
manuscript submitted to Earth and Space Science 

 

1 

 

 

Sub-city Scale Hourly Air Quality Forecasting by Combining Models, Satellite 1 

Observations, and Ground Measurements 2 

C. Malings1,2,3, K. E. Knowland2,3, C. A. Keller2,3, and S. E. Cohn2 3 

1NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD, USA. 4 

2Global Modeling and Assimilation Office, Goddard Space Flight Center, Greenbelt, MD, USA. 5 

3Universities Space Research Association, Columbia, MD, USA. 6 

Corresponding Author: Carl Malings (carl.a.malings@nasa.gov) 7 

Key Points: 8 

• Multiple air quality data sources (GOES-CF model, TROPOMI satellite, EPA monitors) 9 

are combined to improve city-scale NO2 forecasts. 10 

• Forecasts using combined data outperform forecasts using ground-based measurements 11 

only. 12 

• Updating of forecasts based on residuals against the most recent ground measurements 13 

further improves short-term forecasting.  14 

mailto:carl.a.malings@nasa.gov


manuscript submitted to Earth and Space Science 

 

2 

 

 

Abstract 15 

While multiple information sources exist concerning surface-level air pollution, no individual 16 

source simultaneously provides large-scale spatial coverage, fine spatial and temporal resolution, 17 

and high accuracy. It is therefore necessary to integrate multiple data sources, using the strengths 18 

of each source to compensate for the weaknesses of others. In this paper, we propose a method 19 

incorporating outputs of NASA’s GEOS Composition Forecasting model system with satellite 20 

information from the TROPOMI instrument and ground measurement data on surface 21 

concentrations. Although we use ground monitoring data from the EPA network in the 22 

continental United States (US), the model and satellite data sources used have the potential to 23 

allow for global application. This method is demonstrated using surface measurements of 24 

nitrogen dioxide as a test case in regions surrounding five major US cities. The proposed method 25 

is assessed through cross-validation against withheld ground monitoring sites. In these 26 

assessments, the proposed method demonstrates major improvements over two baseline 27 

approaches which use ground-based measurements only. Results also indicate the potential for 28 

near-term updating of forecasts based on recent ground measurements.  29 

Plain Language Summary 30 

Air quality is a major health concern worldwide, leading to millions of premature deaths 31 

annually. In order to better understand this risk and mitigate its impacts, there are numerous 32 

sources of information about air quality. These include ground-based measurement stations, 33 

satellites, and global air quality models. By combining these data sources together, we can use 34 

the strengths of each source to compensate for the weaknesses of others. This paper presents one 35 

method of combining these data sources and uses it to make air quality forecasts over five US 36 

cities up to 24 hours in advance. These forecasts are compared to pollution estimates made using 37 

ground-based measurement data only to see how integrating additional data sources improves the 38 

forecast. Overall, we find that there are large increases in accuracy of forecasting using the 39 

proposed method, and that further improvements can be made by comparing the forecasts to the 40 

most recent ground-based measurements and making some more final adjustments. Methods like 41 

this, which use a combination of globally available satellite and model data together with some 42 

local measurements, can be applied to different types of air pollution in all regions of the world, 43 

thereby improving our understanding of air pollution globally. 44 

1 Introduction 45 

Air pollution is recognized as one of the leading risk factors of human mortality 46 

worldwide, and its relative impact has been increasing in recent years (Brauer et al., 2012, 2016; 47 

Forouzanfar et al., 2015; Cohen et al., 2017). Monitoring of air quality has traditionally been 48 

conducted by government regulatory agencies, such as the United States (US) Environmental 49 

Protection Agency (EPA), operating networks of fixed monitoring stations (Snyder et al., 2013). 50 

These networks typically focus on assessing the background levels in urban areas, along with 51 

some known major emission sources such as industrial facilities and highways (Chow, 1995). 52 

The relatively high setup and operating cost of these networks limits the number of monitoring 53 

stations which can feasibly be deployed. On the other hand, air pollutant concentrations can vary 54 

greatly in space, especially in urban areas with a large number and variety of pollutant sources in 55 

close proximity (Marshall et al., 2008; Karner et al., 2010; Tan et al., 2014). This variability 56 

means that air quality estimates based on these traditional monitoring stations may 57 
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underrepresent the variability or extremes in local air pollution (Jerrett, Burnett, et al., 2005). 58 

There are several techniques to extend the data collected by these limited monitoring sites to 59 

better represent air quality over a region. These include proximity-based or statistically 60 

interpolated methods, e.g., “kriging”, and land use regression approaches using assumed 61 

relationships between land use characteristics and pollutant concentrations and extrapolating 62 

these beyond the measurement sites (see Jerrett, Arain, et al., 2005 for an overview). However, 63 

these approaches have limitations: simpler statistical models of air pollutants, such as land use 64 

regression, tend to generalize poorly to regions different from those where they were developed 65 

(Hoek et al., 2008; Liu et al., 2012) and cannot account for transient pollution events, e.g., from 66 

fires or dust storms. 67 

Besides relying on ground-based regulatory monitors alone, alternative sources of air 68 

quality data can be considered. These include low-cost sensors, which can be deployed in greater 69 

numbers for a comparable cost, thereby increasing the spatial density and coverage for data 70 

collection (Snyder et al., 2013; Loh et al., 2017; Turner et al., 2017). However, low-cost sensors 71 

require careful calibration against available regulatory-grade instruments to ensure sufficient data 72 

quality (Popoola et al., 2016; Malings et al., 2019). The use of satellite data to inform local air 73 

quality estimation is also a promising area of work (e.g., Engel-Cox et al., 2004; Han et al., 2018; 74 

Lyapustin & Wang, 2018; Cooper et al., 2020). Satellite instruments are limited, however, to 75 

observe only during cloud-free daylight conditions, and typically measure pollutant 76 

concentrations integrated over the atmospheric column (see Duncan et al., 2014 for an 77 

overview). Finally, there are modeling approaches ranging from gaussian plume dispersion 78 

models to full atmospheric chemistry simulation models (Jerrett, Arain, et al., 2005). These 79 

sophisticated approaches require knowledge of emission sources and rates, and are typically 80 

computationally intensive, especially at high spatial resolutions (C. A. Keller et al., 2014; Hu et 81 

al., 2018). This can preclude their use in certain areas where the necessary input information and 82 

computational resources do not yet exist. However, they have the potential to produce global 83 

concentration estimates as well as forecasts of near-future conditions. 84 

There are many possibilities to combine these different sources of information to improve 85 

the spatial and/or temporal resolution of air quality estimates. For example, information on NO2 86 

vertical profiles from the GEOS-Chem global atmospheric chemistry model (Bey et al., 2001) 87 

was combined with tropospheric column NO2 concentration data from the Ozone Monitoring 88 

