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Abstract 20 

Flood impacts to residential properties threaten the resilience of communities and the institutions 21 

that support them. These events can cause negative impacts to property-level balance sheets 22 

through uninsured damage and property value decreases, which in turn can increase the 23 

likelihood of mortgage default and property abandonment. To date, there have been limited 24 

attempts to quantify the magnitude and distribution of additional financial consequences that 25 

could arise from these processes following flood events. In this work, property-scale financial 26 

data, including property sales, mortgage originations, and insurance claims, are used within an 27 

analytical framework to quantify flood-related uninsured damages and property value decrease in 28 

order to estimate the financial risk that property owners, mortgage lenders, and local 29 

governments are exposed to via recovery decisions (i.e., default and/or abandonment). This 30 

framework is applied to residential properties in eastern North Carolina following Hurricane 31 

Florence (2018). Within the study area, Hurricane Florence generated $366M in observed 32 

insured losses and we estimate an additional $1.77B in balance sheet losses (i.e., uninsured 33 

damage and property value decrease). In addition, property owners, mortgage lenders, and local 34 

governments were exposed to an estimated $562M of risk from the increased likelihood of 35 

mortgage default and property abandonment. Areas with lower pre-event property values and 36 

lower rates of insurance purchase experienced significantly higher risk of mortgage default and 37 

abandonment. The method described provides more highly resolved estimates of how floods can 38 

drive systemic financial risk, information that can be useful in developing improved flood 39 

resilience strategies.  40 

 41 

 42 
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Plain Language Summary 43 

Large flood events are known to be destructive, but their impacts are complex. The largest events 44 

cause significant damage at uninsured properties, often requiring property owners to go into debt 45 

to make repairs. With time, the flood can also cause property value decreases. Together, these 46 

effects can make recovery from the flood difficult. Sometimes these effects can encourage 47 

mortgage default or even abandonment of the property.  This can create possible financial 48 

consequences for the property owner, the mortgage lender, or a local government. 49 

To calculate these effects, we estimated uninsured damage and property value changes 50 

throughout eastern North Carolina following Hurricane Florence (2018). We used data on the 51 

physical characteristics of residential properties, the surrounding environment, and homeowner 52 

finances. Results indicate that uninsured damage and property value decreases were substantial 53 

and that properties faced an increased likelihood of mortgage default and/or abandonment after 54 

Florence. Properties with lower values were especially likely to default and abandoned. The 55 

financial impact of these processes varies regionally and within communities, suggesting that 56 

property-level assistance could be targeted toward areas most in need of financial relief. Efforts 57 

to increase community resilience should recognize the ability of flood impacts to cascade 58 

financially through a community. 59 

 60 

 61 

 62 
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1 Introduction 63 

Flood events are society’s costliest natural hazards, with impacts expected to rise due to 64 

growing hazard exposure and climate change-driven increases in flood frequency and severity 65 

(Bates et al., 2020; Hallegatte et al., 2013; Hayhoe et al., 2018; Marsooli et al., 2019). These 66 

combined effects have already been observed via recent surges in insured losses at residential 67 

properties in the United States: in 2017, the National Flood Insurance Program (NFIP) paid out 68 

over $8.7 billion  in claims as the nation’s primary insurance provider (Kousky, Kunreuther, et 69 

al., 2020). Assessments of flood impacts often seek to estimate the amounts of uninsured damage 70 

in addition to insured losses, as rates of insurance purchase are low (Bradt et al., 2021; Dixon et 71 

al., 2006). Simple categories such as insured and uninsured damage, however, are often 72 

insufficient to understand the full consequences of flooding events over time and across 73 

stakeholders, as losses associated with large flood events are known to create delayed societal 74 

effects that are inextricably linked to the success of recovery efforts (Bubeck et al., 2017; 75 

Kreibich et al., 2014). This is particularly true when considering flood-related losses at 76 

residential properties, which can lead to cascading financial risk that impacts groups well beyond 77 

the property owners themselves (Kousky, Kunreuther, et al., 2020). The creation of this type of 78 

systemic financial risk following a flood event is an area that remains underexplored.  79 

Research on flood impacts on society has increased as the losses from these events have 80 

grown, with growing attention focused on how these events may be rippling through financial 81 

systems. Prior studies have correlated the pre-flood financial status of households with the 82 

success of their long-term recovery efforts (Billings et al., 2019; Howell & Elliott, 2019; 83 

Peacock et al., 2015; Ratcliffe et al., 2020b; Roth Tran & Sheldon, 2019).  Other studies have 84 

addressed similar questions with respect to linkages between the financial health of lending 85 
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institutions (Ratnadiwakara & Venugopal, 2020; Schüwer et al., 2019), local governments (Jerch 86 

et al., 2020; Painter, 2020; Shi & Varuzzo, 2020) and their resilience in the face of flood-related 87 

losses (Barth et al., 2019; Blickle et al., 2022; Brei et al., 2019; Klomp, 2014; Koetter et al., 88 

2020; Noth & Schuewer, 2018). These analyses complement calls to better quantify flood hazard 89 

and exposure as a means to improve community flood resilience (Bates et al., 2020; Blessing et 90 

al., 2017; Jenkins et al., 2017; Lorie et al., 2020; Woznicki et al., 2019). Flood-related losses can, 91 

for example, drive increased likelihood of residential mortgage defaults (Kousky, Palim, et al., 92 

2020) and property abandonment (Maly et al., 2016), and may thereby create financial 93 

consequences that are well beyond direct damage (Hellwig, 2009).  Despite these trends being 94 

observed, few attempts have been made to quantify the cascading financial risks arising from 95 

these large flood events. 96 

This study seeks to estimate the distribution of flood-related financial loss and risk across 97 

residential property owners, mortgage lenders, and local governments.  This is done via a new 98 

approach that incorporates consideration of not only losses attributable to direct damages, but 99 

also indirect losses in the form of flood-related changes in property value and owner equity. This 100 

allows for 1) the quantification of property-level balance sheet losses (i.e., direct but uninsured 101 

damages and property value decreases) at individual residential properties after a significant 102 

flood event; (2) estimation of financial risk exposure of property owners, lenders, and local 103 

governments; and (3) classification of the distribution of these risks across geographic and 104 

economic groups throughout the flood-prone study area of eastern North Carolina. This approach 105 

utilizes a series of geospatial and stochastic models to improve understanding of how systemic 106 

financial risk could arise from flood impacts to residential properties. As such, this work 107 

illustrates a more nuanced approach to evaluating flood-induced financial vulnerabilities, 108 
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providing new information that may inform planning for more effective recovery and resilience 109 

efforts in the future.  110 

1.1 Background: Cascading Financial Risk 111 

The process of financial risk generation at flood-affected residential properties begins 112 

with recognition of the multiple financial hurdles faced by property owners after an event. If the 113 

property is insured, direct damages may be fully covered, typically by the federal government’s 114 

National Flood Insurance Program (NFIP).  Rates of insurance purchase, however, are low (see 115 

Supporting Information (SI) for further discussion of the NFIP), and uninsured damage from 116 

major floods often represents the majority of total damage (Bradt et al., 2021; Dixon et al., 117 

2006). For Hurricanes Florence and Harvey, two large flood events in the southeastern United 118 

States, uninsured damage accounted for over 70% of the total flood damage from the events 119 

(CoreLogic, 2017; RMS, 2018).  Uninsured losses are often assumed to be borne by property 120 

owners alone (Government Accountability Office, 2017; Knowles & Kunreuther, 2014; Sheldon 121 

& Zhan, 2019), and while this is true to some degree, this assumption overlooks important 122 

cascading effects.  The distinguishing feature of this research is the attempt to quantify the flood-123 

related financial risk that groups beyond the property owners themselves face as a result of 124 

uninsured losses.  125 

Most uninsured residential property owners do not have the resources to fully pay for the 126 

repair of uninsured damages (FEMA, 2021a; Jacobsen et al., 2009), and thus they turn to one or 127 

more of several financing strategies.  Financial assistance is sometimes available in the form of 128 

federal grants, but these typically provide minimal funding and often involve long waiting 129 

periods (Government Accountability Office, 2020) (see SI for further discussion). As a result, 130 

property owners often borrow funds to cover the damage, either from private lenders or through 131 
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federally-subsidized programs (Chandra et al., 2016; FEMA, 2021b; Flavelle, 2021). With 132 

respect to the latter, low-interest disaster loans are offered from the Small Business 133 

Administration (SBA) to owners of damaged property in presidentially-declared disaster areas, 134 

and these loans require collateral, if available (Lindsay & Webster, 2019). For many property 135 

owners, equity in the damaged property itself is the largest, and sometimes only, source of 136 

collateral (FEMA, 2021b).  137 

Equity is the difference between the property’s value and any outstanding mortgage 138 

balance, and therefore it is also important to note that flood events in certain circumstances 139 

negatively impact property values in flooded areas, sometimes even at undamaged properties 140 

(Atreya et al., 2013; Beltrán et al., 2018, 2019; Bin & Landry, 2013; Bin & Polasky, 2004; 141 

CoreLogic, 2021; Kousky, 2010; Peacock et al., 2015).  Any significant reduction in property 142 

value as a result of flooding can lower property owners’ equity at the exact time it is needed as a 143 

collateral to support flood recovery efforts. Uninsured damage and reductions in property value 144 

can both negatively impact property-level balance sheets, and potentially affect recovery 145 

decisions made after a flood. In cases of severe balance sheet losses, the combination of 146 

uninsured damage and reduction in property value can lead to a situation of “negative equity” 147 

(CoreLogic, 2018b), in which a mortgaged property’s value falls below the outstanding mortgage 148 

balance. Such a situation is also commonly referred to as an “underwater mortgage”, a condition 149 

strongly associated with increased likelihood of mortgage default (Anderson & Weinrobe, 1986; 150 

Elul et al., 2010; Wong et al., 2004).  151 

Individual flood events have been broadly linked to increased rates of mortgage 152 

delinquency (a precursor to default), particularly in areas with lower levels of flood insurance 153 

purchase (Kousky, Palim, et al., 2020). For example, after Hurricane Harvey in 2017, the 154 
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mortgage delinquency rate at flood damaged properties in Houston increased by 205% 155 

(CoreLogic, 2018b).  After a flood, property owners may be encouraged to “strategically 156 

default”, or walk away from the damaged property (Liao & Mulder, 2021) as negative equity 157 

reduces the incentive to borrow to repair damages (Melzer, 2017). Other factors associated with 158 

a flood event, such as loss of employment and income, may also force property owners to default 159 

on their mortgage (Jacobsen et al., 2009; Sarmiento & Miller, 2006). Quantification of the degree 160 

to which floods increase the risk of mortgage default has not been fully investigated.  161 

Estimating flood-related increases in mortgage defaults is important as they represent a 162 

financial risk to lenders, who have recently begun to recognize the potential for risk creation at 163 

flood-affected properties (Department of Homeland Security, 2021; Federal Home Loan Banks, 164 

