely from different assumptions of optimality and plant adap-436

tation. Our comparison suggests that estimating plant storage capacity based on Earth437

observation data may be more suitable than the presently-used optimality principles. Us-438

ing Ids as an indicator of plant water storage capacity has the advantage that it is de-439

rived from dense time series of a geostationary satellite alone, requiring no additional440

meteorological inputs or modelling assumptions that introduce their inherent uncertain-441

ties. In a sense, the remote sensing based Ids is directly associated with the actual veg-442

etation growth, and is completely independent of the assumptions and uncertainties of443

theoretical models or meteorological dataset. Furthermore, Ids features much higher spa-444
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tial resolution than most other storage capacity data, which provides insights in the role445

of topography-driven subsurface moisture variations.446

There are many factors other than plant water storage capacity that could influ-447

ence Ids. Therefore we compared the variation of Ids with the HAND data in different448

climate groups to find associations of Ids with topographically induced moisture vari-449

ations (Fig. 7). In dry regions, Ids tends to decline with increasing HAND, apparently450

above a varying HAND threshold. This implies that shallow water tables may support451

vegetation with additional moisture availability under dry conditions, as also shown in452

Koirala et al. (2017). Therefore, Ids is a suitable proxy for analysing the complex pat-453

terns and processes surrounding groundwater–soil moisture–vegetation interactions.454

5.2 λ and canopy height455

The rate of FVC decay during dry-down events, λ, can corroborate to the rate of456

decrease of plant available water, ecosystem scale water use efficiency, and the propen-457

sity to senescence. Ecosystems differ widely in their water use strategies, from being wa-458

ter conservative – typically associated with strong down-regulation of stomatal conduc-459

tance with water deficiency – to aggressive exploitation of water resources (Laio et al.,460

2001). Herbaceous plants are typically aggressive water users and cease with the deple-461

tion of surface soil moisture. Woody plants risk cavitation and death under severe wa-462

ter stress, and such, trees in places with frequent dry periods benefit from a water sav-463

ing strategy or senescence for prolonged periods. Konings and Gentine (2017) inferred464

ecosystem water-use strategies globally based on diurnal variations of vegetation opti-465

cal depth assuming that those reflect stomatal regulation to maintain leaf-water poten-466

tial. They found an increase in isohydricity, the degree of stomatal regulation and sub-467

sequent water savings, with increase in vegetation height, consistent with the need of tall468

trees to prevent hydraulic failure during drought.469

If the rate of FVC decay was also related to the ecosystems’ water use strategy in470

a similar manner, we would expect slower FVC decay (higher λ) with increasing canopy471

height. For arid regions, we indeed find a tendency of increasing λ with canopy height472

(Fig. 8), suggesting that λ incorporates ecosystem water use strategy traits as well as473

direct/indirect effects of soil moisture therein. However, as the climate gets wetter, or474

over the entire African continent, λ tends to decrease with canopy height. A possible ex-475

planation would be that water consumption, i.e. transpiration, increases with canopy height476

resulting in a faster depletion of moisture storage (Koirala et al., 2017), or increasing ecosys-477

tem water use efficiency with aridity. Even though interpretation of the spatial variabil-478

ity of λ remains speculative at this point, the initial analysis and considerations given479

here show the potential of gaining ecohydrological insights, especially for model-data-480

fusion exercises.481

6 Conclusions and outlook482

Using retrievals of the SEVIRI sensor of the geostationary satellite MSG, we de-483

rived ecohydrological metrics for continental Africa entirely from the temporal dynam-484

ics of the daily Fraction of Vegetation Cover (FVC) time series from 2004 to 2019 at 0.0417◦485

spatial resolution. Our metrics captures both, continental scale gradients and covaria-486

tions with climate as well as structured regional variations, e.g. due to topographic fac-487

tors. This provides an unprecedented opportunity to improve our understanding of eco-488

hydrological processes across spatial scales over Africa.489

The minimum asymptotic value of vegetation cover (FV Cmin) gives indications on490

where secondary water resources support vegetation in the dry season. Duration and start-491

ing day of the dry season (D and tds, respectively) show the effective extent and start492

of the water-limited period, a critical source of information for any ecohydrological anal-493
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ysis or model study. Because they incorporate the effects of non-climatic factors as well,494

they are complementary to e.g. precipitation-based dry season delineations and have fur-495

ther the advantage that they can be estimated at higher spatial resolutions. The inte-496

gral of FVC time series in dry season (Ids) indicates buffering capacity of vegetation on497

moisture limitation and shows broad consistency with inferred variations of the plant stor-498

age capacity or rooting depth. Since this is an important, but at the same time a very499

uncertain, aspect in ecohydrology, our high-resolution estimate of Ids may help under-500

stand and model ecohydrological processes more accurately. The spatial patterns of Ids501

may be used to analyse plant water storage capacity in ecohydrological models and re-502

place simplistic approaches where this varies only with vegetation type and soil. Finally,503

the e-folding time of vegetation cover during dry-down (λ) reveals the decay rate of veg-504

etation during dry season, which emerges from the complex ecohydrological interactions.505