Instrument (OMI) aboard the US National Aeronautics and Space Administration (NASA) Aura 89 

satellite, resulting in a better correlation to measured daily-average surface concentrations, 90 

despite some remaining bias (Lamsal et al., 2008). Machine learning approaches have been used 91 

to refine the predictions of global atmospheric chemistry models to better match the records of 92 

specific measurement stations, improving location-specific forecasts (Christoph A. Keller et al., 93 

2020). Low-cost sensors have been used together with aerosol optical depth (AOD) data from the 94 

NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instruments to 95 

produce estimates of surface-level fine particulate matter mass (PM2.5), with the low-cost sensor 96 

networks functioning nearly as well as the sparser regulatory-grade networks when used for this 97 

purpose (Gupta et al., 2018; Malings et al., 2020). These approaches still only provided 98 

information about the situation at the satellite overpass times, however. Estimates of the 99 

“typical” air quality in a region, derived from fine-resolution pollutant dispersion models, have 100 

been updated with low-cost sensor data for near-real-time air quality mapping (Schneider et al., 101 

2017; Ahangar et al., 2019). Regional-scale atmospheric chemistry models have also been used 102 

together with MODIS AOD, surface-level EPA monitoring data, and other information such as 103 
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land usage and meteorology to produce daily-average surface PM2.5 estimates at one-kilometer 104 

spatial resolution over the southeastern and eastern US (Friberg et al., 2016; Goldberg et al., 105 

2019; Murray et al., 2019; Just et al., 2020). These estimates were highly correlated with the 106 

EPA measurements during cross-validation. Similar approaches have been applied at a global 107 

scale for estimating annual-average PM2.5 concentration, although accuracy of the method was 108 

regionally-dependent (van Donkelaar et al., 2010; Shaddick et al., 2018). Much recent research 109 

has focused on one-kilometer daily-average surface PM2.5 estimation combining similar data 110 

sources (Cleland et al., 2020; Danesh Yazdi et al., 2020; Just et al., 2020; Mhawish et al., 2020), 111 

with some research into hourly-average concentration estimation (Jiang et al., 2021) and into 112 

forecasting daily averages (Zhang et al., 2020). Similar efforts include regional forecasting of 113 

coarse particulate matter (Michaelides et al., 2017) and global estimation of 8-hour maximum 114 

surface ozone concentrations (Chang et al., 2019) by combining model, satellite, and/or ground 115 

data. 116 

Building on this previous work, this paper proposes and demonstrates an approach for 117 

using globally-available atmospheric composition historical estimates and forecasts and satellite 118 

information together with localized surface measurements for generating sub-city-scale and 119 

hourly resolution estimates and near-term forecasts up to 24 hours in advance of surface-level 120 

pollutant concentrations relevant for air quality. We make use of the Global Earth Observing 121 

System Composition Forecasting (GEOS-CF) atmospheric chemistry model system and satellite 122 

data from the TROPOspheric Monitoring Instrument, TROPOMI. Although this paper focuses 123 

on surface NO2 across several US cities as a case study, the data sources and methods are 124 

broadly applicable to different pollutants of interest and for any location worldwide with surface-125 

level monitoring. While being generally applicable, the proposed methods are intended for 126 

targeted application to limited spatial and temporal domains, since previous results indicate that 127 

the relationships between ground concentrations and model outputs or satellite retrievals vary in 128 

space and time, which limits the generalizability of any specific derived relationship. Finally, the 129 

proposed approach does not combine data sources to improve retrospective air quality analyses, 130 

as has been the focus of much previous work, but instead examines how these combined data can 131 

better inform near-term forecasting of air quality at fine spatial and temporal resolutions. The 132 

data sources used are discussed in Section 2, and the methods of their integration are discussed in 133 

Section 3. The performance of these methods is evaluated as outlined in Section 4, with the 134 

results presented in Section 5. Section 6 presents some general conclusions and discussion of 135 

areas for future work.  136 

2 Data Sources 137 

2.1 GEOS-CF surface Nitrogen Dioxide concentration 138 

The GEOS-CF system couples the GEOS model with GEOS-Chem chemistry module 139 

(Bey et al., 2001; Eastham et al., 2014; C. A. Keller et al., 2014; Long et al., 2015). It uses the 140 

increments from an assimilated meteorological product from a near-real time GEOS numerical 141 

weather prediction system (Orbe et al., 2017) in order to produce global estimates and five-day 142 

forecasts of concentrations for several chemicals of interest for atmospheric chemistry and air 143 

quality (Hu et al., 2018; Knowland et al., 2020). Outputs are gridded to 0.25º × 0.25º, roughly 25 144 

× 25 km2. For this project, the hourly-average surface concentrations of NO2 are used. GEOS-CF 145 

global estimates are available since 1 January 2018 and forecasts since 1 January 2019 (see 146 

Knowland et al., 2020). It should also be noted that, in its current configuration, there is no direct 147 
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chemical data assimilation within GEOS-CF. Instead, the system simulates the emission, 148 

transportation, chemical evolution and deposition of atmospheric pollutants, taking the state of 149 

the atmosphere from the GEOS outputs. 150 

2.2 TROPOMI tropospheric Nitrogen Dioxide concentration 151 

Data from TROPOMI aboard the European Space Agency’s Copernicus Sentinel-5 152 

Precursor satellite are used to provide remote-sensing estimates of tropospheric column NO2 153 

concentrations (“TROPOMI Level 2 Nitrogen Dioxide,” n.d.). TROPOMI is considered to be a 154 

successor to OMI, with a finer spatial resolution, nominally 7 × 3.5 km2 (Veefkind et al., 2012). 155 

Values for NO2 are available as part of the Level-2 data product since July 2018, with the current 156 

operational version in service since June 2019. Satellite overpasses occur at approximately 13:30 157 

local solar time. The resulting observed patterns are therefore likely to be representative of 158 

daytime concentrations, but may not capture the heavily traffic-influenced conditions of the 159 

morning and afternoon rush-hours. For data quality assurance (QA), pixels with provided QA 160 

values above 0.5 are used, as recommended for “good” quality data. For this application, data are 161 

re-gridded to a 0.05º × 0.05º grid by averaging together all valid pixels falling within each grid 162 

cell for each satellite overpass. 163 

2.3 EPA ground Nitrogen Dioxide monitoring data 164 

The “ground truth” for NO2 concentrations in this project is provided by regulatory-grade 165 

air quality monitoring stations in the US, with data collected by the EPA. These stations are 166 

usually sited in or near urban areas and major pollutant sources to monitor compliance with the 167 

Clean Air Act. Chemiluminescent analyzers remain the recommended method for quantifying 168 

ambient NO2, despite some known interference from other reactive nitrogen compounds (US 169 

EPA, 2017). A measurement accuracy within 15% is recommended for all regulatory-grade 170 

monitor data (Williams et al., 2014); for typical US ambient NO2 concentrations, this would 171 

correspond to an accuracy on the order of 1 ppb. 172 

The application areas considered for this paper are listed in Table 1; maps of these areas 173 

are provided in the supplemental information, Figure S1. These areas are 2º × 2º domains, 174 

representing several large US cities and their surrounding metropolitan areas. Application to 175 

such restricted domains is important to minimize the impact of spatial variability in surface-to-176 

satellite concentration relationships and to limit the effect of multiple time zones which would 177 

