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Abstract

Access to accurate estimates of water withdrawal is requisite for urban planners as well

as operators of critical infrastructure systems to make optimal operational decisions and
investment plans to ensure reliable and affordable provisioning of water. Furthermore,
identifying the key predictors of water withdrawal is important to regulators for promot-
ing sustainable development policies to reduce water use. In this paper, we developed

a rigorously evaluated predictive model, using statistical learning theory, to estimate state-
level, per-capita water withdrawal as a function of various geographic, climatic and socio-
economic variables. We then harnessed the data-driven predictive model to identify the
key factors associated with high water-usage intensity among different sectors in the U.S.
We analyzed the predictive accuracy of a range of parametric models (e.g., generalized
linear models) and non-parametric, flexible learning algorithms (e.g., generalized addi-
tive models, multivariate adaptive regression splines and random forest). Our results iden-
tified irrigated farming, thermo-electric energy generation and urbanization as the most
water-intensive anthropogenic activities, on a per-capita basis. Among the climate fac-
tors, precipitation was also found to be a key predictor of per-capita water withdrawal,
with drier conditions associated with higher water withdrawals. Results of the first-order
sensitivity analysis indicated changes between +10% in the future water withdrawal across
the U.S., in response to precipitation changes, by the end of the 215 Century under the
business-as-usual scenario. Overall, our study highlights the utility of leveraging statis-
tical learning theory in developing data-driven models that can yield valuable insights
related to the water withdrawal patterns across expansive geographical areas.

1 Introduction

Integrated water resource management has been receiving increasing attention glob-
ally (Giordano & Shah, 2014; Rahaman & Varis, 2005). Rapid growth in population, and
increased rates of economic development and urbanization have resulted in increased de-
mands for fresh water in energy, agriculture, industry, and the commercial and residen-
tial sectors, all of which have severely stressed water resources in many regions. Sustain-
able management of demand for water has been brought into the limelight in the United
States following several devastating, multi-year drought episodes in California and the
Midwest which led to adverse impacts on agricultural productivity and energy genera-
tion capacity, costing the U.S. economy tens of billions of dollars. According to the U.S.
Environmental Protection Agency, 40 out of 50 states will expect water shortages in some
portion of their jurisdiction in the next 10 years, even under average conditions (EPA,
2017).

Accurate estimates of short-, medium-, and long-term demand for water is valu-
able for urban planners, regulators and operators of critical infrastructure systems to en-
sure reliable and affordable provisioning of many critical services including water. Op-
timal investments in the design, operation, modernization and expansion of water infras-
tructure systems are largely dependent on access to realistic and credible predictions and
projections of the spatio-temporal variability in demand for water (Billings & Jones, 2008).
According to Hall, Postle, and Hooper (1989), “the success of any water resource devel-
opment is critically dependent upon the reliability of the forecasts of future water de-
mands that are employed in its design (and management)”.

In this paper, we leverage statistical learning theory to: a) develop accurate pre-
dictive models for per-capita water use in various sectors in the U.S., b) identify the key
predictors of state-level, per-capita water withdrawal, c) understand the relationship be-
tween each of the key predictors and per-capita water use, and d) analyze the sensitiv-
ity of the water withdrawal patterns to changes in climate variability (e..g, precipitation
changes) under changing climate conditions. Our predictive water withdrawal models

were developed using state-level, per-capita water withdrawal data over the past two decades



65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

— together with various geographic, climatic, and socio-economic factors — to identify the
key factors that are associated with high water-usage intensity among different sectors
in the U.S.

We hypothesized that statistical models that assume ‘rigid’ functional forms — such
as linearity and additivity (e.g., multiple linear regression) — would not adequately cap-
ture the complex dependencies between state-level water withdrawals and socio-economic
and geoclimatic conditions; and that more robust statistical learning algorithms (e.g.,
ensemble-of-trees), would be more effective in predicting state-level, water withdrawals.
Moreover, given that the largest fraction of water-withdrawals occur in the agricultural
and thermoelectric generation sectors, we hypothesize irrigated farming and power gen-
eration to be the key predictors of state-level water withdrawals.

The structure of this paper is as follows. The review of the existing literature in
predicting water withdrawal is summarized in Section 2. Data and methods are intro-
duced in sections 3 and 4, respectively. Results are summarized in Section 5, followed
by the concluding remarks in Section 6.

2 Background

A plethora of research studies have focused on analyzing, predicting and project-
ing water demand — with various different spatio-temporal scales and lead time-horizons
— using a range of methods such as simulation, econometrics and statistical learning the-
ory. Donkor, Mazzuchi, Soyer, and Roberson (2014) reviewed research articles on wa-
ter demand forecasting — published between 2000 and 2010 — to identify useful models
for water utility decision making. They concluded that artificial neural networks were
more popular for short-term demand-forecasts, while econometrics, scenario-based and
simulation models were more likely to be used for making long-term strategic decisions.
They also highlighted the value in probabilistic forecasting to capture uncertainties as-
sociated with future demand. More recently, Sebri (2016) surveyed the empirical liter-
ature on urban water forecasting using a meta-analytical approach. Their meta-regression
analysis concluded that model accuracy depended on the scale of analysis, the type of
approach used, model assumptions and sample size. Hamoda (1983) examined the im-
pact of socio-economic factors on the residential water consumption in Kuwait. More specif-
ically, Hamoda (1983) leveraged linear regression to characterize the impacts of income,
market value of land, rents of dwellings and household size on average per-capita water
consumption. They concluded that the hot climate of Kuwait together with its contin-
ually improving standards of living were the primary factors contributing to high wa-
ter consumption rates in the country.

