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Abstract15

Reconstruction and prediction of the state of the near-Earth space environment is im-16

portant for anomaly analysis, development of empirical models and understanding of phys-17

ical processes. Accurate reanalysis or predictions that account for uncertainties in the18

associated model and the observations, can be obtained by means of data assimilation.19

The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-20

linear and high dimensional systems in the context of terrestrial weather prediction. In21

this study, we adapt traditional ensemble based filtering methods to perform data as-22

similation in the radiation belts. We use a one-dimensional radial diffusion model with23

a standard Kalman filter (KF) to assess the convergence of the EnKF. Furthermore, with24

the split-operator technique, we develop two new three-dimensional EnKF approaches25

for electron phase space density that account for radial and local processes, and allow26

for reconstruction of the full 3D radiation belt space. The capabilities and properties of27

the proposed filter approximations are verified using Van Allen Probe and GOES data.28

Additionally, we validate the two 3D split-operator Ensemble Kalman filters against the29

3D split-operator KF. We show how the use of the split-operator technique allows us to30

include more physical processes in our simulations and offers computationally efficient31

data assimilation tools that deliver accurate approximations to the optimal solution of32

the KF and are suitable for real-time forecasting. Future applications of the EnKF to33

direct assimilation of fluxes and non-linear estimation of electron lifetimes are discussed.34

1 Introduction35

Radiation belts electron dynamics exhibit strong changes in time and space dur-36

ing geomagnetically active periods over time scales ranging from minutes to hours. En-37

hanced radiation in space during geomagnetic storms can damage spacecraft electron-38

ics through deep dielectric and surface charging. Failure or damage of such systems yields39

significant societal and economical impacts. Therefore, understanding and prediction of40

particle dynamics in the near Earth has become increasingly important.41

Several physics-based models that describe the evolution of electron phase space42

density in the radiation belt region have been developed (e.g. Salammbô (Beutier & Boscher,43

1995; Bourdarie et al., 1996), DREAM-3D (Reeves et al., 2012), BAS (Glauert et al., 2014),44

VERB-3D code (Shprits, Subbotin, & Ni, 2009; Subbotin & Shprits, 2009). Physics-based45

models include uncertainties due to the errors in the initial and boundary conditions,46

wave models, transformation of fluxes from real space into invariant space, as well as po-47

tentially missing physical processes. Similarly, sparse observations are contaminated by48

secondary particles, noise and errors associated to spatial transformations. Therefore,49

the most reliable reconstruction and prediction of the state of the radiation belts can only50

be obtained by accounting for both, the data and the model, which is achieved through51

data assimilation.52

The Kalman filter (KF) (Kalman, 1960) was developed in the context of engineer-53

ing control problems and provides the best linear unbiased estimator, under the assump-54

tion of known Gaussian distributed model and observation errors. For non-linear sys-55

tems, the sequential data assimilation algorithms most commonly used are the Extended56

Kalman filter (EKF) (Jazwinski, 1970), which entails a linearization of the model op-57

erator and the Ensemble Kalman filter (EnKF) (Evensen, 1994, 2003), which is a Monte58

Carlo approximation of the KF that does not require any linearization. The standard59

KF is a stable algorithm that offers the optimal estimate for single model runs of lin-60

ear systems. However, one major advantage of the EnKF is the calculation of single er-61

ror covariance matrices at every time step of the simulation. Since error estimation and62

assimilation of observations occur through the ensemble, the EnKF does not require lin-63

earization of neither the model nor the observation operators, allowing for non-linear ef-64

fects to be taken into account.65
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The use of such data assimilation tools to analyse the state of the radiation belts66

is becoming increasingly popular. A variety of studies have used 1D radial diffusion mod-67

els to apply the KF or the EKF algorithms, (e.g., Naehr & Toffoletto, 2005; Koller et68

al., 2005; Shprits et al., 2007; Kondrashov et al., 2007; Ni et al., 2009; Kondrashov et69

al., 2011; Daae et al., 2011; Shprits et al., 2012; Schiller et al., 2012), or the EnKF (e.g.,70

Koller et al., 2007; Reeves et al., 2012; Godinez & Koller, 2012). Data assimilation in71

1D space is useful to gain insights of the evolution of the system, but does not allow for72

propagation of covariances between different pitch angles and energies. Therefore, 1D73

approaches do not exploit the full potential of the satellite observations, and moreover,74

does not proper study of acceleration and loss processes. On the contrary, multidimen-75

sional models enable us to use the entire information on pitch angle distributions and76

energy spectra from different satellites.77

Up until now, only two 3D data assimilation approaches for the radiation belt re-78

gion have been implemented: one for the KF and one for the EnKF. Shprits et al. (2013)79

introduced the ”operator-splitting” technique for 3D data assimilation with the KF. The80

authors showed the robustness of the 3D split-KF approach and presented the evolution81

of PSD radial profiles resulting from assimilation of CRRES data. More recently, Cervantes82

et al. (2020) presented simulations using a 3D split-KF tool, that includes mixed diffu-83

sion terms in the forecast step. Bourdarie and Maget (2012) used the EnKF to recon-84

struct radiation belts fluxes along satellite orbit, but they did not present global evolu-85

tion of reconstructed fluxes and did not validate the EnKF against KF.86

The goals of this work are: (1) to investigate the convergence of the state estimate87

from the EnKF to the optimal estimate from KF applied to a 1D radial diffusion model,88

and (2) to combine the operator-splitting and the EnKF approaches to obtain global re-89

analysis of the radiation belts. We address these goals as follows: we extend the split-90

operator technique to the EnKF in order to develop two computationally efficient 3D91

EnKF approximations. We use the VERB-3D code and the new split-EnKF methods92

to assimilate electron fluxes from Van Allen Probes and Geostationary Operational En-93

vironmental Satellites (GOES) in the entire 3D phase space. We present the global evo-94

lution of PSD in the radiation belts obtained with the new multidimensional EnKF ap-95

proaches. Finally, we validate the convergence of our EnKF simulations by performing96

a systematic comparison of KF and EnKF methods for radiation belt electrons. Such97

a validation of data assimilation methods has not been provided in previous studies.98