“spread out” diurnal signals such as rush-hour traffic emissions. For the current work, analysis is 178 

focused on Las Vegas, New Orleans, New York City, Salt Lake City, and San Francisco. These 179 

areas were chosen to represent different regions across the country with relatively large numbers 180 

of EPA NO2 monitoring sites, which facilitate evaluation of the urban-scale air quality estimation 181 

and forecasting abilities of the proposed methods. EPA ground data collected during the calendar 182 

month of September 2019 in each area are used. This month is considered as a candidate for a 183 

“typical” month of the year since it is usually neither a minimum nor maximum for NO2 in the 184 

US (Lamsal et al., 2010). This year is selected due to the availability of GEOS-CF forecasts and 185 

the current operational version of the TROPOMI data product. 186 
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Table 1. Designated analysis areas considered in this paper. 187 

Area Name Lower-Left Corner Upper-Right Corner EPA NO2 sites 

Active Sept. 2019 

Las Vegas 35ºN, 116ºW 37ºN, 114ºW 5 

New Orleans 29ºN, 92ºW 31ºN, 90ºW 8 

New York City 40ºN, 75ºW 42ºN, 73ºW 14 

Salt Lake City 40ºN, 113ºW 42ºN, 111ºW 15 

San Francisco 37ºN, 123ºW 39ºN, 121ºW 27 
 188 

3 Data Fusion Methodology 189 

A representation of the proposed scheme for surface concentration estimation and 190 

forecasting is presented in Figure 1. The idea is to use outputs from a global atmospheric 191 

chemistry model to drive estimates and forecasting at a coarse spatial resolution. Information 192 

from other data sources, especially satellites, is then incorporated to help resolve finer spatial 193 

variabilities. Ultimately, ground-based measurement data are used to establish a relationship 194 

between the model and satellite-derived spatial patterns and observed surface concentration 195 

levels during a specified calibration period 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 leading up to the current time, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡. A 196 

seven-day calibration period is used in this paper. This length was chosen as a compromise 197 

between having too short a period, during which there might be too few satellite passes to extract 198 

a robust pattern, and too long a period, during which the extracted typical pattern might be 199 

subject to change and important temporary spatial patterns smoothed out. Relationships 200 

established for 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 are extrapolated forward in time to support predictions of surface 201 

concentrations at 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 in the near future, e.g., within a day of 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 202 

 203 

Figure 1. Overview of the proposed approach to integrate model, satellite, and ground data 204 

sources for short-term forecasting of surface concentrations. 205 

The implementation of this general approach is divided into several stages, described in 206 

the following sections. First, in Section 3.1, the GEOS-CF model outputs are downscaled to a 207 

finer target resolution, i.e., that of the satellite data. Second, in Section 3.2, the TROPOMI 208 

satellite data collected during the calibration period are compared to the model’s estimates for 209 

the same period. This comparison identifies a “typical pattern” in these data, which is assumed to 210 

remain valid until at least 𝑡𝑡𝑎𝑟𝑔𝑒𝑡. This pattern is combined with the model’s estimates during the 211 

calibration period in Section 3.3, and these combined estimates are compared with EPA ground 212 

measurement data. This comparison establishes model-to-ground-truth and/or satellite-to-213 
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ground-truth relationships via linear regression in Sections 3.4 and 3.5. These relationships are 214 

assumed to persist into the near future. The model’s forecast for 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 is combined with the 215 

typical satellite pattern and adjusted using established relationships to ground data, providing 216 

surface concentration predictions for that time in Section 3.6. An optional final update to these 217 

predictions, based on correlations with the most recent ground measurement data, is discussed in 218 

Section 3.7.  219 

3.1 Downscaling of model outputs 220 

Initial downscaling of the spatially coarse model is done in one of two ways. These are 221 

demonstrated in Figure 2 using the monthly average GEOS-CF surface NO2 concentration fields 222 

for September 2019 over the New York City area. First, a naïve or “nearest-grid-point” 223 

interpolation method assigns the value at any fine-resolution grid point to be the same as the 224 

value at the nearest grid point at the original resolution. This results in a field sub-divided into 225 

squares around the model grid points, with abrupt changes at the boundaries, as in Figure 2a. An 226 

advantage of this method is that it preserves spatial averages, i.e., an area-averaged value will be 227 

the same before and after interpolation. However, since these values are to be rescaled anyway as 228 

part of the proposed approach, this may not be a useful feature here. Second, a bi-linear 229 

interpolation can be applied to the two-dimensional surface grid to produce linearly interpolated 230 

concentration estimates over the new grid. The smoothed field resulting from linear interpolation 231 

features more physically realistic gradual changes in surface concentration, as in Figure 2b. 232 

 233 

Figure 2. Comparison of representative model-predicted GEOS-CF surface NO2 concentrations 234 

for September 2019 downscaled to higher resolution using either a nearest-grid-point method (a) 235 

or linear interpolation (b) for New York City. 236 

During preliminary testing, it was found that in most cases, with all other factors being 237 

equal, linear interpolation outperforms nearest-point interpolation by a slight margin in terms of 238 

the ultimate quality of the surface concentration forecasts; see the supplemental information 239 

Section S2.1 for details. This method for downscaling is therefore preferred and used for the 240 

results presented in Section 5. The resolution to which the model is downscaled depends on the 241 
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ultimate desired resolution. At a minimum, the resolution must be increased to match the highest 242 

resolution data source being used. Interpolation should also be performed to all locations at 243 

which ground measurement data are available. Let 𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡) denote the model’s interpolated 244 

estimate of the ground-level hourly-average NO2 concentration at spatial location 𝑥 and time 𝑡. 245 

3.2 Extraction of typical patterns 246 

Let 𝑓𝑆𝐴𝑇(𝑥, 𝑡) denote a satellite-retrieved quantity at location 𝑥 and time 𝑡. In the 247 

proposed method, data collected for a specified calibration interval, 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, are used to 248 

define a typical satellite pattern map, 𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥). This is done by averaging: 249 

 𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) =

1

𝑛𝑆𝐴𝑇
∑ 𝑓𝑆𝐴𝑇(𝑥, 𝑡)𝑡∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

 (1) 250 

where 𝑛𝑆𝐴𝑇 is the number of timesteps during 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 over which 𝑓𝑆𝐴𝑇(𝑥, 𝑡) data are 251 

available, i.e., the number of satellite overpasses which occur during the calibration interval. 252 

Note that missing satellite data, e.g., due to cloud cover, are ignored. 253 

The data source 𝑓𝑆𝐴𝑇(𝑥, 𝑡) may represent a different quantity of interest than 254 

𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡), e.g., tropospheric column versus ground-level NO2 concentrations. Instead of using 255 

𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) directly, it is re-scaled to best match the values of 𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡) for the same period of 256 

time. To do this, a typical model pattern 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥) is first extracted. This can be done in two 257 

different ways. One method obtains the “full” average of the calibration time period:  258 

 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅

full
(𝑥) =

1

𝑛𝑀𝑂𝐷𝐸𝐿
∑ 𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡)𝑡∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

 (2) 259 

where 𝑛𝑀𝑂𝐷𝐸𝐿 denotes the number of model timesteps during the calibration period. 260 

Alternatively, the model average can be “restricted” to only those times and locations where data 261 

are available from both sources. This is evaluated as: 262 

 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅

restricted
(𝑥) =

∑ 𝑓𝑀𝑂𝐷𝐸𝐿(𝑥,𝑡)𝑡∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
𝕀(∃𝑓𝑆𝐴𝑇(𝑥,𝑡))

∑ 𝕀(∃𝑓𝑆𝐴𝑇(𝑥,𝑡))𝑡∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

 (3) 263 

where 𝕀(⋅) takes value 1 when the argument is true and 0 otherwise. Its argument, ∃𝑓𝑆𝐴𝑇(𝑥, 𝑡), is 264 

used to determine whether there exists (∃) a valid datapoint from 𝑓𝑆𝐴𝑇(𝑥, 𝑡) at location 𝑥 and 265 

time 𝑡, i.e., whether a satellite pass occurs during that timestep of the model and whether there 266 

are valid cloud-free data from the satellite for that timestep.  267 

Regardless of which method is used to obtain 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥), the final step is to re-scale 268 

𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) to better match 𝑓𝑀𝑂𝐷𝐸𝐿

̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥). This is done via ordinary least squares linear regression 269 

across the spatial domain of the calibration, 𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, with 𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) as the independent 270 

variables and 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥) as the dependent variables. The resulting regression is denoted 271 

𝜃𝑆𝐴𝑇→𝑀𝑂𝐷𝐸𝐿, and the process of regression is denoted: 272 

 𝜃𝑆𝐴𝑇→𝑀𝑂𝐷𝐸𝐿 ← regress 𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) to 𝑓𝑀𝑂𝐷𝐸𝐿

̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥) ∀ 𝑥 ∈ 𝑋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 (4) 273 

The final extracted pattern 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥), representing the difference between the re-scaled 274 

𝑓𝑆𝐴𝑇
̅̅ ̅̅ ̅(𝑥) and  𝑓𝑀𝑂𝐷𝐸𝐿

̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥), is: 275 

 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥) = 𝜃𝑆𝐴𝑇→𝑀𝑂𝐷𝐸𝐿 (𝑓𝑆𝐴𝑇

̅̅ ̅̅ ̅(𝑥)) − 𝑓𝑀𝑂𝐷𝐸𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥) (5) 276 
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Passes of TROPOMI occur at certain local times of day, and therefore any information captured 277 

can only represent spatial patterns present at those times. This can introduce a bias with respect 278 

to the true average spatial pattern if these are compared directly. Using the “full” approach of 279 

Equation 2, the systematic bias between the spatial pattern as determined by the satellite at the 280 

overpass times and the spatial pattern as determined from the model throughout the entire 281 

calibration period is incorporated into 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥). Using the “restricted” approach of Equation 3, 282 

this bias is not incorporated, and only the difference at the overpass times is captured by 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥). 283 

This is then assumed to be representative of these difference throughout the day. 284 

 285 

Figure 3. Patterns of systematic differences between rescaled TROPOMI satellite measurements 286 

and model-derived concentrations during an example calibration period. Rescaling was done 287 

considering either the entire calibration period, as in Equation 2 (a), or only the times of the 288 

satellite overpasses, as in Equation 3 (b).  289 

Figure 3 depicts example 𝑓𝑇𝑅𝑂𝑃𝑂𝑀𝐼
̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿(𝑥) patterns derived using the “full” and the 290 

“restricted” approaches. While the spatial patterns are similar, using the “full” approach leads to 291 

larger magnitudes in the pattern intensity, as in Figure 3a, compared to the “restricted” approach, 292 

as in Figure 3b. This is to be expected, since there is a better overall match between the spatial 293 

patterns when the averaging is restricted to satellite overpass times only.  294 

Preliminary testing was conducted to determine which of these methods of typical pattern 295 

extraction should be used. The results were mixed; details are provided in the supplemental 296 

information, Section S2.1. For New Orleans, there was a clear improvement in correlation for 297 

patterns extracted at satellite overpass time as in Equation 3. Alternatively, for Las Vegas, there 298 

were reductions in average error and bias using the full calibration period to extract patterns as in 299 

Equation 2. For New York City, Salt Lake City, and San Francisco, results were substantially 300 

similar for either approach. Due to the rather large differences in correlation observed for New 301 

Orleans and the relatively small number of ground verification sites available in Las Vegas, as 302 

noted in Table 1, the method of Equation 3 is slightly preferred, and used for the results 303 

presented in Section 5. 304 
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3.3 Combination of model and typical patterns 305 

Once typical patterns of the satellite data are extracted, these can be combined with the 306 

downscaled model estimates and forecasts. In the proposed method, this is done by direct 307 

addition: 308 

 𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡) + 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥) (6) 309 

Note that this approach assumes that differences between model-predicted surface concentrations 310 

and true concentrations are constant. Alternatively, these patterns might be combined via linear 311 

regression, which would allow for the intensity of these differences to vary via tuning of the 312 

regression parameters. In comparing the use of patterns as regression inputs versus their direct 313 

addition as in Equation 6 during preliminary testing, there is a slight preference towards the 314 

combination of patterns via addition; see the supplemental information Section S2.1 for details. 315 

Furthermore, the combination of patterns via Equation 6 requires fewer free parameters 316 

compared to combination via regression. It may be that there were insufficient data during the 317 

calibration period to establish a robust regression to allow that combination approach to perform 318 

sufficiently well, and so simple addition achieved more stable performance. Regardless, 319 

Equation 6 is used in the results presented in Section 5. 320 

3.4 Calibration to ground data 321 

Next, a linear relationship is established during the calibration period between the 322 

indirect data sources, i.e., the model- and satellite-derived patterns, and the direct data source, 323 

i.e., the ground measurement data. The relationship established for this period is expressed as: 324 

𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 ← regress 𝑓𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡)  to 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡)  ∀ 𝑥 ∈ 𝑋𝑔𝑟𝑜𝑢𝑛𝑑, 𝑡 ∈ 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 (7) 325 

where the regression relationship 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 is developed by regressing the various input 326 

data sources 𝑓𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡) as independent variables to the target 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡) dependent 327 

variables. The regression uses data collected during the calibration period 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 and 328 

restricted to the sites where ground measurements are available during this time, 𝑋𝑔𝑟𝑜𝑢𝑛𝑑. In this 329 

general formulation, 𝑓𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡) is a stand-in for various data sources and/or combinations of 330 

sources. For example, using the sum of the model and satellite pattern data, as in Equation 6, as 331 

the input is denoted: 332 

 𝜃𝑀𝑂𝐷𝐸𝐿+𝑆𝐴𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 ← regress (𝑓𝑀𝑂𝐷𝐸𝐿(𝑥, 𝑡) + 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥))   to 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡) (8) 333 

Note that additional regression inputs can also be considered within this framework. During 334 

preliminary testing, meteorological information such as temperature, relative humidity, planetary 335 

boundary layer height, and wind from the GEOS-CF system were considered as independent 336 

variables. Additionally, information on nighttime light intensity during the calibration period, as 337 

a representation of human activity, was considered as a possible proxy or predictor for surface 338 

NO2 concentrations. Here, nighttime light intensity as measured by a day-night band sensor of 339 

the NASA Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-340 

orbiting Partnership (SNPP) satellite was used for this purpose (NASA VIIRS Land Science 341 

Investigator-Led Processing System, 2019; Román et al., 2018). However, in both cases, there 342 

were no clear improvements over the use of the methodology without these additional data 343 

sources; see the supplemental information Section S2.2 for details. Results from these variations 344 
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on the proposed methodology are therefore not presented in Section 5, and are only briefly 345 

discussed in Section 6. 346 

3.5 Weighting schemes for calibration 347 

In establishing linear regression relationships to ground data during the calibration 348 

period, different weighting schemes are used. These schemes can increase the relative emphasis 349 

placed on different subsets of data within the calibration period, in order to coerce the resulting 350 

regression to better represent these subsets. Various possible time-based weighting schemes are 351 

proposed here, in which weight varies as a function of prediction lead time 𝑡𝑙𝑒𝑎𝑑, or the 352 

difference between the time at which the data are collected and the target prediction time 𝑡𝑡𝑎𝑟𝑔𝑒𝑡. 353 

Besides a null weighting scheme, where equal weight is given to all calibration data, four 354 

different time-varying weighting schemes are proposed, as illustrated in Figure 4. 355 

 356 

Figure 4. Different weighting schemes for linear regression to ground data. 357 

First, the “time-of-day” weighting values only times separated from 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 by multiples 358 

of 24 hours, i.e., only data collected at the same time of day are to be used in establishing the 359 

linear regression, as depicted by the red line in Figure 4. The “periodic” weighting scheme 360 

follows a similar logic, but uses sinusoidally varying weight with a 24-hour period, shown as the 361 

purple line in Figure 4: 362 

 wperiodic(𝑡𝑙𝑒𝑎𝑑) = cos2 (𝜋
𝑡𝑙𝑒𝑎𝑑

24 hrs
) (9) 363 

Another approach uses a “decaying” weight function, where weight decreases monotonically 364 

with lead time. In this case, exponential decay with a scale parameter of 24 hours is used, shown 365 

by the cyan line in Figure 4: 366 

 wdecay(𝑡𝑙𝑒𝑎𝑑) = exp (−
|𝑡𝑙𝑒𝑎𝑑|

24 hrs
) (10) 367 
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Finally, a “decaying periodic” weight function combines periodicity with a decay rate, such that 368 

peaks occur at the same time of day as 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 but decrease in magnitude as lead time increases. 369 

This is plotted as the blue line in Figure 4, whose formula is: 370 

 wdecaying periodic(𝑡𝑙𝑒𝑎𝑑) = 0.5 exp (−
|𝑡𝑙𝑒𝑎𝑑|

24 hrs
) + 0.5 cos2 (𝜋

𝑡𝑙𝑒𝑎𝑑

24 hrs
) (11) 371 

Averaging rather than multiplication is used in order for there to be non-zero weightings at all 372 

lead times. Note that any regression 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 is specific both to the calibration period 373 

from which it is derived and, in the case of these weighted regression schemes, to a prediction 374 

lead time. 375 

Among these weighting schemes, the decaying periodic scheme of Equation 11 gave the 376 

best and most robust performance across all regions during preliminary testing, and so is slightly 377 

preferred here; see the supplemental information Section S2.1 for details. Notably, however, the 378 

time-of-day approach to regression weighting led to noticeably better correlation in Salt Lake 379 

City and reduced bias in Las Vegas compared to the decaying periodic regression weighting 380 

scheme. Therefore, for those two areas, this weighting scheme is preferred. The exact reason for 381 

this difference is unclear but may be related to these areas being further inland than the other 382 

more coastal areas which are examined. 383 

3.6 Surface concentration prediction 384 

The regression relationship 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 can now be used to estimate the surface 385 

concentration at any time and location of interest, given appropriate input information.  386 

 𝑓(𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡) = 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 (𝑓𝐼𝑁𝑃𝑈𝑇(𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡))  (12) 387 

For example, following Equation 8: 388 

 𝑓(𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡) = 𝜃𝑀𝑂𝐷𝐸𝐿+𝑆𝐴𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 (𝑓𝑀𝑂𝐷𝐸𝐿(𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡) + 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥𝑡𝑎𝑟𝑔𝑒𝑡))  (13) 389 

Note that the input data sources should be matched to the calibration period, e.g., 𝑓𝑆𝐴𝑇
̿̿ ̿̿ ̿(𝑥) should 390 

be extracted during 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, while the regression relationship 𝜃𝑀𝑂𝐷𝐸𝐿+𝑆𝐴𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 should 391 

correspond to the same calibration period and to the target lead time if a time-varying weight 392 

scheme is used.  393 

3.7 Updating predictions using correlation of ground data 394 

In the proposed method so far, all information on the spatial distribution of surface 395 

pollutants is obtained indirectly, i.e., as GEOS-CF model outputs or satellite retrievals from 396 

TROPOMI. The direct ground measurements from EPA monitoring sites are only used to 397 

appropriately scale these data to better represent surface conditions. However, additional 398 

information can be extracted from the ground data directly. A method for this is outlined here, 399 

inspired by spatio-temporal kriging (Cressie & Wikle, 2011). 400 

It is assumed that the residuals between estimates derived by the methods outlined above 401 

and true surface concentrations can be modeled as Gaussian random variables with simple 402 

correlation structures based on spatial distances and temporal differences. The most recent 403 

ground measurement data can then be used to perform a Bayesian updating of these residuals, 404 

providing a final correction for the estimate. This correction, denoted 405 
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𝛿(𝐟𝐺𝑅𝑂𝑈𝑁𝐷(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝐟(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑥, 𝑡), is used to update the estimation provided from Equation 406 

12: 407 

 𝑓(𝑥, 𝑡) = 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷(𝑓𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡)) + 𝛿(𝐟𝐺𝑅𝑂𝑈𝑁𝐷(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝐟(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑥, 𝑡)  (14) 408 

The correction term is evaluated using the set of ground measurements at the current time, 409 

reflecting the latest available ground measurement data: 410 

 𝐟𝐺𝑅𝑂𝑈𝑁𝐷(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = {𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡)  ∀ 𝑥 ∈ 𝑋𝑔𝑟𝑜𝑢𝑛𝑑} (15) 411 