Using the structured but highly variable spatial patterns of λ, we believe much can be506

learned about underlying mechanisms by thorough analysis and modelling studies. The507

suggested algorithms for deriving the metrics and the provision of the code facilitates508

consistent parallel assessments and helps overcome the technical difficulties of dealing509

with large volumes of data and the particularities of vegetation cover retrievals from the510

geostationary satellites. There remain multiple opportunities for further synergistic ex-511

ploitation with retrievals of surface temperature from geostationary satellites which could512

provide complementary indicators on variations of moisture states inferred from an en-513

ergy balance perspective.514

7 Data and code availability515

All ecohydrological metrics and their quality diagnostics derived and presented in516

this study are available in standardised netCDF data format in https://doi.org/10517

.17871/bgi ehydro afr 2020 (use ftp://ftp.bgc-jena.mpg.de/pub/outgoing/ckucuk/518

ecoHydro Afr to download the data anonymously) (Küçük et al., 2020).519

The R scripts developed for the implementation of the methodology are available520

for research uses. They can be accessed through https://github.com/caglarkucuk/521

EcohydroMetrics Africa.git (also at ftp://ftp.bgc-jena.mpg.de/pub/outgoing/522

ckucuk/EcohydroMetrics Africa Repository.zip to ensure anonymity) and cited as523

Küçük et al. (2020).524

The ancillary data from Tian et al. (2019) was obtained by contacting to the cor-525

responding author. All other datasets were obtained from the public domain using the526

information in the cited literature (see Sec. 2).527
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Figure 1: Conceptual plot of the ecohydrological metrics derived from time series using
synthetic data. Points represent observations for wet season, early dry season and dry
season with dry-down in light grey, grey and black, respectively. Dry and wet seasons are
defined by presence of decay, i.e., first derivative of the time series, while dry-down period
is defined by the convexity of the decay, i.e., using both first and second derivatives (see
Sec. 3.4 for details). The shaded area shows the integral of FVC during dry season. The
curve shows the fitted line on the FVC time series during dry-down using the asymp-
totic exponential decay function. All metrics presented in this study are shown in bold
characters.

(a) (b) (c)

Figure 2: (a) Minimum asymptotic values of FVC, FV Cmin, (b) maximum asymptotic
values of FVC, FV Cmax, (c) box plot showing the distribution of FV Cmin and FV Cmax
in different climate groups. A histogram of the metrics mapped can be seen inside the
major plot, with a dashed line indicating the mean values of the domain in all maps. See
Sec. Appendix D for further explanation of the insets in the map. In all of the following
box plots, median values per class are shown in the intermediate line of the boxes, with
their 95 % confidence intervals notched. Upper and lower edges of the boxes show the
interquartile range (75th and 25th percentiles, respectively) while the error bars show 1.5
times the interquartile range.
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(a) (b) (c)

Figure 3: (a) Duration of the dry season (in days), D, (b) variation of D, (c) distribution
of D within climate groups (see Fig. 2c for plotting details).

(a) (b) (c)

Figure 4: (a) Integral of FVC time series in the dry season, Ids, (b) variation of Ids, (c)
distribution of Ids within climate groups (see Fig. 2c for plotting details).
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(a) (b) (c)

Figure 5: (a) e-folding time of FVC time series during dry-down (in days), λ, (b) varia-
tion of λ, (c) distribution of λ within climate groups (see Fig. 2c for plotting details).

Figure 6: Spearman’s correlation coefficients between different plant available water
storage products.
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Figure 7: Covariation of Ids and HAND for different climate groups, and for the full
study domain. Spearman’s correlation coefficients between Ids and HAND are annotated
in the panels.