In an another study by Lutz et al. (1996) leveraged a variation of the EPRI (Elec-
tric Power Research Institute) model to study the patterns of residential hot water con-
sumption. Their study shed light on the impacts of efficiency standards for water heaters
and other market transformation policies. Jorgensen, Graymore, and O’Toole (2009) an-
alyzed the social factors in residential water-use and highlighted the importance of inter-
personal and institutional trust for implementation of effective water conservation schemes.
Sovacool and Sovacool (2009) implemented a county-level analysis of the energy-water
nexus in the U.S., and concluded that twenty-two counties will likely face sever water
shortages, brought about primarily due to increased capacity expansion in thermoelec-
tric generation. Chandel, Pratson, and Jackson (2011) leveraged a modified version of
the U.S. National Energy Modeling Systems (NEMS) together with thermoelectric water-
use factors from the EIA to investigate the impact of various climate change policy on
the energy mix. They found that all of the climate policy scenarios that were considered
in the study could lead to a reduction in fresh water withdrawal for power generation,
compared to the business as usual scenarios. Moreover, they found that water-use de-
creased as the policy’s carbon price increased. Davies, Kyle, and Edmonds (2013) lever-
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aged GCAM — an integrated assessment modeling of energy, agriculture, and climate change
— to assess the water intensity associated with electricity generation until 2095. They
found that water use would likely decrease with capital stock turnover.

The majority of the empirical studies to date have focused primarily on either a
particular geographical location, or a given sector in the U.S., and leveraged either lin-
ear models (the assumptions of which may not be supported by the empirical data) or
‘black-boxes’ (e.g., artificial neural network) to project demand. This paper will use state-
of-the-art statistical learning techniques to analyze water withdrawal data — available
from USGS over the past two decades for the entire U.S. — and develop an accurate and
interpretable predictive water withdrawal model as a function of socio-economic, geo-
graphic, climatic conditions.

It is noteworthy that, though not pursued in this study, there exist another fun-
damentally different approach to modeling water withdrawal, based on complex, mech-
anistic hydrologic models with integrated elements of human-water interfaces (e.g., Pokhrel,
Hanasaki, Wada, & Kim, 2016; Wada et al., 2017). Models in this category include, for
instance, PCR-GLOBWB (Sutanudjaja et al., 2018; Wada, Wisser, & Bierkens, 2014),
WaterGAP (Alcamo et al., 2003; Florke et al., 2013), and HO8 (Hanasaki et al., 2008a,
2008b). These models have varying ranges of processes accounting for the coupled hu-
man and natural systems. Despite the utility of these models in providing a mechanis-
tic understanding on the functioning of the system, they are inherently complex and dif-
ficult to parameterize — partly owing to the limited availability of observational data-
sets. Different sorts of simplifications and conceptualizations are therefore necessary to
model the complex interactions between human and natural systems (e.g., Wada et al.,
2017). Our proposed modeling paradigm — based on statistical learning theory — can be
complementary to hydrological modeling efforts. Our approach offers key advantages of
a) being computationally efficient, and b) requiring a limited set of predictors to re-construct
the continuous space-time evolution of water withdrawal; which can the be used to fur-
ther constrain the parameterization of more complex, mechanistic hydrologic models. In
summary, our approach can help identify the most water-intensive sectors across vari-
ous states, inform policy makers, regulators and researchers on the exiting U.S. water
use patterns and identify sectors and areas where efficiency and conservation mechanisms
could yield maximum return, in-terms of enhanced sustainability of our urban ecology.

3 Data and Initial Analysis

Data were collected from various publicly available sources such as the Geological
Survey website (USGS, 2017), the Energy Information Administration (EIA, 2017), the
Bureau of Economic Analysis (BEA, 2017), the U.S. Census Bureau (USCB, 2017), the
Climate Prediction Center (CPC), the National Weather Service (NOAA, 2017), the U.S.
Department of Agriculture (USDA, 2007), the Coastal States Organization (CSO, 2017),
the U.S. Environmental Protection Agency (EPA, 2017) and other sources (IOWA, 2017).
Below, we will provide a brief description of our response variable (i.e., per-capita wa-
ter usage) and various socio-economic, hydro-climatic and geographic predictors that were
used in our analyses. It should be pointed out that since the water withdrawal data is
only available at five-year increments, the predictors were processed to match the tem-
poral scale of our response variable.

3.1 Response Variable: Per-Capita, State-Level Water Withdrawal

State-level water withdrawal data (in million gallons per day) were selected as our
response variable, and were obtained from U.S. Geological Survey website (USGS) for
the period of 1991-2010. USGS water usage data are collected and compiled every five
years for each of the 50 states, the District of Columbia, Puerto Rico, and the U.S. Vir-
gin Islands. The data source provides a breakdown of water usage in eight different sec-
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tors (depicted in Fig. 1) such as thermoelectric, irrigation, public supply, industry, aqua-
culture, domestic, livestock and mining. Thermoelectric and irrigation are the two dom-
inant sectors that account for almost two-third of the total water withdrawal across the
U.S. We, however, note that there is a large regional variability in water withdrawal pat-
terns — the States in the east is more dominated by the thermoelectric and industrial wa-
ter sectors, while the irrigation is the main water usages in the central and western part
of the U.S. To control for the varying sizes of states, we normalized the state-wide to-

tal water withdrawal data by the total population of each state. The distribution of state-
wise, normalized water withdrawal for years of 2006-2010 can be seen in Fig. 1(bottom
panel). States highlighted in shades of red represents high per-capita water usage, while
the states in blue represent low per-capita water usage. Fig. 1(bottom panel) reveals that
Idaho has the highest per-capita water usage for the year 2006—2010.