In the next Section, we describe the physics-based model and the satellite data. In99

Section 3, we present the theory of the filtering algorithms. Section 4 is devoted to the100

results of data assimilation experiments with real data. In Section 5, we discusse the re-101

sults of the experiments and Section 6 gives an overview of the conclusions of this study102

and proposed future work.103

2 VERB-3D model and Data104

2.1 Model description105

The 3D Versatile Electron Radiation Belt (VERB-3D) (Shprits, Subbotin, & Ni,106

2009; Subbotin & Shprits, 2009) code solves the modified 3D Fokker-Planck equation that107

describes the time evolution of the phase-averaged electron phase space density (PSD108

or f) inside the Earth’s magnetosphere in terms of the three adiabatic invariants (µ, J ,109

Φ) (Schulz & Lanzerotti, 1974; Walt, 1994). Using bounce- and drift-averaged diffusion110

coefficients (DL∗L∗ , Dpp, Dpα0
, Dα0p, Dα0α0

), this equation can be transformed into (L∗,111

p, α0) coordinates and is known as the bounce- and drift-averaged Fokker-Planck-equation:112
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where α0 is the equatorial pitch angle, p is the relativistic momentum and L∗ =113

(2πM)/(ΦRE), with M the magnetic moment (Roederer & Zhang, 2014). T (α0) is an114

approximation of the bounce frequency in a dipole field and is estimated after Lenchek115

et al. (1961). The radial diffusion coefficients (DL∗L∗) are calculated following Brautigam116

and Albert (2000). Bounce-averaged diffusion coefficients are computed with the Full117

Diffusion Code (Shprits & Ni, 2009) using the hiss-wave parametrization of Orlova et118

al. (2014) and the chorus-wave (day and night side) parameterization of (Orlova & Sh-119

prits, 2014). The plasmapause location is estimated following Carpenter and Anderson120

(1992). The lifetime parameter τ is assumed to be infinite outside the loss cone and equal121

to a quarter of the electron bounce inside the loss cone.122

The solution of equation (1) neglecting mixed diffusion can be computed on a grid123

with 25× 25× 25 points along radial, energy, and pitch angle dimensions, with a uni-124

form grid covering L∗ values from 1 to 6.6. In order to obtain better resolution in high-125

PSD regions, e.g. at low energies and at the edge of the loss cone, logarithmic distribu-126

tions are used for equatorial pitch angle grid points (from 0.3◦ to 89.7◦) and energy grid127

points, which increase with decreasing L∗, i.e. at L∗ = 1 the energy range is 2 − 200128

MeV and at L∗ = 6.6 the energy range is 0.01 − 10 MeV (Subbotin & Shprits, 2009;129

Subbotin et al., 2011). The initial PSD is calculated as the steady state solution of the130

radial diffusion equation. The six boundary conditions required to solve equation (1) are131

chosen as follows: at the inner radial boundary (L∗ = 1), PSD is equal to zero to rep-132

resent the losses to the atmosphere; at the upper radial boundary (L∗ = 6.6), time-dependent133

PSD is estimated from GOES measurements. Setting PSD equal to zero at the lower pitch134

angle boundary (α0 = 0.3◦), we account for electron precipitation in a weak diffusion135

regime (Shprits, Chen, & Thorne, 2009). A zero PSD-gradient is applied at the upper136

α-boundary (α0 = 89.7◦) to describe a flat pitch angle distribution (Horne et al., 2003).137

At the upper energy boundary, a zero PSD boundary condition is applied representing138

the absence of high-energy electrons (> 10 MeV), while at the lower energy boundary139

PSD is set constant in time to represent a balance of convective source and loss processes.140

2.2 Satellite Observations141

We test the new split-operator EnKF techniques using electron observations ob-142

tained from the Van Allen Probes and GOES missions for the entire month of Novem-143

ber, 2012. This particular period is chosen, as it includes both quiet and active geomag-144

netic conditions, and an intense storm (Kp = 6+) on November 15.145

The NASA’s Van Allen Probes mission (formerly Radiation Belt Storm Probes (RBSP)),146

launched on 30.08.2012 from the Cape Canaveral, consisted of two spacecraft (probes147

A and B) at nearly identical highly elliptical orbits (HEO) with perigee of approximately148

618 km, apogee of ∼ 30400 km (∼ 5.8 Re geocentric) and 10◦ inclination (Mauk et al.,149

2012). The Energetic Particle, Composition and Thermal Plasma Suite (ECT) (Spence150

et al., 2013) on board both Van Allen Probes hosts four identical Magnetic Electron Ion151

Spectrometers (MagEIS) (Blake et al., 2013) and three Relativistic Electron Proton Tele-152

scopes (REPT) (Baker et al., 2012). These instruments provided pitch-angle resolved153

electron flux measurements from 01.09.2012 until 18.10.2019 covering large energy ranges:154

a) MagEIS: electron seed population to relativistic electron population (20−240 keV,155

80−1200 keV, 800−4800 keV) and b) REPT: Very Energetic Electrons (2 MeV, 5 MeV,156
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10 MeV). In this study, we use MagEIS and REPT electron flux measurements from RBSP157

A and B averaged over 30min.158

The GOES fleet are a series of meteorological geostationary satellites operated by159

the U.S. National Oceanic and Atmospheric Administration (NOAA) at nearly geosyn-160

chronous orbit (Data Book GOES, 2005). We use pitch-angle resolved electron flux mea-161

surements from the Magnetospheric Electron Detectors (MAGED) (Hanser, 2011; Ro-162

driguez, 2014a) and the Energetic Proton, Electron, and Alpha Detectors (EPEAD) aboard163

GOES 13 and 15 (Rodriguez, 2014b). MAGED consists of nine solid-state-detector tele-164

scopes, five in the east-west (equatorial) plane and the other four in the north-south (merid-165

ional) plane, measuring electron fluxes at energies of: 30−50 keV, 50−100 keV, 100−166

