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Introduction 935 
This document provides supplemental supporting information for the manuscript indicated 936 

above. This includes a section (S1) detailing the handing of data from low-cost air quality 937 
sensors (LCS), as alluded to in Section 2.2.3. Additional results to supplement those presented in 938 
Section 3 are provided in Figure S5 through Figure S9. Diagrams of the various phases of the 939 
data fusion process are also illustrated in Figure S1 through Figure S4. 940 

Note also that the data used to generate the results and figures presented here and are 941 
available in an online Zenodo archive (Malings, 2024), governed under a CC BY-NC License. 942 
  943 
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Text S1. Details of the supplemental New York City case study example 944 
For the supplemental study area of interest is the region surrounding New York City, New 945 

York, USA (defined as between 40°N and 42°N and between 73°W and 75°W). Data sources 946 
were the same as indicated in the paper for the San Francisco study area. Data from calendar 947 
year 2019 were included as potential inputs for calibration purposes. 948 

Text S2. Handling less reliable in-situ data from low-cost monitors 949 
In the case of data from LCS, there are typically concerns associated with using the raw 950 

output data from these sensors. It is preferred that these data be calibrated to nearby RGM, with 951 
these calibrations usually being regionally specific, i.e., a single calibration approach is typically 952 
unsuitable beyond the region where it was developed (Giordano et al., 2021; McFarlane, Raheja, 953 
et al., 2021). Wherever possible, such regionally specific calibrations should be applied to LCS 954 
data before they are considered in this data fusion approach. However, due to the relative lack 955 
of RGM for conducting such calibration (a major motivation for data fusion approaches in the 956 
first place), such a local calibration may be lacking. In that case, the data fusion approach itself 957 
could be used to provide necessary data to conduct a crude regional calibration. 958 

To address data from LCS with lower reliability and potentially large biases, we propose to 959 
apply a linear calibration approach, where data collected by LCS, 𝐆!"#(𝑥, 𝑡), provide the 960 
independent variable. The phase 3 estimates, 𝐸$(𝑥, 𝑡), which include any RGM information in the 961 
area but not LCS information, provide the dependent variable. In regions lacking any RGM, the 962 
phase 2 estimate 𝐸%(𝑥, 𝑡) may be used instead. As a vector quantity, 𝐆!"#(𝑥, 𝑡) may include 963 
important ancillary data such as temperature and humidity measurements, which are often 964 
important in calibrating LCS, together with measurements of the target pollutant. Regression is 965 
conducted considering a time interval 𝑇& and the set of discrete surface monitoring sites with 966 
LCS in the region 𝑋!"#: 967 

𝛇, 𝜉, 𝐕𝛇, 𝑉( , 𝐕𝛇𝛏, 𝑉*,!"# = 𝕃ℝ,!∈."(,),1!∈2#$%[𝐸$(𝑥
3, 𝑡3)~𝐆!"#(𝑥3, 𝑡3)]. (S1) 968 

The linear regression is then applied to the raw LCS data: 969 

𝐺!"#,&456784,9:(𝑥, 𝑡) = 𝛇	 ∙ 	𝐆!"#(𝑥, 𝑡) + ξ, (S2) 970 

where ∙ denotes a dot product. The calibrated LCS data are then used in phase 4 to provide 971 
information for local updating of the estimates in their vicinities. In doing so, the relatively 972 
higher measurement uncertainties of these LCS should be considered when evaluating 973 
𝐾(𝑥, 𝑥3, 𝑡, 𝑡′). These uncertainties can be quantified using the regression residual variance 𝑉*,!"#. 974 
Note that since this calibration approach seeks to match, on a regional basis and for an 975 
extended calibration period, the LCS data to the phase 3 data fusion estimates, including these 976 
calibrated data back into the phase 3 estimation would be redundant. Once calibrated, however, 977 
individual LCS can provide valuable local and near-real-time information, and so including these 978 
data in phase 4 is potentially beneficial. 979 