The distribution of the per-capita water withdrawal (in million gallons per day)
for the period 1991-2010 is depicted in Fig. 2. The distribution of per-capita water with-
drawal is right-skewed and has a heavy-tail distribution. In fact, it can be seen that the
power-law distribution provides a reasonable fit to the tail of the data (red line in Fig. 2a).
Power-law distributions describe phenomena where large events are quite rare, but small
events are very frequent. Fig. 2 suggests that a small fraction of the states in the U.S.
tend to consume disproportionately large volumes of water per capita.

3.2 Socio-Economic Predictors

Gross State Product (GSP) data were collected from the U.S. Bureau of Economic
Analysis for the years of 19912010 in current value. The GSP data (in millions of USD)
were then converted to time value of 2010, using the GDP deflator. Household Median
Income (in USD) was collected from the Bureau of Labor Statistics. The value of income
data was converted to 2013 CPI-U-RS (Consumer Price Index Research Series Using Cur-
rent Methods) USD.

The education level data obtained from the U.S. Census Bureau contains the fol-
lowing four levels for each reported year: (a) percentage of population with less than high
school diploma, (b) percentage of population with high school diploma only, (¢) percent-
age of population some college (1-3 years), and (d) percentage of population with four
years of college or higher. We leveraged generalized additive models to impute the miss-
ing data and align the temporal scale of the education data with that of water withdrawal.
The premise for including this variable in the analysis is to test whether educational lev-
els are predictive of the public supply water withdrawal.

Datasets related to thermoelectric energy generation — e.g., coal, petroleum, and
gas fired plants, nuclear and geothermal technologies — in mega watt-hours were collected
from the Energy Information Administration (EIA). Coal production, available from the
EIA, was used as a proxy for mining industry, since coal is the biggest profit generat-
ing mining production in the U.S. The percentage of urban population data were col-
lected from the U.S. Census. Since the temporal scale of the urban population data were
decadal, the years did not match the years in the USGS water dataset. We therefore im-
puted the missing years of the percentage of urban population data a using generalized
additive model to match the years across the two datasets.

3.3 Hydro-climatic and Geographic Predictors

Time-series of datasets related to Cooling Degree Days (CDD) and Heating De-
gree Days (HDD) are based on variation in air temperature estimates which were made
available from Climate Prediction Center (CPC) and National Weather Service (NWS).
Other hydro-climatic variables as predictor variables include Standardized Precipitation
Index (SPI), soil moisture, and annual precipitation data were provided by the National
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Centers for Environmental Information. The SPI characterizes the inter/intra-annual vari-
ability of precipitation with positive values indicating wetter than normal conditions and
the negative values being indicative of drier than normal conditions(Hayes, Svoboda, Wall,
& Widhalm, 2010; McKee, Doesken, & Kleist, 1993). Additionally, we used the upper

1 m simulated soil-water content (mm) based on the CPC model based simualtions to
represent the near-surface wet and dry conditions (see Fan & van den Dool, 2004, for
more details).

Coastal status was calculated for each state by creating dummy variables indicat-
ing whether the state is in the borders of (a) the Atlantic Ocean, (b) the Pacific Ocean,
(¢) the Gulf of Mexico, and (d) the Great Lakes. The states in proximity of any of the
above-mentioned water-sheds, were coded as '1’, and otherwise as ’0’. The estimates of
the total irrigated farmland area were collected from the Census of Agriculture Farm and
Ranch Irrigation Survey (2008), conducted by the National Agricultural Statistics Ser-
vice (NASS) in the U.S. Department of Agriculture (USDA). The surveys are conducted
every five years, starting from year 1992. To align the time steps of the farm data with
that of water usage, we used data from 1992 to represent irrigated farmland size between
1991 and 1995, and 1997 data was used to represent the value between 1996-2000. We
normalized the data by the total land size of each state to obtain the percentage of ir-
rigated farmland area per state. Prior to the analysis and the model set-up, all predic-
tor variables were aggregated spatially and temporally to match the state-wide, five-yearly
available water withdrawal datasets.

3.4 Exploratory Data Visualization and Analysis

A ’biplot’ is a useful visualization tool for multivariate data. One of the most com-
monly used types of a biplot is based on principle component analysis. A PCA-biplot
is a low-dimensional representation of multivariate data, using only the first two prin-
ciple components. In a PCA-biplot, vector lengths approximate standard deviations, and
the cosines of their angles are proportional to the correlation between the variables. It
can be seen from Fig. 3 that over the years of 1995-2010, the state-level water usage did
not change significantly. For example, on the bottom left corner of the plot, we observe
that water usage of Arizona, Louisiana, Texas, and Florida are located close to each other
across the different years. The energy generation and cooling-degree-days (CDD) vec-
tors extended in the direction of Texas suggest that the state’s thermoelectric power gen-
eration and its hot climate can help explain the variance of water usage in Texas, as op-
posed to states of Colorado or North Dakota which lie close to the heating-degree-day
(HDD) vector. Moreover, the Fig. 3 reveals that while water usage in the densely pop-
ulated states of the Northeast can be explained by socio-economic factors such as income
and education and measures of urbanization, the water usage in the larger Midwestern
and Western states of North and South Dakota, Nebraska, Iowa and New Mexico tend
to be dominated by farming and mining practices.