200 keV, 200−350 keV and 350−600 keV. In addition, onboard each GOES satellite167

two EPEADs, one detector oriented eastward and the other westward, measure MeV elec-168

tron and proton flux data in two energy ranges: > 0.8 MeV and > 2 MeV. EPEAD in-169

tegral fluxes and pitch-angles are obtained by averaging the measurements of the East170

and West telescopes. We use the 90◦ pitch-angle differential flux data from MAGED and171

fit the two integral channels of EPEAD to an exponential function. To obtain differen-172

tial flux for energies of interest we use the exponential fits. In this study, we use elec-173

tron flux observations from MAGED and EPEAD averaged over 30min intervals.174

Measured electron fluxes (J) are converted to PSD (f) as: f = J/p2 (Rossi & Ol-175

bert, 1970). Local magnetic field measurements are used to compute the first adiabatic176

invariant (µ). Using the IRBEM library (Boscher et al., 2013), we estimate the value of177

the second (K) and third adiabatic (L∗) invariants in the T89 magnetic field model (Tsyganenko,178

1989).179

3 Filtering Algorithms180

In this section, the classic Kalman filter (Kalman, 1960) and the stochastic Ensem-181

ble Kalman filter (EnKF) (Evensen, 1994, 2003) are briefly reviewed, and their conver-182

gence and correspondence are discussed. We also give an overview of the split-operator183

adaptations of the KF and EnKF, and in subsection 3.5, we introduce our method of val-184

idation.185

3.1 Kalman filter (KF)186

Using VERB-3D and available satellite observations, our goal is to estimate the most187

probable state of the radiation belts (PSD at time k, denoted as zak) and the uncertainty188

of the state estimate (described by the error covariance matrix Pa
k) associated with er-189

rors in the model and the data. Sequential data assimilation methods, such as the KF,190

allow us to determine estimates of the state and covariance analytically by defining an191

initial state vector za0 and initial covariance Pa
0 , and iterating over two elementary steps:192

1) the forecast step and 2) the analysis step.193

The forecast step: for a given linear dynamic represented by a set of partial dif-194

ferential equations, the time evolution of the state vector z is assumed to be governed195

by numerically discretized partial differential operator M:196

zfk = Mzak−1, (2)

where M is a linear discretization of equation (1) and zfk is the PSD state vector in the197

3D phase space volume advanced by the model M in time, therefore superscripts ”f”198

indicate here forecasted state. Deviations of the forecast state estimate from the true state199

of system are defined by the forecast error covariance matrix Pf
k which can be calculated200

from a previous analysis step as201
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Pf
k = MPa

k−1M
T + Q, (3)

model errors are commonly assumed to be a sequence of uncorrelated white noise with202

zero mean and model error covariance Q.203

The analysis step or update step: the observations of the system yobs
k are as-204

sumed to have uncertainties described by uncorrelated white noise with zero mean and205

observation error covariance R. Combining the forecast error covariance matrix Pf
k with206

the uncertainty of the data R, the Kalman filter finds optimal weights (defined in the207

Kalman gain Kk) that minimize the error covariance Pa
k of the optimal state estimate208

zak at time k,209

Kk = Pf
kH

T (R + HPf
kH

T )−1,

zak = zfk + Kk(yobs
k −Hkz

f
k),

Pa
k = (I−KkH)Pf

k ,

(4)

the observation operator H maps the model space onto the observation space and ac-210

counts for differences in dimensionality between data and model, due to the sparsity of211

the observations. Note that the covariance update requires the model operator to be lin-212

ear. For physical systems with underlying non-linear processes, this requirement does213

not hold in standard Kalman filter formulation and it is necessary to either linearize the214

equation for the covariance update, which is know in the literature as extended Kalman215

filter (Jazwinski, 1970) or to use an ensemble based update, such as in the Ensemble Kalman216

filter.217

3.2 Ensemble Kalman filter (EnKF)218

The EnKF can be interpreted as a purely statistical Monte Carlo approximation219

of the KF. In other words, the optimal state of the system zak at time k is approximated220

by the mean zak of an ensemble of samples {zai,k}, where i = 1, .., Nens:221

zak ≈ zak =
1

Nens

Nens∑
i=1

zai,k (5)

the ensemble error covariance can then be interpreted as the error covariance of the op-222

timal state estimate and gives the spread of the ensemble distribution. The error covari-223

ance matrices Pf
k and Pa

k are empirically approximated as224

Pf
e = Pf

k ≈
1

Nens − 1

(
zfi,k − zfk

)(
zfi,k − zfk

)T
Pa
e = Pa

k ≈
1

Nens − 1

(
zai,k − zak

)(
zai,k − zak

)T (6)

Available observations yobs
k are treated as random variables by generating an ensemble225

of observations. To this end, observation perturbations with εi,k are drawn from a Gaus-226

sian distribution with mean equal to the observed value and covariance R, which rep-227

resents measurement errors:228

yobs
i,k = yobs

k + εi,k (7)

where i = 1, .., Nens. Every state in the ensemble is propagated in the update step, as229

follows:230

zai,k = zfi,k + Kk

(
yobs
i,k −Hzfi,k

)
(8)
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where the Kalman gain (Kk) with the optimal weighting factors is calculated as in equa-231

tion (4).232

3.3 Convergence of the EnKF to the standard KF233

It is important to note, that for a linear system and a large number of samples Nens →234

∞ the EnKF and the KF produce the same mean and covariance estimate (Mandel et235

al., 2011). In other words, in the linear case the EnKF converges to the KF in the limit236

of an infinite number of ensemble members. Burgers et al. (1998) carefully revisited the237

analysis step of the KF and EnKF, and gave the fundamental setup of the EnKF for this238

convergence to hold. They showed that treating the observations as random variables239

allows the covariance of the analyzed ensemble Pa
e (in Eq. 6) to be expressed in the same240

way as in the analysis error covariance of the KF, i.e:241

Pa
e = (I−KkH)Pf

e +O(N−1/2), (9)

where fluctuations due to the finite ensemble size have on average zero mean and O(N (−1/2))242

rms magnitude. These deviations are proportional to R−(yobs
i,k − yobs

k )(yobs
i,k − yobs

k )T )243

and (zfi,k − zfk)(yobs
i,k − yobs

k )T ). The authors state, that also in the forecast step corre-244

spondence between the KF and EnKF is given, when each ensemble member evolves ac-245

cording to:246

zfi,k = Mzai,k−1 + dqki , (10)

where dqki is an stochastic forcing representing model errors from a distribution with zero247

mean and covariance Qe, defined as:248

Qe = (dqki − dqk)(dqki − dqk)
T

= dqk(dqk)T . (11)