In addition, a prior estimate of the current surface concentration is required as input for the 412 

Bayesian updating. This is: 413 

 𝐟(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = {𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷(𝑓𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡))  ∀ 𝑥 ∈ 𝑋𝑔𝑟𝑜𝑢𝑛𝑑} (16) 414 

Note that if a weighted regression scheme is used, 𝜃𝐼𝑁𝑃𝑈𝑇→𝐺𝑅𝑂𝑈𝑁𝐷 must be appropriately 415 

matched to the target time, in this case 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡. It may therefore be different than the regression 416 

used in Equations 12 or 14. 417 

The update is derived using a standard Bayesian scheme for multivariate Gaussian distributions, 418 

assuming zero prior mean: 419 

𝛿(𝐟𝐺𝑅𝑂𝑈𝑁𝐷(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝐟(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑥, 𝑡) = 𝚺𝐴(𝚺𝐵 + 𝚺𝐶)
−1 (𝐟𝐺𝑅𝑂𝑈𝑁𝐷(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝐟(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) (17) 420 

Matrix 𝚺𝐴 denotes the spatio-temporal covariance between each of the ground measurement sites at the current time 421 

and the location and time of interest: 422 

 𝚺𝐴 = {𝜎𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  𝜌𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑥𝑔𝑟𝑜𝑢𝑛𝑑) 𝜌𝑡𝑖𝑚𝑒(𝑡, 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∀ 𝑥𝑔𝑟𝑜𝑢𝑛𝑑 ∈ 𝑋𝑔𝑟𝑜𝑢𝑛𝑑} (18) 423 

Matrix 𝚺𝐵 denotes the spatial covariance between the ground measurement sites:  424 

 𝚺𝐵 = {𝜎𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  𝜌𝑠𝑝𝑎𝑐𝑒(𝑥𝑔𝑟𝑜𝑢𝑛𝑑,1, 𝑥𝑔𝑟𝑜𝑢𝑛𝑑,2) ∀ 𝑥𝑔𝑟𝑜𝑢𝑛𝑑,1, 𝑥𝑔𝑟𝑜𝑢𝑛𝑑,2 ∈ 𝑋𝑔𝑟𝑜𝑢𝑛𝑑} (19) 425 

Since only ground measurements at 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are used, temporal correlation is assumed to be 1. 426 

Matrix 𝚺𝐶 denotes covariance of the errors in the ground measurements. These errors are 427 

assumed to be independent with the same variance: 428 

 𝚺𝐶 = 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2 𝐈 (20) 429 

where 𝐈 is an identity matrix of appropriate size.  430 

Exponentially decaying spatial and temporal correlation structures are assumed. These are, for 431 

space: 432 

 𝜌𝑠𝑝𝑎𝑐𝑒(𝑥1, 𝑥2) = exp (−
‖𝑥1−𝑥2‖

𝜆𝑠𝑝𝑎𝑐𝑒
)  (21) 433 

and for time: 434 

 𝜌𝑡𝑖𝑚𝑒(𝑡1, 𝑡2) = exp (−
|𝑡1−𝑡2|

𝜆𝑡𝑖𝑚𝑒
)  (22) 435 

where ‖𝑥1 − 𝑥2‖ denotes the distance between two points 𝑥1 and 𝑥2 on the Earth’s surface, 436 

computed via the Haversine formula approximation (Sinnott, 1984). Spatial and temporal 437 

correlations are assumed to be independent, such that overall spatio-temporal correlation is the 438 

product of the spatial and temporal correlations.  439 
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These correlation structures, together with parameters 𝜆𝑠𝑝𝑎𝑐𝑒, 𝜆𝑡𝑖𝑚𝑒, 𝜎𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 440 

are determined by examining the residual correlation structures of the underlying method for 441 

surface concentration estimation. The estimated parameters used in this paper are listed in the 442 

supplemental information, Table S1. An example of the spatial correlations, in Figure 5a, 443 

portrays a trend of higher correlation at shorter distances, declining to zero net correlation as 444 

distances between ground evaluation sites increase. Temporal correlations, in Figure 5b, also 445 

express a trend of decreasing correlations as time differences increase. Although there is a slight 446 

perturbation in this trend at about 24 hours, indicating some day-to-day correlations of the 447 

residuals, this was ignored for the purposes of this investigation. Future work may capture these 448 

effects with more sophisticated correlation structures. 449 

 450 

Figure 5. Spatial (a) and temporal (b) correlation of residuals for 1-hour-ahead prediction of 451 

surface concentrations using the proposed method of Sections 3.1-3.6 for New York City, 452 

September 2019. The fitted correlations are indicated by red lines. 453 

4 Assessment Methodology 454 

The methods described in Section 3 are tested to assess their ability to make accurate 455 

forecasts of surface-level NO2 for the five city areas of Table 1 for the month of September 2019. 456 

To allow for a seven-day calibration period, performance evaluations begin on the eighth day 457 

and proceed hour-by-hour, with the calibration period covering the seven days prior to that hour, 458 

until the end of the month. For each hour, forecasts with various lead-times are made from that 459 

time forward, unless the forecast time falls after the end of the month, in which case no forecast 460 

is made. All data are aligned to an hourly timescale. For the EPA and GEOS-CF data, the native 461 

temporal resolutions are hourly-average. TROPOMI data are assigned to the hour during which 462 
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the satellite pass occurs. Section 4.1 describes two baseline methods against which the proposed 463 

methods of Section 3 are to be compared, while Section 4.2 lists the metrics used to evaluate 464 

their performance. 465 

4.1 Baseline methods 466 

As a means of putting into context the performance of the surface concentration 467 

prediction approaches described in Section 3, two different baseline methods for making use of 468 

ground data only for estimation of surface pollutant concentrations are used. The “persistence” 469 

baseline assumes that the value at any point and time is the same as the most recent available 470 

measurement at the nearest ground measurement location: 471 

 𝑓𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒(𝑥, 𝑡) = 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑡𝑙𝑎𝑡𝑒𝑠𝑡)  (23) 472 

where 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is the closest ground monitor location to 𝑥 in 𝑋𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 is the most 473 

recent time in 𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, typically 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡.  474 

The “climatology” baseline uses the measurement record of the nearest ground 475 

measurement location during the calibration period, and assumes that the value at any time is the 476 

same as the average value at that time of day, with the average being computed during the 477 

calibration period only: 478 

 𝑓𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦(𝑥, 𝑡) =
∑ 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑡

′) 𝕀(𝑡′∈𝑇𝑡𝑖𝑚𝑒−𝑜𝑓−𝑑𝑎𝑦(𝑡))𝑡′∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

∑ 𝕀(𝑡′∈𝑇𝑡𝑖𝑚𝑒−𝑜𝑓−𝑑𝑎𝑦(𝑡))𝑡′∈𝑇𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