4 Methodology

The existing empirical literature in field of water analysis has almost exclusively
focused on descriptive and explanatory statistical modeling, while predictive modeling
of water analysis has largely been under-explored. Unlike descriptive or explanatory mod-
eling which is concerned with best explaining the past variability in the data, predictive
modeling is concerned with predicting ‘new/unseen’ data. The expected prediction er-
ror (EPE) for a new observation x can be summarized by the equation below [11]:



EPE = E[Yff(x)r

= EY — @)+ [E(f@) - f@] + B |f@) - B ()]

= Var(Y)+ Bias®> + Var (f(x)) (1)
261 The first term represents the irreducible error which is the result of the inherent
262 stochasticity in any process. The second term (the bias) represents how closely the es-
263 timated function mimics the process of interest, and the third term (variance) arises due
264 to using (noisy) samples to estimate the response function. Descriptive and explanatory
265 statistical models often focus on reducing the bias of the estimate. However, predictive
266 modeling focuses on minimizing the bias and variance simultaneously. The central the-
267 sis in this paper is that, with the recent accelerated pace of large complex datasets be-
268 coming available, predictive modeling can be leveraged as a powerful tool to identify com-
269 plex and non-linear dependencies that can lead to generating new hypothesis and ad-
270 vance the scientific discovery in the field.
o In the next section, we will present a brief discussion on supervised learning the-
272 ory and predictive modeling. We will then present a detailed discussion of the algorithm
73 that was used to develop the final best predictive model of the state-level, water with-
274 drawal data.
o15 4.1 Supervised Learning Theory (Predictive Modeling)
276 Supervised learning theory was leveraged to develop accurate predictive models for
77 state-level water withdrawals, and identify their most important predictors of in the U.S.
o18 The main objective of supervised learning is to approximate a process of interest (e.g.,
279 water withdrawals) as a function of various independent predictors (e.g., geographic, cli-
280 matic and socio-economic factors). Mathematically, the prediction process can be sum-
281 marized by y = f(X) 4 ¢ where the stochastic additive Gaussian noise € represents
28 the dependence of y on factors other than X that are not controllable. The goal of su-
283 pervised learning is to leverage the observed records and approximate the response hat f(X)
284 (i.e., water withdrawal) such that the loss function L is minimized over the entire do-
285 main of the input data space:

L= /w(X)A (f(x),f(x)) dx 2)

287 where w(X) is a possible weight function, and A represents the Euclidean distance
268 (or other measures of distance). The value of L in the equation above characterizes the
289 accuracy of the estimate over the entire domain (Hastie, Tibshirani, & Friedman, 2009).
200 We trained our data with various parametric (e.g., generalized linear models) and
201 non-parametric (e.g., generalized additive models (GAM), multivariate adaptive regres-

202 sion splines (MARS) and random forests (RF)) methods — description of which can be
203 found in the Appendix. Given that the ensemble tree-based algorithm (the method of
204 random forest) outperformed all other algorithms in terms of out-of-sample predictive
295 accuracy (see Section 5), we selected it as our final best model. A brief description of
296 the random forest (RF) algorithm is provided below.

207 4.2 Random Forests (RF)
208 Random Forest is an ensemble decision tree-based method developed by Breiman
209 (2001), and can be mathematically represented as:



300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

1 Miree

Fa)=—— Y Tia) (3)

Mtree i—1

where T; is a single decision tree, trained on bootstrap samples from the original
data and x represent a p—dimensional vector of input data predictors (e.g., the geographic,
climatic and socio-economic factors used in this analysis). The subset of predictors for
building each decision tree is randomly selected, and best splits values are chosen such
that the sum of squared errors (or least absolute deviation) within each node ¢ within
T; is minimized. Each decision tree is developed by recursively splitting the data space
into terminal nodes, until each terminal node contains no more than a certain predefined
minimum number of records. The average (or mode value as for the case of classifica-
tion) is then assigned to the terminal nodes. F'(z) estimates the response value, by ag-
gregating m such decision trees.

Regression trees are low in bias, particularly if they are grown sufficiently deep, since
the tree structure follows the structure of the data well so that the estimated target mean
is close to the true mean (Hastie et al., 2009). They are, however, notoriously noisy, and
generally have high variance. They are unstable and not particularly robust to outliers,
and this makes the procedure non-ideal for datasets that contain many outliers. The is-
sue of high variance is solved by leveraging the ensemble methodology as a variance re-
duction technique. The ensemble-of-trees methods such as random forest are generally
very robust to outliers and offer strong predictive power. The estimation of prediction
error of random forest can be obtained by leveraging the out-of-bag (OOB) data (i.e.,
the test data that was set aside during the development of each tree and not used in build-
ing that tree) to compute the mean square error as below:

1 & i

MSE =53 (5 ()
where y; is the average OOB predictions data for the i*" observation (Liaw & Wiener,
2002). Since the method of random forest is non-parametric, partial dependence plots
(PDPs) can be used to implement variable inference. PDPs calculate the marginal ef-
fects of a given predictor variables z; in a “ceteris paribus” condition (i.e., controlling
for all the other predictors). Mathematically, the estimated PDP is given as (Hastie et
al., 2009):

n

) = =3 () s) (5)

n
i=1

where f 7 is the approximation of the true function that generates y; n is the size
of the response vector (i.e., the size of the training dataset); x_; represents all input vari-
ables except x;. The estimated PDP of the predictor z_; provides the average value of
the function f when z; is fixed and x_; varies over its marginal distribution.