2019; Freddie Mac, 2020; Ouazad et al., 2021). Following default, lenders may seek to recover 165 

the outstanding balance on a loan via foreclosure sales (DePillis, 2017; Liu, 2009; USAGov, 166 

2021). However, if the foreclosed property has experienced both severe damage and a reduction 167 

in property value such that value of the damages exceed the value of the property, the property 168 

may be abandoned, as neither the owner nor the lender have the potential for financial gain 169 

(GAO, 2010; White, 2015; Zhang, 2012).  In such cases, the abandoned property typically 170 

becomes the financial responsibility of the local government, which must pay to either maintain 171 

the property, or demolish any damaged structures (Bass et al., 2005; Bieretz & Schilling, 2019).  172 

These often unrecognized and unquantified cascading financial risks are the primary 173 

focus of this research, as they have the potential to impact both pre-event mitigation and post-174 

event recovery efforts.  The Federal Housing Finance Agency (FHFA) specifically 175 

acknowledged the importance of quantifying the exposure of federally regulated lending entities 176 

to the financial risks of natural disasters and that such quantification will require modernization 177 



manuscript submitted to Earth’s Future 

 

of traditional risk modelling practices (FHFA, 2021). As damage repairs from flood events are 178 

often so dependent on the ability of property owners to borrow money, increased vulnerability of 179 

lending institutions to flood-related risk may negatively impact individual and collective 180 

recovery efforts. While elements of mortgage default risk have been modelled both exclusive 181 

(Aktekin et al., 2013; Bhattacharya et al., 2019; Popova et al., 2008) and inclusive (Ataei & 182 

Taherkhani, 2015) of flood impacts, the financial risks that lenders are exposed to due to flood-183 

related mortgage defaults have not previously been quantified. With respect to the financial risks 184 

accruing to local governments as a result of abandoned properties, demolition costs alone, as 185 

considered in this analysis, can be substantial. Over 20,000 properties were estimated to be 186 

abandoned after Hurricane Katrina (Plyer et al., 2011), and using an average of $20,000 per 187 

property (Paredes & Skidmore, 2017), $400 million would have been required for all Katrina-188 

related demolitions. Increased levels of abandonment can also lead to reductions in property 189 

taxes, stressing the budgets of local governments that are already stretched in many places 190 

(BenDor et al., 2020; Gilmore et al., 2022).  Despite the recognition of these risks to lenders and 191 

local government, efforts to quantify them, including any sort of data-driven methodology for 192 

doing so, have not been well developed. 193 

2 Materials and Methods 194 

This work combines several unique datasets to estimate balance sheet losses (i.e., 195 

uninsured damages and property value decreases) from Hurricane Florence (2018), pre-flood 196 

financial conditions, and resulting financial flood risks at highly resolved spatial and temporal 197 

scales in eastern North Carolina (NC), USA. Though applied to the period impacted by 198 

Hurricane Florence, these methods are broadly applicable to other geographic areas and flood 199 

events. The following sections provide background information on the study area (2.1), followed 200 
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by an introduction to the model framework (2.2), and a description of the data utilized in the 201 

analysis (2.2.1). Each component of the framework is then described in detail (2.2.2-2.2.5). 202 

The analysis considers both the financial losses and financial risks resulting from 203 

flooding at residential properties due to Hurricane Florence. Losses include both property-level 204 

insurance payouts and balance sheet losses (i.e., uninsured damage and property value 205 

decreases). Risks are described in terms of the impacts of property-level recovery decisions (i.e., 206 

mortgage default or abandonment) which are influenced by both the magnitude of balance sheet 207 

losses and pre-flood financial conditions at each property (Figure 1). These decisions are 208 

inherently difficult to track, and so while this model framework allows for determination of the 209 

potential financial exposure for each risk-holding group, the degree to which these risks are 210 

translated into additional losses is unclear. Therefore, a distinction is made between the dollar 211 

amounts associated with ‘losses’ and those associated with ‘risks’ throughout the analysis.  212 

 213 

  214 

Figure 1. Interaction of pre-flood property financial conditions (i.e., property value, equity, and 215 

mortgage balance) with balance sheet losses (i.e., uninsured damage and property value 216 

decrease) can increase the likelihood of mortgage default and abandonment to expose property 217 

owners, lenders, and local governments to financial risk.  218 
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2.1 Study Area 219 

Since 1980, NC has experienced more than 25 flood events incurring more than $1 220 

billion in damages, ten of which have occurred since 2015 (NOAA, 2020). There are at least 300 221 

miles of coastal shoreline, 12,000 miles of estuarine shoreline (NC Division of Coastal 222 

Management, 2012), and 37,000 miles of rivers across the entire state (National Wild and Scenic 223 

Rivers System, 2021), creating conditions ripe for coastal and fluvial flooding. In 2021, over 224 

169,000 structures statewide were located within the Federal Emergency Management Agency’s 225 

(FEMA) Special Flood Hazard Area (SFHA), indicating substantial exposure to flood hazards  226 

(North Carolina Department of Information Technology, 2021). Flood insurance penetration in 227 

2018 among the SFHA-located residential properties included in this study is less than 20%, 228 

implying that property owners have relatively little financial protection against flood damages.  229 

This analysis examines the impact of Hurricane Florence on eastern NC, defined as the 230 

41 counties in the NC coastal plain (Figure 2) (NCPedia, 2012). Eastern North Carolina’s low-231 

lying plain contains major rivers such as the Tar, the Cape Fear, the Neuse, and the Lumber. The 232 

Tar and Neuse rivers drain into the Pamlico Sound, the largest along the east coast (Kemp, 233 

2017). The 41-county area is substantially rural, with up to 100% of residents living in 234 

unincorporated areas in some eastern counties, compared to 43% of residents in unincorporated 235 

areas statewide (Cline, 2020). In the U.S., incorporated areas are defined as “a legal entity 236 

incorporated under state law to provide general-purpose governmental services to a 237 

concentration of population” (U.S. Census Bureau, 2017) and unincorporated areas as any 238 

location not designated as incorporated. Though lacking the structure of an incorporated 239 

municipality, unincorporated areas receive some support from county and state governments, 240 

which will be considered the “local government” stakeholders for unincorporated areas in this 241 
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analysis. In 1974, the Coastal Area Management Act placed 20 of the counties in the region 242 

under a cooperative management plan with the state government, in order to protect natural 243 

resources at the coast  (CAMA 1974).  244 

 245 

 246 

Figure 2. The eastern North Carolina study region. Hurricane Florence made landfall at 247 

Wrightsville Beach, red triangle; highest storm surge occurred in New Bern, red circle; 248 

Elizabethtown, red star, set the state record for rainfall from a tropical storm. Coastal counties 249 

under the Coastal Area Management Act (CAMA) in light yellow, non-coastal (non-CAMA) in 250 

light orange.  251 

 252 

Of the residential properties used in this analysis, 42.6% are in incorporated areas and 253 

57.4% unincorporated; 40.4% are in CAMA-designated (hereafter referred to as coastal) counties 254 

and 59.6% are in non-CAMA (non-coastal) counties; 11.7% are in the SFHA and 88.3% are 255 
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located outside of the SFHA. Though median annual household income in NC is $72,000, a 256 

quarter of the counties within the study region have estimated median annual household incomes 257 

less than $50,000, and only four exceed the state average (NC OSBM, 2018). These preexisting 258 

inequities in the study area may increase both vulnerability to flooding impacts and undermine 259 

recovery efforts after an event (Drakes et al., 2021; Tate et al., 2021; Wang & Sebastian, 2021).  260 

 Hurricane Florence made landfall as a Category 1 storm on the North Carolina coast at 261 

Wrightsville Beach, NC (Figure 2, red triangle) on September 14, 2018. Florence moved slowly 262 

west-southwest (towards the red star in Figure 2), and was downgraded to a tropical storm on 263 

September 15, and a tropical depression on September 16. Maximum storm surge levels were 264 

estimated between 8-11 feet (2.4 - 3.4 m) along the shores of the Neuse River, with post-storm 265 

modelling efforts placing the maximum surge of up to 11 feet (3.4m) north of New Bern in 266 

Craven County. Florence set a new State record for tropical storm rainfall of 35.93 inches (0.91 267 

m) outside of Elizabethtown in Bladen County. Widespread fluvial flooding was observed across 268 

eastern North Carolina, with 22 US Geological Survey stream gages measuring the highest peak 269 

stages on record and 18 measuring the highest peak flows on record (Stewart & Berg, 2019). 270 

Across the entire state, inclusive of but not limited to the study area, Florence is reported to have 271 

caused over $3.4 billion in direct flood damages affecting more than 79,000 structures, including 272 

residential, non-residential, and public structures (North Carolina Department of Public Safety, 273 

2018). Of these, at least 59,000 structures were estimated to have been un- or underinsured, 274 

suggesting that uninsured damage accounted for 75% of the structural damage from the event.  275 

2.2 Model Framework 276 

The analysis combines spatially continuous data on the local environment (e.g., 277 

impervious surface coverage, distance to waterbodies, and overland flow accumulation) and 278 
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property characteristics (e.g., structure square footage, parcel square footage, year built, first 279 

floor elevation) with financial observations (e.g., insurance claims, property sale timeseries, and 280 

annual mortgage originations) through a series of models to yield a spatially and temporally 281 

complete estimation of financial variables at residential properties (Figure 3). Property-level 282 

NFIP policy and claims records allow for an assessment of damage at insured properties and a 283 

two-stage machine learning random forest model (I) (section 2.2.2) is trained on these data to 284 

estimate damage at uninsured properties. Property value changes are estimated from residential 285 

property sales data using hedonic price adjustments and time-dependent spatial interpolation (II) 286 

(section 2.2.3). Mortgage data, including loan-level originations and repayment histories, enables 287 

stochastic simulation of household-level mortgage balances which are combined with property 288 

value estimations to determine continuous loan-to-value ratios (III) (section 2.2.4). Property-289 

level loan-to-value estimations are adjusted to reflect balance sheet loss estimates, and then used 290 

to assign risk to property owners, lenders, and local governments within an agent-based decision-291 

tree model (IV) (section 2.2.5) 292 

 293 

Figure 3. Framework to estimate flood-related losses and assign financial risk. The leftmost grey 294 

boxes represent the available environmental, and property data (available for each property), as 295 

well as financial data (available at select properties, denoted by dotted fill). 296 
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2.2.1 Data Collection 297 

Anonymized individual NFIP claims and policy coverage are publicly available from 298 

OpenFEMA (FEMA, 2021c); however, this analysis uses an unredacted version of property-level 299 

records of NFIP policies and filed claims obtained from FEMA Region IV for the State of North 300 

Carolina. These data are available from 1974 to 2020, though for this analysis only data relevant 301 

to the study period of September 10-30, 2018 (dates surrounding Florence’s landfall on 302 

September 14, 2018) are used. Over 15,000 claims were filed during this period, representing 303 

95% of all claims filed between September 1 and December 31, 2018. Properties where claims 304 

were closed without payment are removed from the dataset. This filtered dataset serves as 305 

training and testing input to a two-stage random forest machine learning model used to estimate 306 