  (24) 479 

where 𝑇𝑡𝑖𝑚𝑒−𝑜𝑓−𝑑𝑎𝑦(𝑡) is a set of times at the same time of the day as 𝑡 according to the 480 

temporal resolution being considered. 481 

4.2 Performance metrics 482 

To assess performance, for a given area, data from all but one ground site are allowed for 483 

use in calibration, while ground concentrations at the final site are estimated using the approach 484 

being tested. All ground sites in each area are cycled through in this manner, leading to one set of 485 

performance metrics being assessed for each ground site. The performance metrics assessed are 486 

the correlation coefficient (r), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 487 

and Absolute Bias (AB). They are evaluated as follows: 488 

 r(𝑥) =
∑ (𝑓̂(𝑥,𝑡)−𝑓̂𝑚𝑒𝑎𝑛(𝑥,𝑡))(𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥,𝑡)−𝑓𝐺𝑅𝑂𝑈𝑁𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑥,𝑡))𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

√∑ (𝑓̂(𝑥,𝑡)−𝑓̂𝑚𝑒𝑎𝑛(𝑥,𝑡))𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

2
√∑ (𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥,𝑡)−𝑓𝐺𝑅𝑂𝑈𝑁𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑥,𝑡))𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

2
 (25) 489 

where 490 

 𝑓𝑚𝑒𝑎𝑛(𝑥, 𝑡) =
1

𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
∑ 𝑓(𝑥, 𝑡)𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

 (26) 491 

and 492 

 𝑓𝐺𝑅𝑂𝑈𝑁𝐷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥, 𝑡) =

1

𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
∑ 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡)𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

 (27) 493 

    (𝑥) =
1

𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
∑ |𝑓(𝑥, 𝑡) − 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡)|𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

  (28) 494 
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     (𝑥) = √ 1

𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
∑ (𝑓(𝑥, 𝑡) − 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡))

2

𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
  (29) 495 

  B(𝑥) = |
1

𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
∑ (𝑓(𝑥, 𝑡) − 𝑓𝐺𝑅𝑂𝑈𝑁𝐷(𝑥, 𝑡))𝑡∈𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

|  (30) 496 

These metrics are also evaluated as a function of lead time, i.e., the difference between 497 

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑡𝑡𝑎𝑟𝑔𝑒𝑡. Ten discrete lead times are investigated: 0, 1, 3, 6, 9, 12, 15, 18, 21, and 24 498 

hours. 499 

5 Results 500 

The following sections present some key results regarding the performance of different 501 

combinations of data sources using the proposed methods described in Section 3, following the 502 

assessment methods of Section 4.  503 

5.1 Comparison with baseline methods 504 

Figure 6 compares the performance of the proposed method to that of the persistence 505 

baseline of Equation 23 for the different application areas. Here, the proposed method 506 

incorporates the GEOS-CF, TROPOMI, and EPA surface monitor data as outlined in Sections 507 

3.1-3.6; the final updating of Section 3.7 has not yet been applied. For the persistence baseline, 508 

performance is fairly good at short lead times, but quickly drops off as the most recent 509 

measurements become increasingly outdated. There is a slight improvement again near the 24-510 

hour lead time, due to similarities in diurnal profiles. In contrast, the proposed method has fairly 511 

consistent performance across lead times from about 3 to 24 hours. Performance is slightly better 512 

at short lead times, likely due to the calibration weighting schemes favoring such short-term 513 

performance. Although the performance of the proposed method at very short lead times is not as 514 

good as that of the persistence baseline by the correlation metric in some areas, overall, the 515 

proposed method dominates the persistence baseline for most areas and lead times by most 516 

metrics. 517 
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 518 

Figure 6. Comparison of the proposed method, in solid lines, to the persistence baseline, in 519 

dotted lines, for different color-coded application areas as a function of forecast lead time. 520 

Performance is presented in terms of the correlation (a) and RMSE (b) metrics; the direction of 521 

improved performance by each metric is indicated by the arrows adjacent to the vertical axes. 522 

The presented performance is the median performance across ground validation sites within each 523 

area. 524 
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 525 

Figure 7. Comparison of the proposed method, in solid lines, to the climatology baseline, in 526 

dotted lines, in different color-coded application areas at a 6-hour forecast lead time. 527 

Performance is presented in terms of the correlation, RMSE (a), MAE, and AB (b) metrics. 528 

Performance is indicated with crosses, with the center of the cross indicating the median by each 529 

metric, and the arms of the cross denoting the 25th-to-75th percentile ranges of the metrics across 530 

the ground validation sites in each area. Axes are arranged such that the best performance by all 531 

metrics is towards the center of the figure overall.  532 

For the climatology baseline of Equation 24, performance is roughly consistent across 533 

prediction lead times for all metrics. For this reason, Figure 7 compares the performance of this 534 

baseline with that of the proposed method for the 6-hour lead time only, as an illustrative 535 

example of the relative performance for all lead times. Note that the performance of the proposed 536 

method is typically consistent across lead times greater than about 3 houts, as indicated in Figure 537 

6. In terms of median performance across all validation sites in each area, the proposed method 538 

universally improves over this baseline. The spread in performance in terms of the accuracy 539 

metrics of RMSE and MAE across ground validation sites, as indicated by the lengths of the 540 

horizontal bars of the crosses, is also typically smaller for the proposed method than for this 541 

baseline. This indicates that the proposed method has more consistent performance across 542 

different sites. Together, the results of these comparisons to the baselines illustrate the benefits of 543 

incorporating multiple data sources, as opposed to using the ground monitoring data only. 544 
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5.2 Impact of combining GEOS-CF with TROPOMI 545 

The performance of the proposed method is also assessed both with and without the 546 

TROPOMI satellite information being included. Figure 8 breaks down this performance as a 547 

function of the local hour of the day, in order to examine the effects of these data in relation to 548 

the time at which the satellite passes occur. In terms of RMSE, there is typically little difference 549 

in performance due to the inclusion of these data. Satellite passes occur during a time of day 550 

when the performance is typically better by this metric anyway. A notable exception is Las 551 

Vegas, for which there are dramatic improvements in performance throughout the day due to the 552 

inclusion of the TROPOMI data, as shown by the solid versus dotted black lines in Figure 8. 553 

Satellite passes occur at a time of day when correlation is generally worse, although RMSE is 554 

better. In New York City there are notable improvements in the correlation for times of day 555 

around the satellite overpass time. This indicates that the TROPOMI information are having a 556 

temporally localized positive impact. Similar trends can be seen in other areas, but the effect is 557 

not universal. In San Francisco, there is a slight decrease in correlation for about 3 hours before 558 

and after the satellite overpass time, while overall the correlation was slightly improved by the 559 

addition of the TROPOMI data. Thus, while changes overall are fairly slight due to the inclusion 560 

of the TROPOMI satellite data in most areas, these can still have noticeable impacts to 561 

performance at specific times of the day, mostly around the satellite overpass times. 562 