5 Results and Discussion

Table 1 summarizes the performance of each of the models. The first column sum-
marizes the goodness-of-fit for each of the models. Multivariate adaptive regression splines
(MARS) and the method of random forest (RF) fit the data substantially better com-
pared to multiple linear regression (MLR) and generalized additive (GAM) model. The
second and third columns in Table 1 show the in-sample and out-of-sample root mean
squared errors for each of the models. Again, it can be observed that MARS and RF are
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competitive in terms of in-sample fit, but RF significantly outperforms all other mod-

els, in terms of out-of-sample accuracy. In fact, the analysis of variance test on the pre-
diction errors of the different models revealed statistically significance differences between
the mean errors, with a p-value < 2 x 10'6.

Fig. 4 (top panel) visualizes the fit of each of the prediction models. The predic-
tion model based on the random forest algorithm substantially outperforms all other mod-
els in terms of the goodness-of fit. The model developed using the random forest algo-
rithm was therefore selected as the final best model.

In order to further demonstrate the predictive capability of the model, we trained
the random forest algorithm with the data until the end of 2005 in order to predict wa-
ter withdrawals in an independent testing period of 2006-2010. Table 2 summarizes model
fit and predictive accuracy, and Fig. 4 (bottom panel) provides a graphical representa-
tion of the predicted and observed values of per-capita water withdrawals. Based on the
results summarized in the table and the plot, it can be inferred that RF outperforms all
other models. In fact, RF is able to estimate the water usage above 5 million gal/day/person
accurately, even though there are less observation points. While MARS performs well
below 5 million gal/day/person (where there is more observations) it performs poorly
where the data is sparse.

These results confirms our hypothesis that simple linear-based models (e.g., MLR)
and additive structures such as GAMs are not able to capture the complex relationships
in the data adequately. Moreover, the fact that RF outperformed MARS is not surpris-
ing. MARS can be seen as an extension of recursive partitioning algorithms such as tree-
based methods (Friedman, 1991) which is very effective at capturing high order inter-
actions and yielding low-bias estimates. However, the model is not as effective in vari-
ance reduction and therefore has an inferior predictive power.

We leveraged a data-driven variable selection, based on an algorithm proposed by
Genuer, Poggi, and Tuleau-Malot (2010), to implement input variable reduction for the
RF model. The variable selection algorithm first involved developing multiple forests and
ranking their input variables (based on their importance by calculating their contribu-
tion to out-of-sample predictive accuracy, and their standard deviations). Variables at
the bottom of the list (in terms of importance) whose standard deviation was below the
minimum calculated threshold were removed. Multiple nested models were then devel-
oped in a step-wise forward strategy. The smallest subset of input data that yielded the
best predictive accuracy were retained for the final model. The list of the final key vari-
ables selected for each sector are shown in Fig. 5.

The importance plot shows the ranking of the variables in terms of their contri-
bution to the model’s out-of-sample predictive performance, with the variable highest
on the y-axis contributing the most to model’s performance. It can be observed that the
percentage of irrigated farmland is the most important predictor of state-level per-capita
water withdrawal, followed by total state-level precipitation, heating degree days (HDD),
urbanization, thermoelectric energy generation and state-area. This result is intuitive,
since irrigation and mining generally comprise a large share of water withdrawal in the
U.S.

In order to understand the association between the top most important predictors
and our response variable (per-capita water withdrawal), partial dependence plots were
examined. Below, we will discuss the partial dependencies for each of the predictors, in
order of their importance ranking depicted in Fig. 5.



388 5.1 Effect of Percentage of Irrigated Farmland Areas

389 The partial dependence between the percentage of irrigated farmland and per-capita
390 water withdrawal indicates a positive association, with larger irrigated farmlands being
301 associated with higher water withdrawal intensity. This is intuitive, as the U.S. agricul-
302 tural sector accounts for a significant fraction of total water consumption. Some of the
303 states associated with the different percentiles of water withdrawal have been highlighted
304 in Fig. 6. As expected, states such as Nebraska and Arkansas lie at the extreme right

395 end of the graph due to their large irrigated agricultural lands. Nebraska is ranked first
396 in the U.S. in terms of total irrigated acres of land, and has seen rapid expansions of ir-
307 rigated farmlands in recent years. It is located on the Ogallala Aquifer which is among
308 the largest in the world, and makes heavy use of ground water for farming and irriga-

399 tion. In fact, most of the irrigation in Nebraska (and effectively all of the more recent

400 expansion in irrigated farming) is pumped from the High Plains (aka Ogallala) Aquifer.
401 Arkansas, the number one producer of rice in the U.S., also lies at the extreme right end
102 of the table, which is not surprising since rice is among the most water-intensive crops

403 (Johnson, Christopher, Anil, & NewKirk, 2011). It is interesting to note the step-function
404 jump from the states such as Delaware to the state of California. This could suggest that
405 the crops grown in Delaware that are mostly corn, soybeans and wheat-based may be

406 less water intensive than the crops grown in CA (mainly nuts, and fruits).