Florence-related damages to uninsured properties (model I).  307 

Residential property sales data from 2013-2019 is sourced from ATTOMTM Data 308 

Solutions, a provider of nationwide real estate data with information on more than 155 million 309 

U.S. properties (ATTOM, 2021). Sales data is used within the spatial interpolation model to 310 

estimate property values before and after Hurricane Florence (model II). The sales data includes 311 

date of sale, location of property, and the transaction amount. Loan-level mortgage origination 312 

data from the Federal Financial Institution’s Examination Council (FFIEC) are stochastically 313 

sampled at the census-tract level to create synthetic mortgage balances at individual properties 314 

(model III) that are then utilized within mortgage repayment model. These data are made 315 

available through the Home Mortgage Disclosure Act of 1975 (CFPB, 2021), and contain every 316 

new federally-backed mortgage issued in each year, identified by census tract for privacy 317 

purposes. Over 90% of national mortgages are federally-backed (GAO, 2021). Most home 318 

mortgages are repaid in full before the end of the loan term, and data on loan repayment histories 319 
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are obtained from Fannie Mae’s Single Family Loan Performance Dataset (Fannie Mae, 2022). 320 

These data represent a subset of mortgages owned by Fannie Mae and are used to develop 321 

stochastic repayment profiles for individual mortgage originations.  The mortgage origination 322 

data from 2018-2020, is identified by census tract and includes loan amount, loan term length, 323 

loan to value ratio, and property value; from 1990-2017, the origination data includes only the 324 

loan amount, census tract, and the purchaser of the loan.   325 

Continuous environmental variables are used to calculate sets of independent variables at 326 

each property, defined as a land parcel and the structures contained on that parcel.  Structure-327 

level characteristics (e.g., first floor elevation, foundation type, structure type, structure value, 328 

structure square footage, and year built) and parcel-level characteristics (FEMA-designated flood 329 

zone, parcel square footage) are both sourced from NC OneMap, a data service supported by the 330 

State of North Carolina (North Carolina Department of Information Technology, 2021). 331 

Hydrologically relevant environmental variables include property distance to coast and stream 332 

networks; impervious surface coverage; overland flow accumulation; and hydraulic soil 333 

conductivity (see SI section S2 for variable creation details). Structures co-located on a single 334 

parcel are aggregated so that analysis across all models is conducted at a property-scale that is 335 

consistent with NFIP data and property sales data. Properties are filtered to include a maximum 336 

of two separate living spaces on one parcel (e.g., a duplex); the analysis does not consider larger 337 

multi-family structures (e.g., apartments). Additional variables unavailable from NC OneMap are 338 

created for use within the spatial interpolation model, including the distance from each property 339 

to the respective county’s courthouse (used as a proxy for proximity to the primary population 340 

center) and status as incorporated or unincorporated (a proxy for price differences in rural vs. 341 

municipal areas) as defined by the U.S. Census.  342 
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2.2.2 Flood Damage Model 343 

Flood insurance claim data provides comprehensive information regarding flood damage, 344 

while uninsured damage goes largely unobserved, except through localized windshield surveys 345 

or similar “on the ground” techniques. To estimate event-specific damage at uninsured properties 346 

across the study area, a two-step random forest model is utilized. Random forest machine 347 

learning algorithms have been successfully used to model flood hazards at multiple scales (Band 348 

et al., 2020; Collins et al., 2022; Kim & Kim, 2020; Woznicki et al., 2019) and estimate damages 349 

(Alipour et al., 2020), with several studies including flood insurance claims as reliable indicators 350 

of flood extent (Knighton et al., 2020; Mobley et al., 2020). The analysis described here builds 351 

on this body of previous research by utilizing flood insurance data to predict flood damage from 352 

a specific event at uninsured properties. 353 

At each property, a set of variables describing specific property characteristics and the 354 

surrounding environment are used to predict the presence of flooding (Step 1) and magnitude of 355 

damage (Step 2). A review of prior studies utilizing random forest methods to predict flood 356 

hazards informed the selection of the independent variables included during the model training 357 

process. An initial set of 19 variables is pruned to a set of 13 variables (Table S1, signified with 358 

“I”) to minimize input to the model without sacrificing performance by excluding variables from 359 

model runs one at a time, and discarding from the final set if the exclusion had minimal effect on 360 

model performance. The classification model utilized 7 of these variables (distance to coast, 361 

distance to nearest stream, first floor elevation, soil porosity (two characteristics), surrounding 362 

impervious surfaces (two spatial scales)). The regression model included 12 variables, 6 363 

overlapping with the classification model (distance to coast, distance to nearest stream, first floor 364 

elevation, soil porosity (one characteristic), surrounding impervious surfaces (two spatial scales) 365 
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and 6 distinct (flow accumulation, foundation type, heated square footage, surrounding 366 

impervious surfaces (one additional spatial scale), tax-assessed building value, year built).  367 

The two-step random forest model is trained and tested with NFIP policy and claims data, 368 

and the selected environmental and property variables, to predict flood damages at uninsured 369 

properties. All calculations are performed using the scikit-learn package (version 0.24.2) within 370 

Python (version 3.9.7). In the classification model (step one), properties are split into two groups: 371 

(1) insured properties with an active NFIP policy in place and/or claim related to Hurricane 372 

Florence and (2) uninsured properties without a NFIP policy/claim during that period. Flood 373 

insurance policies are geocoded from provided addresses using ‘rooftop’ matches from the 374 

Google Maps API at an acceptable match rate of 89% (Zandbergen, 2009). The insured property 375 

dataset is then used as a training set to classify property as flooded (properties with claims) or 376 

not flooded (properties with only policies and no claims). The NFIP policy dataset provides the 377 

ability to use flood absence properties when training the random forest model, as the record 378 

includes properties with a policy but no claim after Hurricane Florence. Provision of absence 379 

locations is a necessary component to enable the classification model to “learn” the difference 380 

between flooded and unflooded properties. The increased certainty of flood presence and 381 

absence as described by NFIP policies and claims provides a unique modeling advantage, as 382 

machine learning classification research is often forced to generate ‘pseudo-absences’ in lieu of 383 

observed absence locations (Barbet-Massin et al., 2012; Mobley et al., 2020).  384 

The classification model is calibrated using a stratified 10-kfold cross-validation 385 

procedure, repeating the model training 10 times, each time using 90% of the insured dataset to 386 

train and withholding 10% of the insured dataset to test the prediction results (Kohavi, 1995). 387 

The model utilizes adjustments for imbalanced classification (i.e., more unflooded than flooded 388 
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insured properties), and hyperparameters tuned to 500 trees and a maximum depth of 15 nodes 389 

per tree. These hyperparameters are chosen to maximize the rate of successful classification, 390 

measured as the area under the receiver operating characteristic (ROC) curve (AUC), with 391 

reliability of the model increasing as the AUC approaches 1.0 (Bradley, 1997). The AUC scores 392 

from each model run are compared to ensure that results remained stable despite random 393 

selection of the testing and training sets. After model calibration, the classification model was 394 

highly sensitive with an acceptable AUC of 0.915 (±0.0054) (Hosmer et al., 2013).  395 

In the training set, flooded properties are assigned a value of 1 and non-flooded 396 

properties a value of 0. The calibrated classification model returns a value between 0.0 and 1.0 at 397 

each uninsured property, which is used as a measure of likelihood that the property was flooded. 398 

A threshold value between 0 and 1 is then set, above which properties are classified as flooded 399 

and below which as not flooded. The choice of threshold represents a tradeoff between capturing 400 

true positives and excluding false positives. Methods exist to optimize this tradeoff, such as 401 

calculation of a geometric mean, the product of sensitivity (true positive rate) and specificity 402 

(one minus the false positive rate) at each threshold, followed by selection of the threshold with 403 

the highest geometric mean (He & Ma, 2013). However, the optimal threshold for the training 404 

set, consisting entirely of properties with NFIP policies, may not be the best threshold to 405 

categorize uninsured properties. Purchase of insurance policies is partially self-selecting, and 406 

likely biased towards properties with a history of flooding, as well as affected by purchaser 407 

characteristics, including individual risk preference, education, and income-level (Bradt et al., 408 

2021; Petrolia et al., 2013). To the extent that there are unobserved differences between 409 

properties covered by flood insurance policies and those that are not (e.g., poorly maintained 410 

stormwater infrastructure in certain neighborhoods), the thresholds identified may have different 411 
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tradeoffs between true and false positives when applied to uninsured properties. The threshold 412 

optimized by geometric mean (0.41) results in an overestimation of the proportion of damage 413 

that is uninsured when compared to overall damage estimates made by industry leaders such as 414 

RMS and CoreLogic (CoreLogic, 2017, 2018a; RMS, 2018). A more conservative threshold 415 

(0.69) would bring greater agreement between the model output and these industry estimates; 416 

however, this tightening introduces the possibility of a lower true positive rate while categorizing 417 

uninsured properties as ‘flooded.’  418 

To determine if a more conservative threshold is appropriate for categorizing flooding in 419 

uninsured properties, the classification model results are compared to a set of observed property 420 

damages at a mix of insured and uninsured properties from on-the-ground “windshield surveys” 421 

conducted in New Bern, NC after Florence. The model performed well on these data, with an 422 

AUC of 0.867 (Figure 4). Additionally, the geometric mean of the New Bern testing set (0.68) 423 

was much closer to the conservative threshold (0.69) than the geometric mean threshold (0.41) of 424 

the original insured testing set. The threshold suggested via geometric mean of the insured 425 

testing set (represented by the blue marker in Figure 4), yields a much higher false positive rate 426 

on the New Bern testing set. This suggests that the classification model, trained on insured 427 

properties, predicts too much flooding when applied to all properties, possibly due to historically 428 

flood-prone properties being more likely to be insured and within the training dataset. These 429 

differences between insured and uninsured properties justify the application of a more restrictive 430 

threshold to uninsured properties.  431 
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 432 

Figure 4. Performance of the classification random forest model (step 1) on both the insured 433 

dataset and the windshield data. Use of the selected threshold (yellow marker) on the windshield 434 

survey set balances true and false positives more effectively than the insured dataset’s geometric 435 

mean threshold (blue marker). The most stringent threshold is near the origin (above which 436 

nothing would be classified as flooded), while the most relaxed threshold (above which 437 

everything would be classified as flooded) is in the upper right corner. 438 

In the second step, a RF regression model is trained using the group of properties with 439 

insurance claims (i.e., those with confirmed damages, a subset of the step one training set) to 440 

estimate damage in uninsured properties. This model is applied to all properties classified as 441 

“damaged” by the classification model; damages at all other properties are assumed to be zero. 442 

The degree of correlation (R2) between predictions made with the calibrated model and observed 443 

values of flood damage within the insured claims testing set is equal to 0.48. Prior studies have 444 

discussed the difficulty of predicting damage even when using flood depth and extent, for 445 
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example due to inconsistencies in deterministic depth-damage relationships (Freni et al., 2010; 446 