In the limit of infinite ensemble size, convergence Qe = Q is given, Q being the model249

error covariance matrix of the KF. The ensemble mean then evolves as250

zfk = M(zfk−1) = M(zfk−1) + n.l (12)

where n.l represents possible non-linear terms in the model, that are not present in the251

standard KF. Thus, if the ensemble mean is used as the optimal state za,f = za,fi,k and252

the EnKF is setup following equations (7), (10) and (11), the EnKF and the standard253

KF filter converge to the same state estimate in the linear case. For this reason, the EnKF254

is even used when non-linear effects are neglected and the underlying operator is indeed255

linear. For high dimensional problems, the optimal KF shows major shortcomings in terms256

of computational efficiency, as operating and storing large covariance matrices make the257

method very computationally demanding. In this regard, the EnKF has the advantage258

of using each error covariance matrix for the particular time step in question and then259

dismissing it.260

It is crucial, however, that the use of the EnKF on finite ensemble sizes only pro-261

vides an approximation of the KF, which makes this filtering method suboptimal. De-262

spite the underlying Gaussian assumption, accuracy and stability have been rigorously263

shown for different approaches of the EnKF on non-linear operators (de Wiljes et al., 2018;264

de Wiljes & Tong, 2020).265

3.4 Operator splitting technique266

Shprits et al. (2013) proposed a suboptimal approximation of the KF that uses the267

operator-splitting method, often applied to solve partial differential equations. With this268
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technique, the Kalman filter algorithm can be sequentially applied to the 1D diffusion269

operators in radial distance, energy and pitch-angle (mixed terms are neglected). Since270

each diffusion operates along one dimension in the model space, we can solve the equa-271

tions sequentially for constant values of the other two dimensions, obtaining the solu-272

tion in the entire 3D phase space (L∗, E, α). The update or analysis step of the KF is273

performed after each diffusion along one dimension. This ”splitting” of the diffusions and274

thereby of the dimensionality of the problem allows the split-KF to operate with smaller275

matrices compared to the full-3D case and is, therefore, computationally much more con-276

venient.277

In this study, we use the split-operator method to separatly perform data assim-278

ilation using the EnKF for each diffusion operator. This method may be viewed as a form279

of localisation as correlations across dimensions are not considered anymore in the fil-280

ter update. Computationally, the problem is reduced to the calculation of matrices in281

rather manageable sizes, i.e. the size of the state vector is always (Nens×N), where N282

is the number of grid nodes in the L, E or α dimensions, and Nens is the number of en-283

sembles. The Pf matrices are handled by the algorithm as 2D matrices of size (N×N).284

Therefore, even for a large Nens, the split-EnKF approach is, as in the split-KF approach,285

highly computationally efficient. For these reasons, the split-EnKF approach allows to286

increase dimensionality and also study different filter variations. We present two new split-287

EnKF variations and compare them with a 1D radial diffusion EnKF (e.g., Reeves et al.,288

2012), a 1D radial diffusion KF (e.g., Shprits et al., 2007) and the 3D split-operator KF289

(e.g., Shprits et al., 2013), as listed below:290

1. In order to setup the EnKF and check its convergence to the KF, we implemented291

the EnKF in a simple 1D radial diffusion model, named here EnKF(1D RD),292

and compare the reanalysis results with a 1D-KF radial diffusion model, denoted293

KF(1D RD) for simplicity.294

2. We solve the three diffusion equations (radial, energy and pitch-angle) sequentially295

and assimilate data after calculation of each diffusion using a 1D split EnKF up-296

date, i.e. a total of three updates is performed. This filter approach is denoted here297

as EnKF(3x1D) and we compare its results to the KF analogous, which uses a298

standard KF for the 1D split update, for simplicity called KF(3x1D). The pseu-299

docode of this filter is given in Algorithm 1.300

3. Here, we solve the three diffusion equations (radial, energy and pitch-angle), but301

we first assimilate data using a 1D split EnKF update after the radial diffusion302

part, and then use a 2D split EnKF update for the local diffusion, meaning that303

energy and pitch-angle diffusion are computed simultaneously. We denote this fil-304

ter approach as EnKF(1D RD+2D LD) and present its pseudocode in Algo-305

rithm 2. A similar split-KF approach is rather computationally expensive, as it306

requires the calculation and storage of 4D forecast error covariance matrices ev-307

ery time step. Therefore, we compare the EnKF(1D RD+2D LD) with the EnKF(3x1D)308

and EnKF(1D RD).309

3.5 Validation310

In order to validate the results of our data assimilation experiments (see next sec-311

tion), we calculate the value of the innovation:312

d = yobs
k −Hzfk , (13)

for every time step of the simulations. The value of d is the mathematical distance be-313

tween the observations and the forecast vector. Additionally, the equations for the state314

estimate (Eq. (4) and (8)) reveal that Kk ·d = (zak − zfk). This means, that the inno-315

vation also gives a notion of the difference between the optimal state estimate and the316

forecast estimate. We use the innovation to quantify the accuracy of the state estimate317
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obtained with a particular filter approach. The innovation becomes zero, when the es-318

timate and the observations coincide. When the mean state underestimates the obser-319

vations d > 0 and the estimated state overestimates the observations d < 0.320

4 Reanalysis with satellite measurements321

In this Section, we give a detailed description of the main setup of the EnKF split-322

operator variations and present the corresponding data assimilation results for satellite323

measurements for each proposed filter together with a systematic comparison with KF324

filtering results.325

4.1 Setup of the EnKF(1D RD)326

As discussed in subsection 3.3, the state estimated with the EnKF converges to the327

optimal state estimated by the KF for linear systems and for a large number of ensem-328

ble members. For the initial setup and tests, we use a simple radial diffusion model with329

parametrized losses (Shprits et al., 2006). We first implement the standard Kalman fil-330

ter assuming model and observation errors equal to 50%, and matrices Q and R are cho-331

sen to be diagonal matrices. The initial state za0 is estimated as a steady state solution332

of the radial diffusion equation. Then, using the setup of the KF(1D RD) as a baseline,

Figure 1. Simulation tests using filters KF(1D RD) and EnKF(1D RD): Electron PSD at µ = 1300
MeV/G and K = 0.11 G0.5 Re. a) Van Allen Probe and GOES observations, b) reanalysis results using
KF(1D RD), panels c) to g) reanalysis results using EnKF(1D RD) for different number of ensembles, Nens =
25, 50, 100, 150 and 250, respectively.