This approach is most suited to networks of LCS containing multiple devices with high 980 
inter-sensor precision and where the network is broadly distributed at a representative set of 981 
locations over the region of interest. In situations where inter-sensor precision is low, few LCS 982 
and no RGM are available, and/or where LCS deployments over-represent specific environments, 983 
especially near-source environments, this approach is likely to perform poorly. 984 
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 985 

Figure S1. Diagram of phase 1 of the data fusion process. Blue grids denote model grids in 986 
space, with different layers denoting different timesteps. Shaded grids indicate the 987 
neighborhood of the grid cell corresponding to location 𝒙 and time 𝒕, used for estimation 988 
of model variability. 989 

 990 

 991 

Figure S2. Diagram of phase 2 of the data fusion process. Orange grids denote satellite 992 
remote sensing data, with light blue grids corresponding to the analogous modeled column 993 
quantity.  994 
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 995 

Figure S3. Diagram of phase 3 of the data fusion process. Purple grids correspond to the 996 
phase 2 estimates. Green points indicate ground measurements at monitor sites 𝑿𝒄(𝒙) 997 
collected during calibration period 𝑻𝒄(𝒕). A conceptual illustration of the linear regression 998 
process is provided on the right.  999 

 1000 

 1001 

Figure S4. Diagram of phase 4 of the data fusion process. The nearby region used for this 1002 
phase, 𝑿𝒏𝒆𝒂𝒓(𝒙), is denoted with a grey ring. Recent times 𝑻𝒓𝒆𝒄𝒆𝒏𝒕(𝒕) are considered to be the 1003 
last timestep in the calibration period. 1004 
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 1005 

Figure S5. Empirically determined values for 𝜼𝟏 and 𝜼𝟐 used for San Francisco in this paper, 1006 
as a function of hour of the day (presented in local time).  1007 
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 1008 

Figure S6. Empirically determined values for 𝜼𝟏 and 𝜼𝟐 used for New York City in this paper, 1009 
as a function of hour of the day (presented in local time). 1010 

 1011 

Figure S7. Summary performance metrics for the data fusion approach, evaluated for the 1012 
San Francisco study region in September 2019 (same results as presented in Figure 2). Plots 1013 
depict the Pearson correlation (a) and root mean square error (b) between the estimates of 1014 
the various data fusion phases (denoted by colors) as a function of the forecast lead time 1015 
on the horizontal axis (note that the horizontal axis is not linearly scaled). The plotted values 1016 
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depict the median value of the performance metrics assessed across the active monitor sites 1017 
in the study region.  1018 

 1019 

Figure S8. Assessment of CI coverage for different CI. The horizontal axis reports the 1020 
nominal coverage of the CI, and the vertical axis reports the actual fraction of 1021 
measurements falling within that CI. The assessment was conducted for zero lead time 1022 
estimates in the San Francisco study region for September 2019 (same results as presented 1023 
in Figure 2). Coverage is assessed across all data simultaneously, i.e., the fraction of hourly 1024 
measurements falling within the CI across all sites and all hours in the month is presented. 1025 
Different colored lines represent different phases of the data fusion. The black dotted lines 1026 
denote a one-to-one relationship (the ideal result), and grey dotted lines indicate results 1027 
within 5 percentage points of this ideal. 1028 
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 1029 

Figure S9. Fractions of measurements falling within the estimated 75 % CI for different 1030 
phases of the data fusion process, with phases represented by different colors, presented 1031 
for different application months. Box-and-whisker plots denote ranges of these fractions 1032 
across active NO2 monitor sites in New York City during that month, with the horizontal line 1033 
in the box denoting the median, the box denoting the 25th-to-75th-percentile range, and the 1034 
whiskers denoting the full range. The horizontal dotted line across the figure indicates the 1035 
goal, i.e., 75 % of measurements falling within the 75 % CI. 1036 