Wing et al., 2020). Probabilistic damage models represent an advance from depth-damage 447 

curves, but still face high levels of variability (Paprotny et al., 2021; Rözer et al., 2019; 448 

Wagenaar et al., 2017). Damage estimates can be particularly uncertain at the individual property 449 

level (Merz et al., 2004), and the regression model performs best in places with a high density of 450 

claim data creating a robust training set. The uninsured damage estimated in this analysis is more 451 

consistent with observed values when aggregated across the census tract or county scales (see 452 

Figure 5). In areas with relatively few insurance claims, the model does not predict damage as 453 

well, a result of insured flood damage in these areas being infrequent and largely due to 454 

idiosyncratic factors. The advantage of the RF model, despite these limitations, is that it is able 455 

to assess uninsured damage at many individual properties across a large spatial scale in an 456 

efficient manner, producing very accurate results at the census tract level.  457 

 458 

Figure 5: Observed damage amounts versus damage predicted by the random forest regression 459 

model, aggregated to the census tract (right) and county (left) scale.  460 
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2.2.3 Property Value Model 461 

The impact of flood events on residential property values before and after Hurricane 462 

Florence is estimated using timeseries of property sales data. These data include the location of 463 

the property, and the sales price. Unlike property values derived from property tax assessments, 464 

which are only required to be re-evaluated every eight years (NC Department of Revenue, 2021), 465 

property sales data reflect real-time changes in market conditions, allowing for a more 466 

temporally reactive analysis of property values. Sale price data are observed at a small fraction of 467 

the total number of properties in any given time period, but these values can be interpolated 468 

across space and time to estimate property values at locations with no recent observations (i.e., 469 

sales). Since the residential housing stock is heterogeneous, sale prices are hedonically adjusted 470 

to control for implicit neighborhood characteristics before they are interpolated onto a 471 

neighboring property (Smith & Huang, 1995). A county-level multivariate linear regression uses 472 

available property-specific characteristics, including information about both the land parcel and 473 

the structures on it to estimate sales prices, such that: 474 

 475 

 ln (𝑜𝑜$) = 𝛽𝛽1 ∗ ln(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝛽𝛽2 ∗ ln(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝛽𝛽3 ∗ 𝑦𝑦𝑠𝑠𝑝𝑝𝑠𝑠 𝑏𝑏𝑠𝑠𝑏𝑏𝑝𝑝𝑠𝑠 + 𝛽𝛽4 ∗476 

𝑏𝑏𝑖𝑖𝑠𝑠𝑜𝑜𝑠𝑠𝑝𝑝𝑜𝑜𝑠𝑠𝑝𝑝𝑠𝑠𝑏𝑏𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽5 ∗ 𝑑𝑑𝑏𝑏𝑠𝑠𝑠𝑠𝑝𝑝𝑖𝑖𝑠𝑠𝑠𝑠  (2.1) 477 

 478 

 where o$ is the observed property value; 479 

and coefficients β1 - β5 to describe the county-specific relationships between the 480 

structure size, parcel size, year built, incorporation status (as a binary variable), 481 

and distance to the primary population center (i.e., county courthouse).  482 
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 483 

Using the coefficients from the regression and available property-specific variables, a 484 

hedonic property value (h$) is found for each property. The difference between the estimated 485 

hedonic price and the observed market sales price yields a “hedonic residual” (∆H) such that: 486 

 487 

 ∆𝐻𝐻 =  ln (𝑜𝑜$) − ln(ℎ$)  (2.2) 488 

 489 

The hedonic residual provides an estimate of the market value of the property relative to 490 

what is expected from the selected characteristics of the property. Because land often has 491 

locational or environmental amenities that are incorporated into property values, the hedonic 492 

residuals display strong spatial correlation (Milon et al., 1984).  493 

The hedonic residuals at properties with no observed sales are interpolated using space-494 

time kriging to generate best linear unbiased estimators based on the covariance of observed 495 

sales as a function of the time and distance between properties (Le & Zidek, 2006; Pyrcz & 496 

Deutsch, 2014; Waller & Gotway, 2004). By interpolating residuals from properties with 497 

observed sales onto properties without observed sales across a set of discrete quarterly timesteps, 498 

a timeseries of property value estimations can be generated at each property. The kriging process 499 

can be used to estimate the hedonic residual for any property, at any time, by calculating a 500 

weighted average of nearby observed sales. In space-time kriging, ‘nearby’ sales can be 501 

restricted to only properties that occurred on or before a given date, enabling the estimation of a 502 

time-series of values at any given property. Changes to the hedonic residual of spatially and 503 

temporally proximate property sales reflect changes in the location amenities at a given property. 504 
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Similarly, the kriging process incorporates changes to a property’s value caused by factors like 505 

recent flooding that may not be reflected in property-specific characteristics, but may be 506 

reflected in sale values.  507 

The kriging model, adapted from (Johnson et al., 2019) estimates an expected value and 508 

variance at any particular point in time and space by capturing the variance in nearby (spatially 509 

and temporally) observed ∆H values and interpolating to unknown locations based on the 510 

statistical properties of the dataset as a whole. To fit the kriging model, semivariance values are 511 

first found for pairs of observed property sales that are separated by distance D and temporally 512 

by years T years:  513 

 514 

 𝑠𝑠𝑣𝑣𝐷𝐷,𝑇𝑇 = 1
2𝑁𝑁𝐷𝐷

∑ (∆𝐻𝐻𝑑𝑑,𝑡𝑡 − ∆𝐻𝐻𝑑𝑑+𝐷𝐷,𝑡𝑡+𝑇𝑇)2𝑁𝑁𝐷𝐷
1   (2.3) 515 

 516 

where sv is the semivariance at spatial lag D and temporal lag T; 517 

 ΔHd,t is the hedonic residual at spatial location d and temporal location t; 518 

 ΔHd+D,t+T is the hedonic residual at any point within a spatial distance of D and 519 

temporal distance T from point ΔHd,t;  520 

and ND is the number of sales observations within a spatial distance of D and 521 

temporal distance T from point ΔHd,t 522 

 523 

These values are found separately for incorporated and unincorporated properties within 524 

each county to account for the implicit differences in valuation of living in one area relative to 525 
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the other (e.g., receiving municipal water and wastewater services) despite proximity of sales in 526 

time and/or space. Semivariance values are calculated for twenty equal sized bins for D values 527 

less than 1.5km. An adjusted covariance function uses a moving average of the semivariances 528 

such that the covariance between any two points can be found using:  529 

 530 

  𝐶𝐶𝑖𝑖,𝑗𝑗 = max (𝑣𝑣𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑠𝑠𝑣𝑣𝐷𝐷𝑖𝑖,𝑗𝑗,𝑇𝑇𝑖𝑖,𝑗𝑗
′ , 0.0)  (2.4) 531 

 532 

where, Ci,j is the covariance between points i and j; 533 

 𝑣𝑣𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 is the variance of all property sales;  534 

Di,j is the spatial distance between points i and j;  535 

and Ti,j is the temporal lag between points i and j   536 

 537 

With the svD,T values grouped across counties by incorporation status, semi variance 538 

functions are fitted at each time lag from 0-4 years with a piecewise linear regression. Additional 539 

counties adjacent to those in the study area are used to increase the number of data points for the 540 

model calibration.  541 

Next, space/time kriging is performed to generate an estimation of all property values 542 

across the study region from 2013-2021, while maintaining observed values as datapoints. To 543 

estimate the value of the hedonic residual at a space/time point u, linear coefficients are 544 

calculated to formulate the point estimation as a weighted average of nearby space/time points. 545 

At a given property in the study region for a given quarter, the 16 nearest (spatially) sales 546 
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observations up to 4 years prior are found. Using the semi variance functions corresponding to 547 

the observed temporal lag and incorporation status, a vector of kriging weights is found using: 548 

 549 

 𝑤𝑤 = �
C𝑖𝑖,𝑗𝑗 1
1𝑇𝑇 0�

−1

�C𝑖𝑖,𝑢𝑢
1
�  (2.5) 550 

 551 

where, w is a matrix of kriging weights for each of the nearby points;  552 

Ci,j is a matrix of covariances among the positions of nearby points (i,j = 1:16); 553 

Ci,u is a column of covariances relating the position of nearby points to the 554 

position of estimation point u; 555 

and 1 is a single column of ones with a row for each nearby point. 556 

 557 

The expected value of the hedonic residual at properties lacking sales data, ∆hu, can then 558 

be modeled at each u via combination of these 16 nearest observations (∆𝐻𝐻𝐷𝐷,𝑇𝑇) and their 559 

respective kriging weights: 560 

 561 

 ∆ℎ𝑢𝑢 = ∑ (∆𝐻𝐻𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖)𝑁𝑁
𝑖𝑖=1   (2.6) 562 

  563 

The uncertainty of each expected value estimation can be expressed by using the kriging 564 

weights to calculate kriging variance at each estimation point u, such that: 565 

 566 
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 ∆𝑣𝑣𝑢𝑢 = 𝑣𝑣𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 −  ∑ (C𝑖𝑖,𝑢𝑢 ∗ 𝑤𝑤𝑖𝑖)𝑁𝑁+1
𝑖𝑖=1   (2.7) 567 

 568 

where, ∆𝑣𝑣𝑢𝑢 is the estimate of the kriging variance; 569 

C𝑖𝑖,𝑢𝑢 is the covariance between the estimation points and nearby observations;  570 

and 𝑤𝑤𝑖𝑖 is the kriging weights calculated in Eqn 1.5.  571 

 572 

Kriging estimates of the hedonic residuals are estimated at each property at quarterly (3 573 

month) intervals from 2013 – 2020. Using the regression coefficients from equation 1.1, the 574 

hedonic residuals are then converted into a property value estimate. At each space/time 575 

estimation point u, the kriging expected value (Δh) and variance (Δv) imply a random variable 576 

representing the property value at a given location and time. This analysis is concerned with the 577 

change in property value with respect to time, and properties with a large kriging variance may 578 

experience large changes in expected value from one timestep to another due to a relatively small 579 

change in the underlying observations.  To reduce the impact of ‘noise’ in the kriged expected 580 

values on estimated property value changes, another source of property value data is 581 

incorporated, one that can be represented as a random variable. The set of all mortgages 582 

originated by major lenders, collected by the FFIEC provides this second source of data. These 583 

mortgages are anonymized so that they cannot be tied to individual properties, but they contain 584 

data on the census tract of the mortgaged property.  A distribution of property values can be 585 

defined for each census tract based on the mortgage amount and loan-to-value ratio at mortgage 586 

origination.  Probability distributions created from the kriged expected value and variance can be 587 

combined with the census tract level distribution to create an integrated distribution, such that: 588 
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 589 

 𝑃𝑃(𝑏𝑏𝑃𝑃𝑖𝑖 = ln (𝑥𝑥)) = 𝑃𝑃(𝑘𝑘𝑃𝑃𝑘𝑘=ln (𝑥𝑥))∗𝑃𝑃(𝑚𝑚𝑃𝑃𝑘𝑘=ln (𝑥𝑥))
∑ 𝑃𝑃(𝑘𝑘𝑃𝑃𝑘𝑘=ln (𝑥𝑥))∗𝑃𝑃(𝑚𝑚𝑃𝑃𝑘𝑘=ln (𝑥𝑥))𝑥𝑥