–9–



manuscript submitted to Space Weather

we implement the EnKF(1D RD) as suggested by Burgers et al. (1998). The initial en-333

semble is constructed from the initial state of the KF(1D RD) za0 , by adding perturba-334

tions drawn from a Gaussian distribution with zero mean and variance of 0.5·za0 . Sim-335

ilarly, the observation ensemble is created by adding Gaussian white noise with zero mean336

and variance of 0.5 · yobs
k to each data point. The model error term, dqk, in equation337

(10), is modelled as a Gaussian distribution with zero mean and variance of 0.5·zak. In338

order to determine the ensemble size, for which sufficient convergence is given, we run339

several test simulations using different number of ensembles and compare them with the340

KF(1D RD) results. For our tests, satellite observations from Van Allen Probes and GOES341

from November 2012 are assimilated at a time step of 1 hour. The results of these test342

simulations are shown in Figure (1). In Panel a, the assimilated satellite observations343

are displayed, panel b shows the reanalysis results obtained using the KF(1D RD), pan-344

els c to g present the reanalysis results obtained using the EnKF(1D RD) for different345

number of ensembles, 25, 50, 100, 150 and 250, respectively. Visual inspection of the fig-

Figure 2. Differences between simulation tests using filters KF(1D RD) and EnKF(1D RD):
Electron PSD at µ = 1300 MeV/G and K = 0.11 G0.5 Re. a) Van Allen Probe and GOES data, B) difference
between panels b and c of Figure (1), C) difference between panels b and d of Figure (1), D) difference between
panels b and e of Figure (1), E) difference between panels b and f of Figure (1), F) difference between panels b
and g of Figure (1).

346

ure shows how the state of the radiation belts is improved by increasing the ensemble347

size. In order to assess when the EnKF(1D RD) state estimate sufficiently approximates348

the KF(1D RD) estimate, we calculate the difference of the PSD from KF(1D RD) in349

panel b against PSD of EnKF(1D RD) in panels c) to g). PSD differences are shown in350

Figure (2). Panel a depicts the satellite observations, panels B to F present the differ-351
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ence between panels c−g and panel b of Figure (1), respectively. From panel B, it be-352

comes clear that an ensemble size equal to the grid nodes in L-domain is too small and353

leads to poor results in the EnKF(1D RD) estimate. Although, the values of the PSD354

difference clearly decrease with increasing number of ensembles, panels E and F are very355

similar, showing only larger deviations around November 16. Since, the simulation in pan-356

els f and g of Figure (1) were carried out using 150 and 250 ensemble members, the small357

differences in panels E and F of Figure (2) indicates that above 150 ensembles conver-358

gence to the KF(1D RD) becomes so slow that an increase of 100 ensembles does not359

lead to significant improvement. For this reason, we consider ensembles with 150 mem-360

bers as sufficient to approximate the KF(1D RD) and use this ensemble size for the data361

assimilation simulations presented in the next subsections.362

4.2 Comparison between EnKF(1D RD) and KF(1D RD)363

Now, that we estimated an adequate ensemble size, we can compare the reanaly-364

sis results obtained with the EnKF(1D RD) and the KF(1D RD). Figure (3, I) presents365

the electron PSD at µ = 1300 MeV/G and K = 0.11 G0.5 Re measured by the four366

satellites (panel a), the reanalysis results using EnKF(1D RD)(panel b) and KF(1D RD)367

(panel c), the difference between PSD both reanalysis, EnKF(1D RD) - KF(1D RD), (panel368

d) and the Kp index (bottom panel).369

Noticeably, panels a), b) and c) reveals that both filters are able to reproduce the370

general features shown by the satellite observations throughout the simulated period. The371

difference between both simulations (panel d) allows for a more detailed overview of the372

filter performance. Blue tones in this plot indicate areas, where the EnKF(1D RD) pro-373

duces lower PSD values than the KF(1D RD). Yellow to red colors indicate the oppo-374

site trend. The largest/lowest values in the PSD-difference are related to the recovery375

phase of the 15 November storm, when rather active geomagnetic conditions (see Kp,376

bottom panel) enhance electron PSD.377

In order to assess the accuracy of the reanalysis in relation to the satellite data,378

we analyse the innovations of the two simulations. Resulting innovations for the two 1D RD379

simulations are presented in Figure (3, II). The innovation of EnKF(1D RD) is in panel380

a), the innovation of KF(1D RD) in panel b), the difference between both innovations381

(EnKF(1D RD) - KF(1D RD)) is in panel c) and Kp is shown in the bottom panel.382

Both innovation plots show very similar values and trends in time and radial dis-383

tance. This indicates that the forecast state is corrected by a similar magnitude by both384

filters, i.e. similar difference to the observations. The highest innovation values are ob-385

served at the beginning of the simulation, at times of evident magnetopause crossings386

(8th and 15th Nov) and throughout 16−25 November. This indicates that the model387

tends to underestimate PSD at these times so that the filter apply stronger corrections388

to the forecast. In panel c), some minor differences are observed mostly during 16−25389

November. Since the underlying model is the same for both filters, these differences can390

only arise from fluctuations in error covariance matrices of the EnKF caused by the use391

of a finite ensemble size (see Eq. 9). The plot in panel c, shows times and locations at392

which the EnKF(1D RD) imposes larger (red) corrections on the forecast than the KF(1D RD).393