a07 5.2 Effect of Precipitation Variability

408 We hypothesized higher precipitation levels to be associated with decreased wa-

400 ter usage since precipitation affects a variety of sectors such as thermoelectric power gen-
410 eration, irrigation, public supply, industry, aquaculture, domestic, and life stock. The

an1 observed pattern in Fig. 6 is consistent with our initial hypothesis, indicating that wet-
a2 ter regions use less water. However, the decreased water-use plateaus at the threshold

a13 of 700 mm of precipitation

414 5.3 Effect of Heating Degree Days

a5 Heating degree days (HDD) measure the difference between average air temper-

416 ature and an arbitrarily chosen standard baseline temperature (typically 65°F in the US)
a7 to which the built environment would be heated on cold days. Annual HDD measures

418 the time-integrated variation over a year between the average daily temperature and the
410 baseline ’comfort’ temperature. Interestingly, there seems to be a subtle, positive asso-
20 ciation between heating degree days and water withdrawal, with a sudden jump past HDD

w1 of 3000 which is mostly associated with the states located in the North-Central parts of
a2 the U.S., such as North Dakota, Minnesota, Wyoming and Montana (Fig. 6). This might

423 be attributable to the (non-coal) mining and industrial activities such as fracking in these
424 northern states. For instance, in 2005, Minnesota had the largest share of (sulfide) mining-
s related fresh water withdrawals in the U.S. Wyoming and Montana also have an active

a2 mining sector. Moreover, a significant amount of water is used in North Dakota in hy-

427 draulic fracturing for oil and gas. Unfortunately, data limitation as well as the diversity

a2 and rapid shifts in these mining and fracking activities make it difficult to test these hy-

429 potheses.

430 5.4 Effect of Percentage of the Urbanized Areas

231 The partial dependency plot for the urbanization effects on water withdrawal pat-

132 terns across U.S. clearly shows that the more urbanized states tend to be less water-intensive
33 (Fig. 6). Again, this is largely due to the fact that the domestic sector and public sup-

a3 ply sector comprises a significantly smaller fraction of total water withdrawal as com-

a3 pared to the farmland or energy generation sectors.

—10—



436 5.5 Sensitivity of Water Withdrawal to Future Climate Variability

437 In this section, We demonstrate the utility of leveraging the predictive model, based
438 on the random forest algorithm, in assessing the sensitivity of changes in water withdrawal
430 patterns across U.S. in response to changing climate conditions. To this end, we used

440 the precipitation datasets from the five CMIP5 Global Circulation Models (GCMs: HadGEM2-
aa1 ES, IPSL-CM5A-LR, MIROC- ESM-CHEM, GFDL-ESM2 and NorESM1-M), available

a2 in a bias-corrected form by the Inter-Sectoral Impact Model Intercomparison Project (ISI-
43 MIP; Warszawski et al., 2014, see also www.isimip.org for more details). For this demon-
a4 stration purpose, we aggregated the daily precipitation dataset to create state-wide, mean
s annual estimates for the two time periods indicating the contemporary condition (1995-
w6 2010) and the future one (2070-2085), which are taken from the runs corresponding to

aa7 the RCP8.5 future pathways under the narration of a “business-as-usual” scenario. For

a8 these periods, we run the established RF model to predict state-wide water withdrawal

449 using their respective precipitation data-sets while keeping other variables at nominal

450 values following a “ceteris paribus” condition. We estimate the ensemble mean of the

a1 state-wise, projected changes in the water withdrawal rates based on the RF model out-

452 puts driven by five GCM based precipitation data-sets.

453 We observed a clear north-south gradient in the relative changes of the water with-
454 drawal patterns across U.S. between future and contemporary period estimates (Fig. 7).
455 Our simulation results indicated increased water withdrawal rates in the southern States,
456 while the declined rates are expected in the Northern states — in response to future pre-
as7 cipitation changes. The southern states such as Texas (TX), Florida (FL), Louisiana (LA),
458 and Arizona (AZ) show a projected increase of more than 5% in their water withdrawal
450 rates relative to the contemporary condition. The changes in the future water withdrawal
460 rates across the majority of States is in-between + 10% with the driving precipitation

261 changes being projected 4+ 15%. Results of this analysis also indicate a varying level of
162 sensitivity in the projected water withdrawal rates to changes in precipitation estimates
463 (Fig. 7; bottom scatter plot). For example, in states such as Texas (TX) and Arizona

464 (AZ), a small change in mean annual precipitation (around 2%) creates a relatively larger
465 change in water withdrawal (6-8%). Notably, all of the above presented estimates cor-

466 responds to ensemble mean of the modeled water withdrawal (based on the RF model

467 run with five GCMs outputs); analysis based on the individual model estimates revealed
a68 a substantial uncertainty owing to the differences in projected precipitation from differ-

469 ent GCMs.

470 6 Conclusions

an In this paper, we analyzed the predictive accuracy of various statistical methods

an in predicting the state-level, per-capita water withdrawal across the entire U.S. The pre-
73 dictive model based on the method of random forest was selected as the best model, since
ata it out-performed all other statistical models in-terms of both goodness-of-fit and out-of-
a7 sample predictive accuracy.

476 Our results identified irrigated farming - especially in the states such as Nebraska

ar7 and Arkansas — and coal mining especially in states such as Wyoming, West Virginia

at8 and Kentuky as the most water-intensive anthropogenic activities. Even though min-

479 ing withdrawals constitute a small fraction of the overall water use in the U.S., its share

480 has increased by 40% since 2005 (Maupin et al., 2014).