  (2.8) 590 

 591 

where, iPV is the integrated property value;  592 

kPV is the kriging property value estimation;  593 

and mPV is the mortgage origination property value distribution 594 

  595 

At each location, a final property value is estimated using the median value of the 596 

resulting integrated property value distribution. The integrated estimates reduce the error 597 

between property value estimation and property sales observations at a subsequent timestep 598 

when compared with the hedonic property value estimations alone (Figure 6).  The integrated 599 

property value estimates (orange) have a larger share of properties falling within a smaller error 600 

tolerance, indicating that the integrated method is an improvement over using the hedonic model 601 

(blue) alone (see SI section S3). 602 

 603 
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 604 

Figure 6. Percent of parcel-level property value estimations falling within a certain error 605 

tolerance of subsequent observed transaction values and the integrated property value estimates 606 

(orange), as well as observed sales and hedonic estimates (blue). 607 

 608 

 Changes in property value (Eqn. 2.9) are determined by the difference between the 609 

average interpolated value in the four quarters immediately “before” (vbefore) and the four quarters 610 

beginning one year “after” (vafter) Florence. The “after” period is chosen to begin one year 611 

following Florence so that enough post-Florence property value observations are available to 612 

make robust property value estimations. Property value estimations during the quarter in which 613 

Florence occurred (Q3 2018) are excluded from these calculations:  614 

 615 

 ∆𝑃𝑃𝑠𝑠𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑖𝑖𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 =   𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑣𝑣𝑎𝑎𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏  (2.9) 616 

 617 

 618 
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2.2.4 Mortgage Repayment Model 619 

Property value changes are important in the aftermath of a flood because the changes 620 

impact owner equity in a property, with equity calculated as the difference between a property’s 621 

market value and the remaining balance on the property’s mortgage. If the market value of a 622 

property falls below the remaining balance on the associated mortgage, the property is 623 

considered to have “negative equity” (i.e., the owners owe more on the mortgage than the 624 

property is worth), a condition associated with increased risk of mortgage default (Elul et al., 625 

2010; Wong et al., 2004). These changes in property value, importantly, do not affect the 626 

remaining balance on a mortgage loan. The loan-to-value ratio (LTV) at a property serves as an 627 

indicator of increased mortgage default risk, with an LTV >1 indicating a situation of negative 628 

equity (Eqn 2.10).  629 

 630 

  𝐿𝐿𝐿𝐿𝑖𝑖𝑇𝑇 =  𝑏𝑏𝑇𝑇
𝑣𝑣𝑇𝑇

  (2.10) 631 

 632 

where LTVT  is the loan-to-value ratio at any time T; 633 

bT  is the loan balance at time ; 634 

and vT is the property value at any time T.  635 

 636 

The LTV ratio typically declines over time at individual properties as the balance on a 637 

mortgage is paid down; it can also change if the value of the property changes, for example, due 638 

to a flood event. In this analysis, post-Florence “adjusted” LTV ratios (aLTV) are calculated at 639 
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individual properties by combining the expected property value with estimates of the remaining 640 

debt at the property, with debt including both the outstanding mortgage balances and uninsured 641 

damages (see section 2.2.5). An LTV (or aLTV) > 1 denotes a case of negative equity, increased 642 

mortgage default risk, and a creation of financial exposure for the property owner and the lender.  643 

Annual, loan-level mortgage origination data from the FFIEC, covering the period 1990 – 2020, 644 

is used to establish initial mortgage balances and LTV ratio at newly purchased properties.  For 645 

each mortgage originated between 1990 and 2018, we estimate the remaining balance at the time 646 

of Hurricane Florence (2018) using a constant repayment schedule based on the original balance, 647 

loan term, and interest rate, such that: 648 

 649 

  𝑏𝑏𝑇𝑇+1 = (1 + 𝑠𝑠𝑏𝑏) ∗ 𝑏𝑏𝑇𝑇 − ( 𝑏𝑏0 ∗ 𝑏𝑏𝑜𝑜 
1 − (1 +  𝑏𝑏𝑜𝑜)−𝑙𝑙𝑙𝑙)  (2.11) 650 

 651 

where, 𝑏𝑏𝑇𝑇+1 is the mortgage balance ($) in the year following time T;  652 

𝑏𝑏𝑇𝑇 is the mortgage balance at time T;  653 

𝑏𝑏0 is the mortgage balance at origination;  654 

ro is the annual interest rate on the loan;  655 

and lt is the loan term (years).  656 

 657 

Most mortgages in the United States are repaid prior to the end of the loan term, either 658 

when the homeowner refinances their mortgage or sells the property. Although the mortgage 659 

origination data does not include information on early repayment, we can calculate the typical 660 
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distribution of early repayment from historical loan performance data from Fannie Mae, a large 661 

purchaser of nationwide mortgages on the secondary market (Housing Finance Policy Center, 662 

2021). This dataset samples a subset of single-family mortgages owned by Fannie Mae, each 663 

containing information about the duration of the mortgage before it was fully repaid.  From this 664 

data a distribution of repayment times for single-family mortgages is sampled to create a 665 

‘repayment date’ variable for each originated mortgage. Mortgage balances calculated in 666 

equation 2.11 are given a value of zero for all T greater than the sampled repayment date. 667 

The initial property value associated with each mortgage origination can be estimated by 668 

multiplying the origination LTV ratio by the mortgage balance.  However, mortgage origination 669 

data only contains original LTV ratios during recent years (2018-2020).  For earlier years (1990-670 

2017), only the original mortgage balance is contained in the data. To estimate original LTV 671 

ratios for mortgages originated before 2018, we create distributions of original LTV ratios from 672 

the 2018-2020 period, conditional on initial mortgage balance, the secondary market purchaser 673 

of the loan (Fannie Mae, Freddie Mac, Ginnie Mae, or other), and the loan classification as either 674 

for ‘home purchase’ or ‘refinance’.  Pre-2018 mortgage originations are assigned an LTV ratio 675 

based on the property’s initial mortgage balance (adjusted to 2018-dollars using the North 676 

Carolina home price index), secondary purchaser, and home purchase/refinance classification.  677 

These sampled LTV ratios are then used to calculate an implied property value at each mortgage 678 

origination (eqn 2.10). The pre-Florence LTV ratios are calculated using the constant repayment 679 

schedule assumed in equation 2.11, and assuming property values appreciate through 2018 680 

according to the North Carolina home price index, such that: 681 

 682 
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  𝐿𝐿𝐿𝐿𝑖𝑖2018 =  𝑏𝑏2018
𝑣𝑣𝑙𝑙𝑜𝑜∗

𝐻𝐻𝐻𝐻𝐻𝐻2018
𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝑜𝑜

  (2.12) 683 

 684 

where, LTV2018 is the loan-to-value ratio immediately before Florence;  685 

vto is the implied property value at the time of mortgage origination;  686 

HPIto is the North Carolina home price index level at the time of mortgage 687 

origination;  688 

HPI2018 is the North Carolina home price index level immediately before 689 

Hurricane Florence;  690 

and  𝑏𝑏2018 is the mortgage balance immediately before Hurricane Florence in 691 

2018, found using equation 2.11.  692 

 693 

Mortgage origination data is anonymized and cannot be linked to individual properties, 694 

but each mortgage can be tied to a specific census tract.  All mortgages with a non-zero LTV 695 

ratio immediately before Florence are assigned to individual properties within that census tract, 696 

without replacement. Originations are applied to properties where estimates of property values 697 

from section 2.2.3 are close in value to the property value implied from the original mortgage 698 

balance and LTV ratio, adjusted to 2018 prices using the North Carolina home price index. 699 

The LTV ratios at each property are then used as inputs in the risk characterization model 700 

(Figure 2; Model IV). Although the simulated LTV ratios do not reflect the mortgage balance at 701 

any specific property, the stochastic process generates an accurate distribution of LTV ratios at a 702 
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snapshot in time. There is excellent agreement between the modelled LTV ratios and LTV ratios 703 

observed in Fannie Mae’s historical loan performance dataset (see SI section S4).  704 

2.2.5 Risk Characterization Model 705 

The outputs of the three models  – uninsured damages (section 2.2.2), property values 706 

(section 2.2.3), and outstanding mortgage balances (section 2.2.4) – provide a comprehensive 707 

picture of property-level financial conditions and serve as inputs for the risk characterization 708 

model.  The risk characterization model (Figure 3, Model IV) uses an agent-based decision tree 709 

and the datasets of financial variables (uninsured damage, property values, and LTV ratios) 710 

generated by the three constituent models of the framework to estimate how financial risk is 711 

distributed following a flood event. The agent-based decision tree model simulates financial 712 

conditions at the individual property level and uses a series of decision-making thresholds that 713 

estimate financial risk to property owners, mortgage lenders, and local governments. These risks 714 

are potential financial consequences that may accrue to risk holders due to interaction of balance 715 

sheet losses (i.e., uninsured damage and property value loss) with pre-storm property conditions 716 

(i.e., property value, equity, and mortgage balance). Insured damages are losses assumed by the 717 

federal government. Absent additional action, such as mortgage default, other flood-related 718 

losses of uninsured damage and property value are assumed by the property owner directly in the 719 

form of increased debt, adverse living conditions (i.e., living in a damaged property unable to 720 

make repairs) and loss of equity.  The decision tree representing property owners’ decisions is 721 

represented in Figure 7.  722 

 723 
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 724 

Figure 7. Losses (insured and balance sheet), shaded gray, interact with pre-flood property 725 

conditions to estimate financial risks, shaded beige, to three risk holding groups (property 726 

owners, lenders, and local governments) via a decision tree. Decision nodes shown in light gray; 727 

choices shown in black (yes) and white (no); and resulting actions from decision nodes in pale 728 

yellow. Amounts of loss and risk flowing through the decision tree are specified in italics.  729 

 730 

Just before the flooding event, the simulated LTV ratio and the interpolated, integrated 731 

property value provide an estimate of remaining mortgage balance (Eqn. 2.13) and owner equity 732 

(Eqn. 2.14). These provide measures of the property owner’s ability to debt-finance repair of 733 

flood-related damages from either a private lender or most government programs (e.g., SBA 734 

disaster loans), using equity as collateral: 735 
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 736 

   𝑏𝑏 = 𝑣𝑣 ∗ 𝐿𝐿𝐿𝐿𝑖𝑖𝐹𝐹  (2.13) 737 

    738 

 𝐸𝐸 = 𝑣𝑣 − 𝑏𝑏  (2.14)  739 

    740 

where LTVF is the loan-to-value-ratio at time of Florence; 741 

b is the loan balance at the time of Hurricane Florence;  742 

v is the pre-Florence property value; 743 

 and E is pre-Florence the owner equity 744 

 745 

An adjusted loan-to-value ratio is calculated by assuming that uninsured damages are 746 

fully repaired via borrowed funds, thus adding to the loan balance, and updating the property 747 

value to the post-event property value, based on the kriging results defined in Section 2.2.2: 748 