We analyse general trends in the innovation by calculating the mean innovation at394

L∗ > 3 (main region of the outer belt) at every time step of the simulations. The mean395

innovations for the EnKF(1D RD) reanalysis (black line) and for the KF(1D RD) reanal-396

ysis (red dashed line) are displayed in panel four of Figure (3,II). Both curves show a397

very similar evolution in time, which is in agreement with panels a and b. Moreover, this398

figure nicely visualizes the variability of both innovations during the intense storm and399

active times (15 - 25. Nov). Interestingly, both innovations only vary within one order400

of PSD magnitude, being the only exception the major storm. In general, the EnKF(1D-401

RD) and the KF(1D-RD) filters produce very similar reanalysis results.402
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4.3 Reanalysis using the EnKF(3x1D) approach403

In this section, we present our first split-operator variation of the EnKF, the KF(3x1D).404

In this filtering approach, the radial, energy and pitch-angle diffusion equations are solved405

sequentially for the entire model space. After each diffusion a 1D update step takes place406

using a one-dimensional EnKF, as presented in EnKF(1D-RD). The model is thereby407

updated three times every time step. The convergence and performance of this 3D fil-408

ter approach are tested using the same data assimilation setup presented in the previ-409

ous sections and it is compared to its KF analogous filter approach (here denoted KF(3x1D),410

suggested by Shprits et al. 2013.411

Figure (4.I) shows the results of the EnKF(3x1D) data assimilation in the same412

format as Figure (3.I). Panel a) displays the assimilated Van Allen Probes and GOES413

measurements, panel b) presents the reanalysis performed with the EnKF(3x1D), panel414

c) shows the reanalysis of KF(3x1D) and panel d) illustrates the PSD-difference between415

both reanalysis (EnKF(3x1D) - KF(3x1D)). Similar to the EnKF(1D RD), the overall416

PSD features observed in the satellite measurements are well reproduced by both 3D-417

split filters. However, differences in PSD between EnKF(3x1D) and KF(3x1D) are some-418

what more pronounced than in the 1D-RD approach. During the first half of the sim-419

ulation period, the EnKF(3x1D) tends to estimate higher PSD values than the KF(3x1D).420

For the second half of November, 2012, the trend appears to be reversed. On 15 Novem-421

ber, when the intense storm causes the magnetopause to reach below L∗ ≈ 4, the dif-422

ference between the simulations is largest. During the active period of 16−25 Novem-423

ber, the KF(3x1D) that produces larger PSD-values than the EnKF(3x1D).424

Resulting innovations, displayed in Figure (4.II) for the EnKF(3x1D) reanalysis (panel425

a) and for the KF(3x1D) reanalysis (panel b) are overall very similar, but show smaller426

values for KF(3x1D) around November 15. The difference between both innovations (EnKF(3x1D)427

- KF(3x1D)) (in panel c) shows a trend toward negative values (blue colors) within the428

belt, particularly during 3 to 20 Nov. Since the underlying model is the same for both429

filters, this indicates that PSD estimated with KF(3x1D) is systematically closer to the430

data. There are two possible reasons for this: 1) the use of a finite number of ensembles431

will also lead to discrepancies in the estimation of the covariance matrices of EnKF and432

KF, and 2) error propagation due to sequential application of the update step (We will433

extend on this topic in the discussion section). The largest differences between innova-434

tions are observed around November 7 and on November 15, where EnKF(3x1D) reanal-435

ysis is more underestimated than the KF(3x1D) reanalysis. These features are also seen436

in the mean innovations above L∗ = 3 (in panel four), which apart from those two times437

have pretty much the same evolution and variations, remaining generally within one or-438

der of magnitude. Overall, the EnKF(3x1D) and KF(3x1D) filters deliver a very sim-439

ilar reanalysis. It is important to note that the innovation of the 3D-split approaches is,440

in general, significantly smaller compared to 1D-RD filters. This means, this is related441

to the improved underlying physics-based model and to the repetition of the 1D update442

step.443

4.4 Reanalysis using the EnKF(1D RD+2D LD) approach444

Here, we present our second split-operator approach for the EnKF. In this filter-445

ing setup, the radial, energy and pitch-angle diffusion equations are solved sequentially446

for the entire model space. After the radial diffusion a 1D update step is performed in447

the L∗-dimension. In contrast to the 3x1D approach, after the calculation of local pro-448

cesses takes place, a single combined 2D update step in the energy and pitch-angle di-449

mensions is performed. Therefore, the model is updated twice in this approximation. To450

test our 2D filter approach, we use the same data assimilation setup presented in the pre-451

vious sections. Since a similar KF(1D RD+2D LD) filter approach is numerically highly452

complex and therefore very computationally expensive, we compare the EnKF(1D RD+2D LD)453
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to a reanalysis performed with the EnKF(1D RD) in this section, and to the results of454

EnKF(3x1D) in the next section.455

Figure (5.I) shows the results of the EnKF(1D RD+2D LD) data assimilation in456

the same format as Figure (3.I). Panel b) displays the reanalysis performed with the EnKF457

(1D RD+2D LD), panel c) shows the reanalysis of EnKF(1D RD) and panel d) illus-458

trates the PSD-difference between both reanalysis (EnKF(1D RD+2D LD) - EnKF(1D RD)).459

Both reanalysis present very similar trends overall and reproduce the main trends in the460

satellite data. The PSD-difference between the two filters is highest on 15 Nov. and dur-461

ing 16 - 25 Nov., where EnKF(1D RD+2D LD) produces slightly higher PSD values than462

EnKF(1D RD). Interestingly, the fast losses observed on 15 November, caused by mag-463

netopause compression, are reproduced slightly different in both filters.464

Analysis of the innovations gives us detailed information about these features. Fig-465

ure (5.II) presents the resulting innovations for the reanalysis with EnKF(1D RD+2D LD)466

(panel a) and with EnKF(1D RD) (panel b). The difference between both innovations467