Figure 8: Covariation of λ and canopy height for different climate groups, and for the
full study domain. Spearman’s correlation coefficients between λ and canopy height are
annotated in the panels.
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Appendix A An example map of the original FVC data for a single532

day533

Figure A1: The original FVC data product for a single day, taken from
https://landsaf.ipma.pt/en/products/vegetation/fvc/

Appendix B Time series of FVC in example grid cells534

In this subsection; we present 5 years time series of two selected grid cells from each535

simplified climate class to demonstrate the results of the algorithms in grid cell scale.536

Figure B1: Time series of two grid cells from tropical humid climate (Af, Am) with coor-
dinates (23.645832, 2.562501) and (29.145832, 2.562501), respectively. Seasonal values of
λ and Ids are shown inside the plot while final values of the metrics are given in the plot
titles.
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Figure B2: Time series of two grid cells from tropical climate with dry season (As, Aw)
with coordinates (9.562499, 10.145834)) and (45.812498, -24.479165), respectively. Sea-
sonal values of λ and Ids are shown inside the plot while final values of the metrics are
given in the plot titles.

Figure B3: Time series of two grid cells from temperate humid climate (Cf) with coordi-
nates (36.520832, 7.020834) and (30.104165, -1.104165), respectively. Seasonal values of
λ and Ids are shown inside the plot while final values of the metrics are given in the plot
titles.

Figure B4: Time series of two grid cells from temperate climate with dry season (Cs,
Cw) with coordinates (41.729165, 8.937501)) and (47.020831, -20.312498), respectively.
Seasonal values of λ and Ids are shown inside the plot while final values of the metrics are
given in the plot titles.
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Figure B5: Time series of two grid cells from arid climate with steppe land cover (BS)
with coordinates (18.354165, -20.229165) and (30.104165, -18.854165), respectively. Sea-
sonal values of λ and Ids are shown inside the plot while final values of the metrics are
given in the plot titles.

Figure B6: Time series of two grid cells from arid climate with desert land cover (BW)
with coordinates (49.395831, 7.479168) and (19.645832, -21.520832), respectively. Seasonal
values of λ and Ids are shown inside the plot while final values of the metrics are given in
the plot titles.
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Appendix C Density plots of the ecohydrological metrics537

Figure C1: Density plots of the ecohydrological metrics presented in this study.
FV Crange = FV Cmax − FV Cmin is used to summarise the minimum and maximum
FVC values.

Appendix D Map of simplified climate classes and Google Earth view538

of insets539

Fig. D1 shows the continental map of the simplified climate classes and the Google540

Earth views of the insets. Box-A: the Gambia and most of the Senegal rivers; Box-B:541

a small area of the Niger river mostly showing the transition from the Sahara desert to542

Sahel; Box-C: more on the transition from Sahel to tropical regions; Box-D: located in543

one of the most complex regions of Africa in terms of topography and lateral flow of wa-544

ter with lower sections of the Okavango and the Cuando rivers and upper section of the545

Zambezi river, together with multiple seasonally flooding areas like the Okavango delta,546

the Linyati swamp and the Barotse Floodplain. These seasonal wetlands are vital for the547

ecosystem and also provides great support against water limitation and heat for not only548

plants but also animals; Box-E: Lower Zambezi Basin together with the drainage of Lake549

Malawi to Zambezi. It also covers the Inyanga mountains located between Mozambique550

and Zimbabwe where a climatic shift happens due to the mountain range. Last but not551

least, Box-F, which is divided by the White Nile from South to North, covers the Sudd552

swamp with a climatic gradient from tropical to arid systems.553
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Figure D1: Map of simplified climate classes (from Köppen–Geiger climate classification)
in the centre and satellite view of the insets. Map and image data of the insets: Google
Earth c©2020 TerraMetrics.
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Appendix E Map of FV Crange to show insights of FV Cmin and FV Cmax554

Figure E1: FV Crange = FV Cmax − FV Cmin

Appendix F Map of starting day of year of dry season555

(a) (b) (c)

Figure F1: (a) Starting day of the dry season, tds, (b) SE of tds across years as a qual-
ity diagnostic, (c) latitudinal distribution of tds, where mean values per bin shown with
continuous while standard deviations are shown with dashed lines.

Appendix G Map of number of convergences of Algorithm 2556

Appendix H Maps of accessible water storage capacity datasets557
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Figure G1: Number of dry seasons in which the Algorithm 2 successfully converged.

(a) (b) (c)

(d) (e)

Figure H1: Maps of accessible water storage capacity and rooting depth datasets used in
this study. (a) Integrated FVC during dry season, Ids, (b) root zone storage capacity with
CRU precipitation data with 2 years of drought return period from Wang-Erlandsson et
al., 2016, (c) accessible water storage capacity from Tian et al., 2019 (d) effective rooting
depth from Yang et al., 2016, (e) rooting depth from Fan et al., 2017. All products are
aggregated to 0.5◦ and cropped for the study domain.
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