 749 

 𝑝𝑝𝐿𝐿𝐿𝐿𝑖𝑖 =  𝑏𝑏+𝑑𝑑
𝑣𝑣𝐹𝐹

  (2.15)  750 

    751 

where aLTV is the adjusted loan-to-value-ratio after the flood; 752 

b is the loan balance at the time of Hurricane Florence; 753 

d is the value of uninsured flood damages to the property; 754 

and vF is the post-flood property value. 755 
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 756 

When aLTV> 1, the property owner risk is assumed to be limited to the pre-Florence 757 

owner equity (E). The lender is at risk of a loss equal to the sum of the property’s uninsured 758 

damage (d) plus the outstanding mortgage balance (b) minus the post-event property value (vF), 759 

as this portion of the mortgage will not be recovered by the lender even if a foreclosure process 760 

is completed, or the property is sold “as is” to a third-party flipper. The lender risk is limited to 761 

the size of the property’s mortgage; considerations of lost interest payments on the mortgage 762 

loan are not considered. If flood damage is so severe that it exceeds the post-flood property 763 

value, the lender is assumed to abandon the property, forfeiting the entirety of the property’s 764 

remaining mortgage balance (b), and creating financial risk for the local government. In this 765 

case, the local government is assumed to demolish the structure at a cost of $20,000 per 766 

abandoned property (Paredes & Skidmore, 2017). It is important to remember that the financial 767 

quantities linked to default and abandonment estimates made via this procedure are, as defined 768 

earlier, risks as opposed to losses due to the uncertain nature of recovery decisions. Additional 769 

information linking property-level financial conditions to observed default or abandonment 770 

following Hurricane Florence could translate these risk estimates into loss estimates. 771 

3 Results 772 

Model outputs are stratified geographically and by governance areas to compare loss 773 

(3.1) and risk (3.2) distributions that may be relevant for flood resilience policy. This includes 774 

stratification by county as well as by presence inside or outside the SFHA; status as incorporated 775 

or unincorporated as defined by the U.S. Census Bureau; presence in a coastal versus non-coastal 776 

county, as defined by the North Carolina Coastal Area Management Act (CAMA). Illustration of 777 

total losses and additional financial risks, across what will be hereafter referred to as comparative 778 
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groups, highlights unique vulnerabilities to flood impacts across spatially varying environmental, 779 

social, and political conditions. Additionally, these comparative groups are subject to different 780 

rules via CAMA regulations, local ordinances, and/or NFIP policies that influence each group’s 781 

exposure and vulnerability to flood events. A higher level of detail (i.e., further stratification 782 

geographically) in the results is available in the SI (section s5).  783 

3.1 Flood-related Losses 784 

Total balance sheet and insured losses at residential properties across the study area equal 785 

$2.14B and are distributed among insured damage (17.1%), uninsured damage (49.4%), and 786 

property value loss (33.5%) (Figure 8). Out of a total of 876,284 residential properties across the 787 

study region, 38,345 are categorized as damaged through presence of a NFIP claim (9,310, 788 

accounting for $366M) or by the flood damage model (29,035, accounting for $1.06B). Damage 789 

at the property level (insured and uninsured) ranged from $13 to $534,409 per property, with a 790 

median of $27,798 and a 95th percentile of $98,345. 791 

Roughly half of damaged properties (48.5%) experience property value loss, as do 792 

approximately half of the undamaged properties (46%). While some of this is likely the result of 793 

non-flood-related factors, previous research suggests that unflooded properties in close proximity 794 

to flooded properties also experience property value reductions (Kousky, 2010). Analysis of pre- 795 

and post-Florence periods indicate that median value of damaged properties decreased by $341 796 

while median value of non-damaged properties increased by $848. Non-zero property value loss 797 

among damaged properties averaged $38,441with a median of $18,794, a 5th percentile of 798 

$1,314, a 95th percentile of $138,732, and a sum of $715.7M.  799 

 800 
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 801 

Figure 8: Losses due to flooding from Hurricane Florence across the study area.  802 

 803 

The federal government covered $366M in losses after Hurricane Florence via NFIp 804 

payouts. This was equivalent to 27% of all NFIP payouts made nationally in 2018 (Insurance 805 

Information Institute, 2020). Property owners are assumed to be responsible for balance sheet 806 

losses (i.e., uninsured damage and property value losses), although these could be partially 807 

mitigated by additional federal disaster relief programs, which are not considered here (see SI 808 

section S1), or via strategic default (see section 3.2). Balance sheet losses amount to $1.77B 809 

across the study area, with an average total loss per uninsured and damaged property of $61,027. 810 

Property level flood losses of this magnitude represent a substantial financial blow to most 811 

property owners, as this average loss represents 111% of the 2018 median household income 812 

($54,602) in North Carolina (U.S. Census Bureau, 2019).  813 
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The relative sizes of the insured damage, uninsured damage, and property value losses 814 

vary across geographic and governance groups (Figure 9), as do the number of damaged 815 

structures in each group. Higher numbers of damaged structures are expected in coastal areas and 816 

the SFHA due to greater hazard exposure, and in unincorporated areas due to the larger number 817 

of damaged structures in rural areas.  818 

 819 

Figure 9. Estimates for insured damage (grey), uninsured damage (red) and property value 820 

decrease (blue) across comparative groups with proportion of loss within group shown on 821 

respective portion of bar. Number of damaged properties within each group is italicized beneath 822 

the group name. Note, bars should only be compared within appropriate pairs (e.g., SFHA to 823 

non-SFHA) and not across pairs (e.g., coastal to SFHA) as groups across pairs are non-exclusive.  824 

 825 

Insured damage is higher in coastal areas and the SFHA, as would be expected with 826 

higher rates of flood insurance penetration in these areas (coastal: 2.3%, non-coastal: 0.3%; 827 
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SFHA: 7.7%, non-SFHA: 0.2%). Insurance penetration was estimated within each comparative 828 

group using the number of active policies at the time of Hurricane Florence divided by the area’s 829 

total number of residential properties. Insured damage makes up similar proportions of total 830 

losses in unincorporated (15%) and incorporated areas (21%), but unincorporated areas 831 

experience higher insured losses than incorporated areas ($220M versus $146M). This is likely 832 

attributable to unincorporated areas comprising 57.4% of the study area and 66% of the damaged 833 

properties, as rates of insurance penetration in unincorporated areas (0.8%) are less than 834 

incorporated areas (10.9%) in this study region. 835 

The combination of low insurance penetration and any large flood event causes 836 

substantial amounts of uninsured damage. More uninsured damage is predicted for coastal 837 

counties ($669M) than non-coastal counties ($386M), though uninsured damages still make up 838 

the majority of loss (65%) experienced by non-coastal counties. Unincorporated areas experience 839 

a significant amount of uninsured damage ($815M, 55%), both a higher magnitude of loss and a 840 

higher percentage of total losses than that estimated for incorporated areas ($240M, 35%). These 841 

differences can again be attributed to the larger number of unincorporated properties in the study 842 

region as well as the low insurance penetration in unincorporated areas. More uninsured damage 843 

is predicted outside the SFHA ($669M) than within it ($386M), consistent with previous 844 

assessments that conclude the extent of flood damage outside the SFHA is significant (Blessing 845 

et al., 2017; Brody et al., 2013; Highfield et al., 2013). 846 

Property value decreases contribute over 20% to total loss across comparative groups. 847 

The high proportions of property value decreases as a fraction of total losses observed in coastal 848 

(37%) and incorporated (43%) areas are attributable to higher property values (Table 1), which 849 

may be a function of closer proximity to the coast, attractive features of larger urban 850 
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communities, or provision of municipal services. These differences in property value have an 851 

impact on aggregated property value loss estimates, as losses of similar proportions (i.e., a 5% 852 

loss of pre-flood value) yield substantially different magnitudes of value decreases. Properties 853 

within the SFHA experience more property value decreases ($461M, 39%) than the non-SFHA 854 

properties ($254M, 25%). This is likely due to SFHA properties close proximity to desirable 855 

waterfront features such as riverfronts or beaches, as well as a stronger post-flood perception of 856 

increased flood risk within the SFHA (Atreya et al., 2013; Bin & Landry, 2013). 857 

Table 1. Descriptive statistics of modelled pre-flood property values across comparative groups 858 

Comparative 

Group 

Median  Average  95th  

Coastal $113,837 $154,855 $422,553 

Non-coastal $70,337 $100,806 $279,508 

Incorporated $121,767 $169,484 $466,945 

Unincorporated $89,167 $122,681 $323,330 

SFHA $117,938 $160,385 $439,902 

Non-SFHA $81,403 $113,516 $297,075 

 859 

The financial impact of Hurricane Florence can be illustrated spatially with a bivariate 860 

distribution of uninsured damages and property value losses, aggregated by census tract (Figure 861 

10). Uninsured damage is summed over the tract and property value loss is averaged over the 862 

total number of residential properties within each tract before stratification of both variables into 863 
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tertiles (i.e., three equal-sized bins). Uninsured damage (red shaded inset map) is driven by both 864 

the flood hazard (i.e., total depth and extent of flooding) and the exposure of assets (i.e., the 865 

number and value of residential structures at risk), so damage is highest in populated areas most 866 

impacted by Florence. Property value losses (blue shaded inset map) were concentrated in the 867 

heavily damaged area as well, though some areas experienced high amounts of uninsured 868 

damage but only mild amounts of property value loss.  869 

 870 

Figure 10. Census tract level uninsured damage and average property value loss. The top tertile 871 

for each variable (most damage, most property value loss) is represented by the dark maroon 872 

color. Monovariate maps, right, isolate measures of uninsured damage (red) and average 873 

property value loss (blue).  874 

 875 

While magnitude of balance sheet losses is impactful to individual property owners, pre-876 

flood property conditions (i.e., property value, equity, and mortgage balance) interact with these 877 
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losses to increase the risk of mortgage default and abandonment. To further examine the impact 878 

of these mortgage-related variables on flood-related losses, results are stratified into property 879 

value quintiles and presented as losses (Fig 11, top) and losses normalized by pre-flood property 880 

value (Fig 11, bottom). The magnitude of insured damage and property value loss both increase 881 

with property value, while uninsured damage is similar across quintiles. When comparing 882 

property value quintiles in relative terms (i.e., normalized by pre-flood property value), however, 883 

the bottommost quintile experiences the highest proportion of uninsured damage. Uninsured 884 

damage greater than the original property value itself is expected, however, as cost of repairs for 885 

flood damage can often exceed pre-flood market value for lower valued properties (Moore, 886 

2017).  887 

 888 

Figure 11. Total (insured and balance sheet) loss (top) and total loss normalized by preflood 889 

property value (bottom).  890 
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3.2 Flood-related Financial Risks 891 

If the value of aLTV > 1, a property is considered at risk of mortgage default. Similarly, 892 

if damage exceeds the value of a property (i.e., damage-to-value ratio > 1) a property is 893 

considered at risk of abandonment. These risks are represented in dollar terms as potential losses 894 

dependent on highly uncertain recovery decisions. Of the 38,345 damaged properties, 8,672 895 