 563 

Figure 8. Performance of the proposed method applied with (solid lines) or without (dotted 564 

lines) the TROPOMI satellite information being included, evaluated in different color-coded 565 

areas as a function of the local time of day. Results are presented for the 6-hour lead time 566 

performance, as an illustrative example. Performance is presented in terms of the correlation (a) 567 

and RMSE (b) metrics. The times during which the TROPOMI instrument collects data, between 568 

13:00 and 14:00 local time, are indicated with a gray band. 569 
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5.3 Forecast updating using residual correlations 570 

 571 

Figure 9. Performance of the proposed method applied with (solid lines) or without (dotted 572 

lines) the final updating step based on residual correlations, evaluated in different color-coded 573 

areas as a function of forecast lead time. Performance is presented in terms of the correlation (a) 574 

and RMSE (b) metrics.  575 

Figure 9 presents the performance of applying the updating or kriging method based on 576 

residual correlations to the proposed approach, as outlined in Section 3.7. This updating leads to 577 

improved performance in all areas. As expected, these improvements are especially visible at 578 

shorter lead times, when temporal correlations are stronger. Some improvement is also 579 

noticeable even at longer lead times. Increases in correlation at short lead times are largest in 580 

New York City and San Francisco; this is likely due to the combination of the relatively large 581 

number of ground measurement sites in these areas and the relatively stronger observed spatial 582 

correlations in the forecast residuals. In Figure 10, performance is broken down by hour of the 583 

day. Results are presented for a 1-hour lead time, as an illustration of a case where temporal 584 

correlation with the latest ground measurements is generally high. While for the TROPOMI data, 585 

improvements in correlation are typically localized around the satellite overpass time, the 586 

continuous data provided by ground stations allow for positive impacts throughout the day. For 587 

New Orleans, where spatial heterogeneity of concentrations tends to be low, negative 588 

correlations throughout the day indicate that the model and satellite data do a poor job of 589 

capturing spatial patterns there. While overall correlations are positive in Figure 9a due to 590 

diurnal variability, the effect of this is removed when presenting the results as in Figure 10a. 591 

After updating with local data, these correlations, although still low, are positive, indicating a 592 

better representation of the spatial distribution of the pollutants is being made. 593 
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 594 

Figure 10. Performance of the proposed method applied with (solid lines) or without (dotted 595 

lines) the final updating step based on residual correlations, evaluated for different color-coded 596 

areas as a function of the local time of day. Results are presented for the 1-hour lead time 597 

performance. Performance is presented in terms of the correlation (a) and AB (b) metrics. Only 598 

results for New York City and San Francisco are presented in (b), for improved clarity. 599 

In Figure 10b, there is a large peak in bias for the proposed method without updating in 600 

New York City and San Francisco centered around 7AM local time. This is likely due to a poor 601 

representation of the morning rush-hour patterns of pollutant distribution. Since the TROPOMI 602 

satellite passes occur after this rush-hour has passed, these data do not reflect the spatial patterns 603 

present during that period. Following updating with local data, this peak is substantially reduced, 604 

and in San Francisco shifted earlier in time by an amount equal to the forecast lead time. This 605 

reflects the impact of the near-real-time ground data. Forecasts for early rush-hour will still be 606 

biased as no measurements of that day’s rush-hour concentrations are yet available. After these 607 

are collected and incorporated, subsequent forecasts for later during rush-hour will be more 608 

accurate. Overall, these results indicate the promise of examining residual spatial and temporal 609 

correlation patterns to make additional use of the latest ground measurement data in further 610 

improving the ability of these methods to capture local and transient pollution events which are 611 

only detectable in real-time by ground-based measurement. 612 

6 Discussion 613 

This paper has presented and demonstrated an approach for combining global 614 

atmospheric chemistry model outputs, specifically those from the GEOS-CF system, with 615 

satellite and ground-based measurements to generate high spatial and temporal resolution 616 

forecasts for surface-level air quality. Results for test cases of forecasting surface NO2 across 617 

five US cities in September 2019 are presented and compared with baseline approaches which 618 

make use of surface monitoring data only. In all cases, except for very short-term forecasting, the 619 

proposed methods outperform both baselines by the metrics considered here.  620 

Incorporating higher spatial resolution TROPOMI satellite information improves 621 

performance in most cases, with a substantial improvement observed in the Las Vegas area. This 622 
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is not a universal result, however, and correlation in New York City actually declines slightly 623 

when TROPOMI information are included. However, examining performance by time of day, 624 

slight improvements are still observed even in New York City around the time of the satellite 625 

passes. When available, data from geostationary satellites for air quality monitoring missions, 626 

such as TEMPO for North America, GEMS for East Asia, and Sentinel 4 for Europe, should be 627 

considered. The use of such high temporal resolution information will overcome the limitation of 628 

using static typical satellite patterns, allowing for time-of-day-specific patterns instead. This 629 

could extend the benefits observed in certain areas around the TROPOMI satellite overpass time 630 

to the whole daytime when the geostationary instruments will make observations.  631 

Attempts to include auxiliary information such as meteorological variables and VIIRS 632 

nighttime lights into the proposed approach as a proxy for human activity led to no notable 633 

improvements; see the supplemental information Section S2.2 for details. It is possible that 634 

different means of combining these data sources will provide different results. In particular, 635 

different temporal weightings of these sources might be used, since TROPOMI reflects day-time 636 

conditions while VIIRS may better represent night-time conditions. While in theory this might be 637 

achievable by combining patterns via regression as described in Section 3.3, in practice there 638 

may be insufficient calibration data to discern such relationships, or the relationships may be 639 

highly non-linear. Use of machine learning and/or Bayesian updating techniques to incorporate 640 

this information may prove more successful.  641 

The final updating applied to surface concentration forecasts based on assumed residual 642 

correlations had a notable positive impact on performance by most metrics at short prediction 643 

lead times. These methods should be further investigated and expanded, using more sophisticated 644 

temporal correlation structures which take into account daily periodicity. This would allow, for 645 

example, in-situ information about yesterday’s rush-hour pollutant concentrations to play a larger 646 

role in updating today’s predictions. Incorporating the additional ground data sources available 647 

through low-cost sensor networks is also a promising area for future work. In that case, special 648 

consideration must be made for the relatively lower data quality of these sensors compared to the 649 

regulatory-grade instruments used here.  650 

Finally, the techniques proposed in this work should be applicable to a variety of 651 

pollutants of interest for air quality applications. The same general techniques should still be 652 

applicable, although different relevant satellite retrievals and modeled pollutant species will have 653 

to be used. The relatively short atmospheric lifetime of NO2 allowed column-integrated satellite 654 

retrievals to serve as a reasonable proxy for surface-level distribution patterns. For other 655 

pollutants, it may be beneficial to use ratios of surface-level to column-integrated pollutant 656 

concentrations, e.g., derived from GEOS-CF, to better relate satellite information to ground 657 

patterns. 658 
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