(EnKF(1D RD+2D LD) - EnKF(1D RD)) is in panel c), mean innovations above L∗ =468

3 are in panel four and Kp is shown in the bottom panel. The innovation plots have sim-469

ilar features in time and space for both simulations. The innovation difference shows a470

tendency towards negative values (blue colors). In this case, the underlying models are471

different, therefore, the observed trend indicates a systematic overestimation of PSD in472

the 1D radial diffusion model. This is expected as the model on which EnKF(1D RD+2D LD)473

operates accounts for radial and local processes, being therefore more accurate. The mean474

innovations of both simulations also follow very similar trends, but the EnKF(1D RD)475

curve (red line) ocasionally exceeds the EnKF(1D RD+2D LD) curve (black line), par-476

ticularly during the sencond half of the simulation period (e.g. November 16, 17, 24).477

4.5 Comparison between EnKF(1D RD+2D LD) and EnKF(3x1D)478

In this section, we discuss the analysis of our two split-EnKF approaches by com-479

paring the EnKF(1D RD+2D LD) results with the reanalysis results of EnKF(3x1D).480

Since the obtained PSD and innovations of both EnKF variations have already been pre-481

sented, we only show their difference here. In Figure (6), panel b) displays the PSD dif-482

ference between EnKF(1D RD+2D LD) and EnKF(3x1D) reanalysis, panel c) shows the483

difference between the innovations of both simulations, i.e. (EnKF(1D RD+2D LD) -484

EnKF(3x1D)), panel d) presents the mean innovation (for L∗ > 3) for EnKF(1D RD+2D LD)485

(black line) and EnKF(3x1D) (red dashed line).486

Although, both simulations converge to very similar solutions, the PSD differences487

reveal quite a few deviations. Particularly, large differences after the 15 November are488

observed. A general trend towards negative numbers in panel b, indicates that the state489

estimates of EnKF(3x1D) have larger values than those of EnKF(1D RD+2D LD). The490

innovation difference shows only a few large values at the beginning of the simulation491

and during 15−25 November. Red and yellow areas in the figure indicate that the in-492

novation of the EnKF(1D RD+2D LD) has generally higher values than EnKF(3x1D).493

This is also observed in the mean innovations, especially around November 16. In this494

particular case, the physical models should be theoretically the same. However, due to495

the different implementation of the EnKF in the two approaches, more so the total up-496

dates performed in each filter approach, the underlying models become different. The497

EnKF(1D RD+2D LD) updates the model twice and the second update occurs in en-498

ergy and pitch-angle diffusion simultaneously, involving covariance matrices of sizes (N2×499

N2). This means, that spurious correlations present in the covariances will certainly lead500

to differences in the estimates of EnKF(1D RD+2D LD) compared to those of EnKF(3x1D).501

Error propagation will also play a role for these two filtering approaches, but its effect502

on EnKF(1D RD+2D LD) results could have a rather small impact.503
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Figure 6. Data assimilation results with 1D RD+2D LD EnKF and EnKF(3x1D) using Van
Allen probes and GEOS observations from Nov. 2012: Electron PSD at µ = 1300 MeV/G and
K = 0.11 G0.5 Re. a) Van Allen Probes and GOES data, b) PSD difference between 1D RD+2D LD EnKF
and EnKF(3x1D) reanalysis (1D RD+2D LD EnKF - EnKF(3x1D)), c) PSD difference between 1D RD+2D LD
EnKF and EnKF(3x1D) innovations (1D RD+2D LD EnKF - EnKF(3x1D)), d) Mean innovation (calculated for
L∗ > 3) for 1D RD+2D LD EnKF (black line) and EnKF(3x1D) (red dashed line), bottom panel) Kp index.

5 Discussion504

In this study, we developed and implemented two new split-operator approxima-505

tions of the three dimensional EnKF to perform ensemble data assimilation of electron506

PSD in the radiation belts. Using a 1D radial diffusion model, we studied the conver-507

gence of the EnKF(1D RD) to the optimal state of the system (KF(1D RD)). Com-508

parison between the reanalyses from both 1D filters showed that 150 ensemble members509

are sufficient to properly approximate the KF. Differences between the EnKF(1D RD)510

approximation and the optimal KF(1D RD) are rather negligible.511

Implementation of the KF and the EnKF for high dimensional problems is com-512

putationally expensive. Using the initial setup for the EnKF(1D RD), we implemented513

the more split-operator EnKF approaches of higher dimensionality and modeled the global514

state of the outer radiation belt for the month of November, 2012. We presented detailed515

comparison of the split KF and EnKF filtering tools, in order to verify the accuracy of516

the EnKF approaches. Our results suggest that although the split KF and EnKF ap-517

proaches are simple approximations of the optimal KF, they are able to reconstruct ac-518

curately the radiation belt region. Only minor differences are observed at the beginning519

of the simulations, during active times and magnetopause compression events. This is520

consistent with the findings of Shprits et al. (2013) and justifies the general robustness521

of the split-EnKF approach.522
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In general, the simulations need about 3 days to level out discrepancies arising from523

the initial PSD. These initial errors appear to be larger in the 1D approaches, but be-524

come smaller for the (EnKF(3x1D) and EnKF(1D RD+2D LD)) methods. Addition-525

ally, the observed differences may be due to two facts: 1) Data assimilation requires map-526

ping satellite observations onto invariant phase space coordinates (L∗, µ, K). However,527

L∗ is a property of trapped particles. Therefore, no data points are available at higher528

L-shells during magnetopause compression events. Thus, filtering techniques cannot prop-529

erly correct the PSD in those regions. 2) The EnKF may recognize spurious correlations530

that arise from the random perturbation of the observations, but are not really phys-531

ical. This might be of particular importance for simulations with the EnKF(1D RD +532

2D LD). Note that while it is true that the EnKF(1D RD) filter converges to a reason-533

able solution, the reduction in the innovations of our two 3D EnKF approaches, EnKF(3x1D)534

and EnKF(1D RD+2D LD), indicates that the 3D update does allow for propagation535

of the satellite data to other energies and pitch angles. Therefore, a more accurate anal-536

ysis is estimated, which in turn, leads to a better forecast estimate in the next time step.537