(22.6%) are at risk of mortgage default, and of those, 5,165 (13.5% of all damaged properties) 896 

are at risk of abandonment. The study region as a whole is exposed to $562M in financial risk 897 

associated with mortgage default and abandonment (Figure 12).  898 

 899 

Figure 12: Total financial risk associated with mortgage default and property abandonment  900 

 901 

Property owners are exposed to 57.2% ($321.4M) of the flood-related financial risk, as 902 

property owners that default on their mortgage risk losing their investment (i.e., their equity). 903 
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This risk to the property owner is present regardless of the fate of the property after mortgage 904 

default (i.e., if it is foreclosed and resold or abandoned by the lender). Across all properties at 905 

risk of default, the average equity at risk of being lost is $37,066, or 68% of the median income 906 

($54,602) in North Carolina in 2018 (U.S. Census Bureau, 2019). Loss of this equity represents a 907 

significant potential financial blow to a property owner, as property equity is often a large 908 

portion of an individual’s wealth (Fontinelle & Cetera, 2021).  909 

Lenders across the study region are exposed to $137.4M in risk due to costs of repairing 910 

damage before reselling a defaulted property, loss of the ‘underwater’ portion of the mortgage 911 

that cannot be recovered through resale due to property value decrease, and forfeiture of any 912 

remaining mortgage balance upon abandonment. The potential impact of the flood is apparent 913 

when comparing rates of default risk among flood affected properties to the baseline risk present 914 

in larger mortgage loan samples. Among the flood damaged properties in this analysis, 22.6% 915 

had underwater mortgages (aLTV>1) compared to 3.7% of non-damaged properties, indicating 916 

the likelihood of much higher risk of default among damaged properties. However, not every 917 

underwater mortgage leads to a default. Historical loan performance data from Fannie Mae 918 

suggests that 90+ day delinquency rates (a proxy for default) increased from 0.5% to 1.2% 919 

following Hurricane Florence (Fannie Mae, 2022) (see SI Figure S4). Based on our estimates of 920 

222,292 open mortgages in this study area (FFIEC, 2020), this translates into 1,319 defaulted 921 

properties (in addition to the pre-Florence background default rate), representing 15.2% of the 922 

8,672 of damaged properties modelled with aLTV > 1. This result is in line with recent estimates 923 

made using historical Fannie Mae and Freddie Mac data (Schneider, 2020) which suggest that 924 

between 10-20% of underwater mortgages become 90+ days delinquent. If the properties 925 

identified here as having elevated default risk are representative of these observed defaults, this 926 
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represents $20.9M in lender-realized losses from default. However, if the subset of observed 927 

defaults are sampled from the most deeply underwater of the at-risk properties, this would 928 

represent $24.9M in realized losses for lenders. As default rates can vary considerably even 929 

among property owners facing negative equity (Foote et al., 2008; Ganong & Noel, 2020), the 930 

realized loss estimates described here are not necessarily robust, and the risks quantified by the 931 

decision tree model are preferred for the remainder of the analysis.  Importantly, underwater 932 

mortgages that have not defaulted (i.e., mortgages identified here as “at risk” of default) can 933 

potentially persist for years after the flood event while the remaining mortgage balance is being 934 

paid down, resulting in continued financial risk to lenders  (Liu, 2009) and an inability for 935 

property owners to build equity.  936 

Of the damaged properties, 13.5% are at risk of abandonment due to total damages 937 

exceeding property value, exposing local governments to $103.3M of risk due to potential 938 

demolishment costs. These flood-related risks represent 3.1% of the general expenditures 939 

county-level budgets (fiscal year 2017-2018) summed over the 41-county study region, though 940 

individual county budgets vary significantly (median: $55.7 M; range: $9.4M - $1.2B). The 941 

variability and limitations of these county-level budgets indicate that understanding elevated 942 

post-flood abandonment risk and the potential costs accruing to local governments may be 943 

significant, especially as distributions of risk across stakeholders vary considerably by county 944 

(Figure 13), even when aggregate risk (size of pies in Figure 13) across counties is similar.  945 

For example, New Hanover (identified with “A”, Figure 13) and Robeson (“B” in Figure 946 

13) counties experience similar magnitudes of financial risk: $17.7M and $15.2M, respectively. 947 

Property owners in each county are exposed to the most risk (64% in New Hanover; 55% in 948 

Robeson), but lenders are much more exposed in New Hanover (31%; $5.5M) compared to 949 
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Robeson (15%; $2.3M). Conversely, local governments in New Hanover are only exposed to 950 

4.9% ($0.88M) of risk, compared to 30% ($4.6M) in Robeson. Low property values in Robeson 951 

County relative to New Hanover (a pre-flood median of $66,195 and $159,333, respectively) led 952 

to damages that eclipsed post-flood property values in the former, generating higher risk of 953 

abandonment and therefore financial exposure for the local government in Robeson. Knowing 954 

that a damage-to-value ratio greater than 1 indicates risk of abandonment, Robeson County had 955 

230 properties (0.62% of all damaged in county) exceeding this threshold, and New Hanover 956 

County had 44 properties (0.28% of all damaged). These differences highlight the need to 957 

consider the unique flood vulnerabilities in each county, as well as the resources each county has 958 

to recover, which are often a function of population, institutional capacity, and other county-959 

specific characteristics (Jurjonas et al., 2020). 960 

 961 

Figure 13. County-by-county risk distributions with magnitude of total county risk represented 962 

by size of pie chart (see inset). 963 
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Using the comparative groups selected for this analysis to examine differential risk 964 

distributions suggests that experiences of financial risk arising from flood losses can change 965 

across political and geographic divides (Figure 14). Property owners are exposed to the most 966 

risk, with the fraction of risk relatively constant across all comparative groups. Lenders are 967 

exposed to higher risk ($107.7M) in coastal counties than inland ($29.7M), due to the 968 

intersection between high levels of total losses (property value loss and uninsured damage) and 969 

higher property values in coastal areas. A similar trend exists for incorporated ($37.3M) versus 970 

unincorporated areas ($100.1M). Conversely, lenders are exposed to slightly more risk outside of 971 

the SFHA ($79.8M) than inside ($57.6M), though property values are higher within the SFHA. 972 

 973 

Figure 14. Distribution of flood-related financial risk across comparative groups (sum of risk 974 

over each pair is the same, $562M).  Number of properties at risk of default within each group is 975 

italicized beneath the group name, followed by the number of properties at risk of abandonment. 976 

Note, bars should only be compared within appropriate pairs (e.g., SFHA to non-SFHA) and not 977 

across pairs (e.g., coastal to SFHA). 978 
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Exposure of local governments to flood-related financial risks from residential property 979 

abandonment are higher outside the SFHA ($67M) than inside ($36.3M). As most municipal 980 

groups include a mix of SFHA and non-SFHA properties, this effect may be negligible within a 981 

community, though it may be interesting for decision makers directing recovery and resilience 982 

efforts towards SFHA properties over those outside the SFHA. Local governments in coastal 983 

counties are exposed to a lower percentage of risk (16%) than in non-coastal counties (23%), 984 

however, the magnitude of the financial risk is higher in coastal counties ($66.6M vs. $36.7M). 985 

Even larger differences arise when comparing unincorporated and incorporated areas. Local 986 

governments responsible for unincorporated areas are exposed to 19% of risk ($82.3M) 987 

compared to 15% in incorporated areas ($21M). This difference is substantial as areas defined as 988 

unincorporated do not lie in a state-recognized area that is responsible for government support 989 

(U.S. Census Bureau, 2017), signaling that these areas may need assistance from larger entities, 990 

such as county, state, or federal government agencies to address the costs of abandonment. In 991 

combining comparative pairs with large discrepancies in risk magnitudes (i.e., coastal versus 992 

non-coastal, and incorporated versus unincorporated), the largest risk exposure exists for 993 

unincorporated communities in coastal counties ($50.9M) while the lowest risk exposure exists 994 

for non-coastal, incorporated communities ($5.3M). This further highlights the need to assess the 995 

impacts of flood-related financial vulnerabilities at more highly resolved scales.  996 

The median value of damaged properties at risk of default is $50,665, compared to a 997 

median value of $116,399 at damaged properties that are not at risk of default. To examine the 998 

influence of pre-flood property values on financial risks, all individual uninsured properties are 999 

divided into quintiles by pre-flood property values and the highest and lowest quintiles are 1000 

compared (Figure 15, a). Though both groups experience uninsured damages (Figure 15, b), 1001 
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lower valued properties are more sensitive to the additional debt resulting from these damages. 1002 

This leads to more properties with an adjusted loan-to-value (aLTV) ratios over 1 (Figure 15, c), 1003 

thereby resulting in increased risk of mortgage default and subsequent abandonment.  1004 

 1005 

Figure 15. Comparison between the distribution of property values for uninsured properties 1006 

comparing the highest pre-flood property value quintile (blue) and the lowest pre-flood property 1007 

value quintile (orange). Lower value homes (‘blue’) experience more damage relative to their 1008 

property value, leading to higher adjusted loan-to-value (aLTV) ratios and increased probability 1009 

of default.  1010 

To further illustrate how financial conditions impact the distribution of risk across 1011 

stakeholders, all properties (insured and uninsured) are again stratified by pre-flood property 1012 

value into quintiles. When comparing financial risk (Figure 16, top), the risk exposure across all 1013 

stakeholder groups rises significantly from $85M in the highest value quintile to $159M in the 1014 

lowest quintile. This indicates that risks are increasingly generated by lower value properties. 1015 
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Additionally, the importance of abandonment risk becomes clear, as lender risk (gold) decreases 1016 

with decreasing property value quintile, while local government risk (green) increases. This 1017 

becomes even more clear when normalizing the risk generated at each property by pre-flood 1018 

property value (Figure 16, bottom), as the lowest quintile generates the most risk exposure per 1019 

dollar of property value. In fact, this normalized risk is more than twice that estimated in any 1020 

other quintile. This discrepancy is a result of the higher property values in the upper quintiles 1021 

that make the normalized value of financial risk significantly smaller than at low valued 1022 

properties. As property values decrease, the distribution of normalized risk across stakeholders 1023 

also shifts, with lower valued properties more at risk of abandonment, shifting financial risk to 1024 

local governments. These results suggest that the bottom quintile of property owners is most at 1025 

risk of mortgage default, and that when they do, this risk is more likely to be further transferred 1026 

by lenders towards local governments via abandonment. Local governments must then shoulder 1027 

the cost of demolishing these structures (as well as the costs of maintaining these properties, 1028 

which is more difficult to estimate and not considered in this analysis).  1029 
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 1030 

Figure 16. Financial risk by property value quintile (top) and normalized by preflood property 1031 

value (bottom). Values to the right of each bar (top) represent aggregate risk generated by 1032 

quintile for all risk holders and (bottom) the median property value of each quintile.  1033 