481 The water intensity of thermoelectric generation was less than initially hypothe-

a2 sized. According to the USGS, the reduced water withdrawals for thermoelectric power

483 generation over the years can be attributed to a reduction in coal consumption and in-

a8 creased use of natural gas, as well as the newer power plants being equipped with more

a5 water-efficient cooling technologies. The USGS also reports declined industrial water with-
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drawals due to higher efficiencies in industrial activities and an emerging emphasis on
water reuse and recycling in industrial processes (Maupin et al., 2014).

Climatic conditions such as precipitation and heating-degree days were also found
to be important predictors of per-capita water withdrawal. Drier conditions (i.e., total
annual precipitation less than 600) were intuitively found to be associated with higher
water withdrawals. However, counter-intuitively, we found colder conditions i.e., HDD
> 3000 which is mostly observed in the North-Central parts of the U.S., such as North
Dakota, Minnesota, Wyoming and Montana — to be associated with higher water use.
This higher water use might be attributed to hydraulic fracturing for oil and gas and other
mining activities beyond coal mining in these states. While the total, per-capita water
withdrawals are lower in more urbanized states, the water withdrawal in the public sup-
ply is positively associated with urbanization.

Using the developed predictive model, we were able to infer the first-order sensi-
tivity of the projected changes in the water withdrawal to changing climate conditions
such as precipitation. Our analysis results revealed a distinct north-south gradient in the
projected changes of the water withdrawal pattern across U.S. (mostly between + 10%),
with the southern (northern) states showing projected increase (decrease) in future wa-
ter usages in response to the projected changes in mean annual precipitation by the end
of Century under the RCP8.5 scenario. In a similar fashion, our data-driven modeling
framework allows for analyzing and documenting the sensitivity of future changes in wa-
ter withdrawal in response to other climatic (e.g., HDD changes) and socioeconomic fac-
tors (e.g., changes in farmland expansion, urbanization, energy generation); either in-
dividually (considering one at a time) or in combination.
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Table 1. Summary of models performance given as correlation coefficient (R?), fitted Root
Mean Square Error (RMSE; million gal/day/person), and Leave one out cross validation
(LOOCV) RMSE. Each model is trained and tested using all available data records for the
period 1991-2010.

Model R?® RMSE LOOCV RMSE
Mean-ONLY - 2.60 2.62
Multiple Linear Regression (MLR) 0.57 1.71 1.84
Generalized Additive Model (GAM) 0.61 1.62 1.62
Multivariate Adaptive Regression Splines (MARS) 0.85 0.99 1.40
Random Forest (RF) 0.97 0.47 0.98

Table 2. Summary of models predictive accuracy. Each Model is trained using 1991-2005 data
and tested using 2006-2010 data. Summary performance is presented here in terms of correlation
coefficient (R?), fitted Root Mean Square Error (RMSE; million gal/day/person), Leave one out
cross validation (LOOCV) RMSE, and prediction RMSE (for the test data). See Appendix D for
more details on LOOCV-RMSE.

Model R? RMSE LOOCV RMSE Prediction RMSE
Mean-ONLY - 2.75 2.77 2.11
Multiple Linear Regression (MLR) 0.59 1.76 2.00 1.52
Generalized Additive Model (GAM) 0.65 1.63 1.68 1.31
Multivariate Adaptive Regression Splines (MARS) 0.95 0.60 1.57 1.35
Random Forest (RF) 0.97 0.48 1.00 0.79
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Pie Chart of Water Withdrawal Breakdown for 2010
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Figure 1. Top: The breakdown of US-wide water withdrawals across the eight major sectors
during the period 2006-2010. Bottom: Spatial distribution of the U.S. wide per-capita water

withdrawal (in million gallons per-day).
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Figure 2. The empirical distribution of per-capita water withdrawals (in million gallons per
day) for the period 1991-2010; (a) the red line shows that power-law fits the tail of the empiri-
cal cumulative distribution reasonably well (b) the histogram of per-capita water demand with

overlain kernel density line (in red).
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PCA of Total Water perCapita Usage
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Figure 3.
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Principal Component Analysis (PCA) biplot of the per-capita water usage (in

million gallons per-day) for the period 19952010. The states are color-coded based on their prox-

imity to water bodies and the two digits next to the state codes indicate the year associated with

the water use data for the state.
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Scatter Plot of Actual vs Fitted of
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Figure 4. Top: Scatter plot of observed versus estimated values of per-capita water with-
drawal (in million gallons per-day) using data of 1995-2010. Bottom: Scatter plot of observed
versus predicted values of per-capita water usage (in million gallons per-day) using data of 2006-
2010. In the latter case, the models were trained using data of 1995-2005, and the testing was
conducted in an independent period of 2006-2010.
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Figure 5. List of the most important predictors identified for the per-capita water withdrawal
predictions, presented here as the percentage drop in the predictive accuracy for the out-of-
sample datasets. The selected predictors are ranked from the most to least influential ones (top

to bottom).
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Figure 6. Partial dependency plot (PDP) for the fraction of irrigated farmland, annual pre-
cipitation, average heating degree days, and percentage of urban areas; depicting their sensitivity
on the per-capita water withdrawal (in million gallons per-day). The two letters on the plot
corresponds to the states, the black line the mean values, and the red lines the 95% confidence

intervals.
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Figure 7. Spatial distribution of ensemble mean changes in the per-capita water withdrawal
patterns across the U.S. in response to the future precipitation changes. Ensemble means were
estimated based on the modeled WW values using the mean annual precipitation estimates from
the five CMIP5 GCMs, while other predictors were kept constant at nominal values (see the
corresponding texts for more details). Changes in the WW estimates corresponds to the future
period (2070-2085) under the RCP8.5 scenario, relative to the reference estimates of the con-
temporary conditions (1995-2010). Bottom panel shows the scatter plot of percentage changes

between precipitation and total per-capita water withdrawal.
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A Generalized Linear Model (GLM)