A difficulty in dealing with the split-filters lays in the correct use of model errors.538

After application of the first analysis step, satellite data has been assimilated and thus539

improvement of the model is achieved. Therefore, for the second update step, the model540

errors described in matrix Q will not be the same as in the initial setup. A more accu-541

rate approach could, for instance, include some dynamical reduction of the model errors542

after each update iteration. This subject belongs to uncertainty estimation and lays be-543

yond the scope of this study.544

A major advantage of EnKF is that it does not require linearization of the model545

and observation operators. Therefore, non-linear effects can be accounted for using this546

tool. In future applications, we will use the split-EnKF approximations allows for direct547

assimilation of flux measurements by applying a nonlinear observation operator. Such548

an approach excludes errors due to re-mapping of fluxes into the model space, and will549

thereby reduce uncertainties in the analysis of the observation errors. Another field of550

application is the simultaneous non-linear estimation of the state and lifetimes of the sys-551

tem through state vector augmentation. This problem can be solved with the EnKF with-552

out the use of linear approximations. Similarly, the evaluation of model errors can be553

seen as a non-linear parameter estimation problem, which can be solved using the EnKF.554

Comparison of the free-forecasting qualities between the KF and the EnKF can now be555

performed. The understanding of the dynamical change in the model errors due to mul-556

tiple update step application in the 3D split-approaches for KF and EnKF is important557

for optimal definition of the error statistics.558

6 Conclusions559

In this study, we setup, implement and validate two new split-operator approxi-560

mations of the three dimensional EnKF, which allow us to reconstruct the entire state561

of the outer radiation belt. We provide a detailed comparison between different data as-562

similation tools using satellite observations. The main conclusions from our study are563

summarized below:564

• Initial setup of the EnKF using the KF implementation on a simple 1D radial dif-565

fusion model allows us to find that 150 ensembles are sufficient to accurately model566

the optimal state solution of the KF.567

• The use of the split-operator technique allows us to increase dimensionality in our568

simulations and tackles the issue of computational efficiency, which becomes par-569

ticularly important at higher dimensions. Therefore, the new 3D split-EnKF ap-570

proaches are suitable for forecasting purposes in real-time.571

• Our validation method suggests that the split KF and EnKF methods show sim-572

ilar results. The use of the new 3D approaches reduces the global innovations in573
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comparison to 1D filters. This is partly due to the more accurate model but also574

due propagation of pitch angle and energy data into the model space, which yields575

an analysis state that is closer to the data. The use of this state estimate as ini-576

tial condition in next step leads to a more accurate forecast state.577

The KF(3x1D), EnKF (1D RD+2D LD) and EnKF(3D RD) tools are state578

of the art data assimilation techniques that reconstruct accurately the radiation belt re-579

gion. The data assimilation tools developed in this study can be applied in the future580

to a variety of problems, including non-linear parameter estimation, non-linear assim-581

ilation of observations, free-prediction studies, error estimation and more.582
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7 Appendix601

In this section, we provide the reader with pseudo-codes for the algorithms of EnKF(3x1D)602

and EnKF(1D RD+2D LD). Implementation of the EnKF has been performed as sug-603

gested by (Evensen, 2003), in Section 4.3.1.604

Algorithm 1 Split 3x1D Ensemble Kalman Filter (EnKF(3x1D))

1: Set variables initial mean m0 and covariance P0 and ensemble members Nens

2: Initialise ensemble of particles zai,0 := z
aLαp
i,0 ∼ N(m0,P0) with i ∈ {1, . . . , Nens}

3: for k = 1 : T do
4: 1) Forecast and Analysis step radial distance L: for all i

zfLi,k = ML

(
z
aLαp
i,k−1

)
zaLi,k = zfLi,k −K

(
HLzfLi,k − yobs

k + ξLi,k

)
K = P̂fL

k H>L (HLP̂fL
k H>L + R)−1

5: 2) Forecast and Analysis step pitch angle α:

zfLαi,k = Mα

(
zaLi,k

)
zaLαi,k = zfLαi,k −K

(
HαffLα − yobs

k + ξαi,k

)
K = P̂fLα

k H>α (HαP̂fLα
k H>α + R)−1

6: 3) Forecast and Analysis step energy p:

z
fLαp
i (τn) = Mp

(
zaLαi,k

)
z
aLαp
i (τn) = z

fLαp
i,k −K

(
Hpz

fLαp − yobs
k + ξi,k

)
K = P̂

fLαp
k H>p (HpP̂

fLαp
k H>p + R)−1

7: end for
8: Return

m̂
aLαp
k =

Nens∑
i=1

z
aLαp
i,k

P̂
aLαp
k =

Nens∑
i=1

(z
aLαp
i,k − m̂

aLαp
k )(z

aLαp
i,k − m̂aLαp)>
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Algorithm 2 Split 1D RD+2D LD Ensemble Kalman Filter

1: Set variables initial mean m0 and covariance P0 and ensemble members Nens

2: Initialise ensemble of particles zai,0 := z
aLαp
i,0 ∼ N(m0,P0) with i ∈ {1, . . . , Nens}

3: for k = 1 : T do
4: 1) Forecast and Analysis step radial distance L: for all i

zfLi,k = ML

(
z
aLαp
i,k−1

)
zaLi,k = zfLi,k −K

(
HLzfLi,k − yobs

k + ξLi,k

)
K = P̂fL

k H>L (HP̂fL
k H>L + R)−1

5: 2) Forecast and Analysis step pitch angle α and energy p:

z
fLαp
i (τn) = Mαp

(
zaLi,k

)
z
aLαp
i (τn) = z

fLαp
i,k −K

(
Hαpz

fLαp − yobs
k + ξi,k

)
K = P̂

fLαp
k H>αp(HαpP̂

fLαp
k H>αp + R)−1

6: end for
7: Return

m̂
aLαp
k =

Nens∑
i=1

z
aLαp
i,k

P̂
aLαp
k =

Nens∑
i=1

(z
aLαp
i,k − m̂

aLαp
k )(z

aLαp
i,k − m̂aLαp)>
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