4 Discussion 1034 

This analysis strongly suggests that flood damages at residential properties leads to 1035 

financial risk that cascades beyond private property owners to mortgage lenders and local 1036 

governments. In the case of Hurricane Florence, these three stakeholder groups were exposed to  1037 

$562M in financial risk. Quantification of these systemic risks at a high spatial resolution can 1038 

better inform community resilience policies through an understanding of the specific risk drivers 1039 

(i.e., damage, property value loss, or preexisting property financial conditions). For example, 1040 

lower value properties disproportionately generate financial risk for local governments, as 1041 
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uninsured damages more easily exceed the property’s value than at higher value properties. 1042 

Incentivizing purchase of federal flood insurance, particularly at low-value properties, via state 1043 

or local government-supported insurance premium rebates could reduce this risk significantly, 1044 

protecting property owners, lenders and local governments. Additionally, high-value homes 1045 

represent the biggest source of risk for lenders, as they are likely to have large unpaid mortgage 1046 

balances and can be subject to large reductions in property value. Federal regulations on 1047 

borrowing that would lead to lowering initial LTV ratios (i.e., higher down payments) on high 1048 

value properties at elevated risk for flooding could also reduce the likelihood of balance sheet 1049 

losses that would result in negative equity and higher default and abandonment risk. In addition, 1050 

property-level analyses identifying areas most vulnerable to post-event property value decreases 1051 

could be used to target areas for post-flood buyouts or mortgage assistance, providing a stopgap 1052 

for default and abandonment risk that would reduce risk for property owners as well as lenders 1053 

and local governments.  1054 

Local governments are exposed to financial risk via property abandonment, for which 1055 

low valued properties are particularly at risk, as balance sheet losses more easily exceeding a 1056 

property’s equity (default risk) as well as its value (abandonment risk). Property abandonment 1057 

can have long term impacts on local governments beyond the demolition costs considered in this 1058 

analysis, including property value depreciation, maintenance and rehabilitation costs, increased 1059 

crime, and extended health impacts (Bass et al., 2005; Bureau of Governmental Research, 2008). 1060 

Increased abandonment is associated with significant community outmigration (De Koning & 1061 

Filatova, 2020; Plyer et al., 2011), leaving local governments facing decreased tax revenues 1062 

(BenDor et al., 2020; Greer et al., 2021). These processes can shift the financial risk associated 1063 

with abandonment at flood-affected properties to the community at large. Following a flood 1064 
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event, local governments may also struggle to provide basic services, make their debt payments, 1065 

and maintain access to credit (Jerch et al., 2020), with their budgets further strained by 1066 

increasingly high expenditures towards resilience-promoting measures, such as flood control 1067 

infrastructure (Gilmore et al., 2022).  Small and/or rural local governments are more limited in 1068 

terms of personnel, resources, and the institutional capacity available to pursue pre-flood 1069 

mitigation strategies post-disaster recovery funding (Jerolleman, 2020; National Association of 1070 

Counties, 2019). With low mitigation capacity and high vulnerability to financial risk, flood 1071 

impacts in rural areas may be absorbed by state or federal entities , and necessitate innovative 1072 

and tailored solutions for resilience (Cutter et al., 2016; Seong et al., 2021). Financial risk 1073 

characterizations such as those provided in this analysis can improve understanding of these 1074 

uncertain community-level processes, and aid in selecting strategies to prevent excess flood-1075 

related abandonment and community decline.  1076 

Stakeholders focused on mitigating the impacts of flood events and reducing systemic 1077 

risk should also be conscious of social equity implications across property value levels. Although 1078 

high-value properties represent a large portion of the risk to lenders because individual defaults 1079 

cause more nominal risk when mortgage balances are higher, low value properties have a much 1080 

higher risk of both default and abandonment after a flood. This is consistent with findings that 1081 

disasters can exacerbate existing financial inequalities (Chakraborty et al., 2019; Drakes et al., 1082 

2021; Emrich et al., 2019; Howell & Elliott, 2019; Katz, 2021; Peacock et al., 2015; Ratcliffe et 1083 

al., 2020a; Roth Tran & Sheldon, 2019). Mortgage default can have a substantial effect on the 1084 

financial standing of a property owner, impacting both their ability to recover from a flood event 1085 

and their overall psychological and physical wellbeing (Alley et al., 2011; Vásquez-Vera et al., 1086 

2017). Moreover, property owners at risk of default and/or abandonment may be the least able to 1087 
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mitigate their personal financial risk through strategies such as purchase of flood insurance 1088 

(Atreya et al., 2015; Brody et al., 2016; Kousky, 2011) or may be unable to access or qualify for 1089 

SBA loans (Wilson et al., 2021). In these cases, property owners retain negative consequences of 1090 

the flood, which may include living in a damaged home, or absorbing losses of equity. If 1091 

property owners avoid default after a flood, but can borrow funds to repair the damages, they 1092 

may retain significant levels of debt that can accumulate over time with successive flood events. 1093 

Additionally, new borrowers within flood-affected areas have been observed to be less 1094 

creditworthy and at higher risk of default, causing lenders to set higher interest rates on loans and 1095 

be more likely to securitize those loans (Ratnadiwakara & Venugopal, 2020). These lender 1096 

responses could constrict access to credit for borrowers within the lending pool, even those far 1097 

outside the flood’s footprint. Sensitivity to these sociodemographic feedback loops and the 1098 

preexisting inequitable policies that compound them will be essential to reduce the resurrection 1099 

of unjust lending practices (i.e., redlining) and act against climate gentrification (De Koning & 1100 

Filatova, 2020; Keenan et al., 2018). Repetitive flooding in eastern North Carolina has been 1101 

observed and is expected to increase (Kunkel et al., 2020), and so the compound effect of 1102 

multiple floods in quick succession on individual and systemic financial risk may be substantial 1103 

(Kick et al., 2011; OECD, 2016). 1104 

Further analysis is required to improve the risk estimates generated in this work, and to 1105 

enable the translation of financial risk into realized losses, both of which will assist decision-1106 

makers in developing more targeted resilience strategies. Several assumptions are made in the 1107 

modelling approach that introduce uncertainty in the results. First, estimates of property value 1108 

via spatial interpolation (model II) are crucial to estimating risk, but exhibit some uncertainty at 1109 

the individual property scale. Statistical noise within these estimates can be interpreted as real 1110 
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changes to property values, potentially exaggerating the magnitude of property value decrease at 1111 

individual locations. Adjustments to property value estimates based on kriging variance 1112 

estimates and census tract-specific mortgage data, reduces the impact of this statistical noise. 1113 

Second, the risk characterization model relies on negative equity as the trigger for mortgage 1114 

default risk. Though negative equity is a well-accepted predictor of default risk (Anderson & 1115 

Weinrobe, 1986; Elul et al., 2010), there is research regarding the influence of other factors on 1116 

the decision to default, including experiencing adverse life events (Foote et al., 2008; Ganong & 1117 

Noel, 2020) and costs associated with defaulting (Krainer & Leroy, 2010). Influences on 1118 

individual decisions regarding mortgage default deserve additional research focus and may 1119 

require the development of new methods and potential data sources, such community surveys 1120 

used to assess related aspects of environmental health literacy (Gray, 2018). Third, there is 1121 

substantial uncertainty in the magnitude of flood-related financial risk to local governments as, in 1122 

this analysis, the expense of demolition is the only cost considered, even as the cost of 1123 

maintaining abandoned properties can also be significant (Bass et al., 2005). Other risk creation 1124 

mechanisms may be set in motion following a flood event, as local government tax revenues are 1125 

strongly tied to long-term trends in property value appreciation.  Foreclosure and property 1126 

abandonment impact long-term property value changes (Immergluck & Smith, 2010; Sun et al., 1127 

2020), creating feedback loops for local governments that have proven difficult to address 1128 

(Hackworth, 2016). 1129 

5 Conclusion 1130 

Floods are expected to increase in frequency and intensity in the coming decades due to 1131 

climate change, population growth, and increased development (Bates et al., 2020; Hallegatte et 1132 

al., 2013; Marsooli et al., 2019; Wing et al., 2018). As such, the development of responsive 1133 
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strategies to mitigate the multifaceted financial impacts of flood events is of critical importance.  1134 

Policy selection to address flood resilience is however complicated by the difficulties associated 1135 

with predicting the extent of flooding, associated damages, accompanying indirect financial 1136 

risks, and specific community vulnerability. This paper presents a novel framework for assessing 1137 

flood-related balance sheet losses and developing estimates of the financial risks that arise in 1138 

response to those losses. The findings provide new information on how flood-related losses and 1139 

associated financial risks are distributed geospatially and across stakeholder groups, 1140 

characterizing localized vulnerability to floods that could be mitigated through a suite of physical 1141 

interventions and policy tools.  Additionally, this analysis illustrates how property-level recovery 1142 

decisions (i.e., mortgage default and property abandonment) can create systemic financial risk, 1143 

extending flood impacts to stakeholders and institutions located well outside the flood event’s 1144 

inundation footprint. A better understanding of these vulnerabilities and how financial risk is 1145 

generated in the wake of a flooding event will improve the assessment of localized and national 1146 

climate-related risks and aid in the development of more effective and equitable strategies to 1147 

achieve community resilience. 1148 
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 This analysis was conducted using Python version 3.9.7. Unless otherwise noted in the methods, 1158 

the data used in this study are publicly available as follows: (i) the USGS National Hydrography 1159 

High Resolution (NHDPlus) (https://www.usgs.gov/national-hydrography/nhdplus-high-1160 

resolution ); (ii) the National Oceanic and Atmospheric Administration’s composite shoreline 1161 

(https://shoreline.noaa.gov/data/datasheets/composite.html ); (iii) the Height Above Nearest 1162 

Drainage (HAND) for the Continental US (CONUS) (https://cfim.ornl.gov/data/); (iv) Multi-1163 

Resolution Land Characteristics (MLRC) Consortium’s National Land Cover Database (NLCD) 1164 

2016 (http://mrlc.gov/); (v) U.S. Department of Agriculture (USDA) Gridded Soil Survey 1165 

(gSSURGO) (https://gdg.sc.egov.usda.gov/); (vi) buildings and parcel data were obtained from 1166 

NC OneMap Geospatial Portal (https://www.nconemap.gov); (vii) federal loan data was obtained 1167 

from FFEIC (https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset) and 1168 

Fannie Mae (https://capitalmarkets.fanniemae.com/credit-risk-transfer/single-family-credit-risk-1169 

transfer/fannie-mae-single-family-loan-performance-data ); (viii) federal loan delinquency rates 1170 

were obtained from the Federal Housing and Finance Administration 1171 

(https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx ). Use of these data 1172 

sets are described further in Supporting Information S2.  1173 

The datasets used to support this analysis and the reproduction code are openly available 1174 

when possible at the following URL: https://doi.org/10.5281/zenodo.6634028. Data have been 1175 

anonymized to protect personal identifiable information. Select data, including property level 1176 

flood insurance policies and claims, and property level sales data, are unavailable to share 1177 

publicly due to privacy concerns.  1178 
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