GLM is the extension of Ordinary Linear Regression (OLR). GLM still retains all
the assumption of OLR, it allows predictors to be categorical and allows interactions be-
tween predictors. The simplest form of GLM is define as one of the most widely used
methods for function approximation. GLM can be mathematically summarized as be-
low:

Yi = Bo + P1xi1 + Bazio + ...+ Buin + € (A1)

where the stochastic error is assumed to be normally distributed as: for all €; ~
N(0,02). Each 3, describes the slope of predictor x(; j)- Sometimes transformation of
original variables (such as polynomials) are used to improve the performance of the mod-
els. Multiple linear Regression (MLR) is popular because they can be easily fitted (even
with limited data) and they are easily interpretable. However, their ‘rigid’ structure of-
ten fail to approximate the true function, especially when response is a complex (non-
linear) function of input variables. Their predictive accuracy is therefore often inferior
to more flexible models (James, Witten, Hastie, & Tibshirani, 2013).

B Generalized Additive Models (GAM)

GAM is a natural extension from GLM, in order to preserve the additive model
while extending to nonlinear relationship between the response and predictors (Hastie
et al., 2009). GAM is a non-parametric (local parametric) fitting procedure where the
conditional expectation of y is related to the input variables space as shown below:

Yi :50+ij($i,j)+6¢ (B.1)

Jj=1

where f;(x; ;) is a smoothing splines over the p-dimensional input space, with the
number of observations running from i = 1,...,n. GAM relaxes the linearity assump-
tion of multiple linear regression with smoothing functions f;(z; ;). This allows for cap-
turing the non-linear relationship between the predictors and the response variable. The
flexibility of generalized additive model often result in better approximating the true func-
tion and therefore often outperform GAM in predictive accuracy.

C Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression techniques developed by Friedman (1991).
It extends the use of piecewise linear basis function of form (z—t)4 and (z—t)_, where

0 otherwise

(x_t)Jr:{m—t r >t (1)

0 otherwise

(m—t)_:{tz r <t (C.2)

And MARS has the function form of

M
FX)=Bo+ Y Brmhm(X) (C.3)

m=1
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where each h,,(X) is a function in form of piecewise linear basis function, or the
product of two or more such functions. The coefficients f3,,, are estimated by minimiz-
ing the residual sum of squares given the choices of h,,(X)(Hastie et al., 2009).

D Bias-variance trade-off

Predictive performance of a statistical model depends on its capability to yield ac-
curate predictions for an independent test sample. Generally simple models are more sta-
ble, but do not adequately estimate the structure of the true function — and therefore
are high in bias. Complex models can approximate the shape of the true function, more
effectively, but they are prone to over-fitting — and therefore have high variance. Bias-
variance trade-off lies at the heart of developing models with high generalization power
add references. Cross-validation is one of the most widely used methods in balancing bias
and variance. We use the leave-one-out cross validation (LOOCV) to estimate predic-
tive accuracy. The LOOCYV procedure is defined as holding out one data as a test data
and use the rest of the training data. Model generated from the training data is the used
to predict the test data and we will calculate the MSE of that point. LOOCV MSE is
defined by

1< X
LOOCVMSE = — Z(y —4i)? (D.1)
i=1
where i represents the iteration of one data left out, y; represents the true value
of the i*" iteration, gj; represents the predicted value and n the length of data.

Acronyms

BAU Business as Usual

CDD Cooling Degree Days (°F)

CPC Climate Prediction Center

CMIP5 Coupled Model Intercomparison Project (Phase 5)

EIA Energy Information Association

EPA Environmental Protection Agency

EPRI Electric Power Research Institute

GAM Generalized Additive Model

GCM Global Circulation Model

GDP Gross Domestic product

GFDL-ESM2 Geophysical Fluid Dynamics Laboratory-Earth System Models

GLM Generalized Linear Model

GSP Gross State Product (millions of USD measured in 2009 real dollars)

HadGEM2-ES Met Office Hadley Centre Model-Earth System

HDD Heating Degree Days (°F)

IPSL-CMS5A-LR Institut Pierre Simon Laplace Model-5 Component models

ISI-MIP Inter-Sectoral Impact Model Intercomparison Project

NEMS National Energy Modeling Systems

NOAA National Oceanic and Atmospheric Administration

MARS Multivariate Adaptive Regression Splines

MIROC-ESM-CHEM Model for Interdisciplinary Research on Climate-Earth Sys-
tem Models

NorESM1-M Norwegian Earth System Model 1 - Medium resolution

PDP Partial Dependence Plot

RCP Representative Concentration Pathway
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588 RF Random Forest

589 SPI Standardized Prediction Index

590 U.S. United States

501 USD United States Dollar ($)

592 USGS United States Geological Survey
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