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Abstract21

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasi-periodic variations22

in ionospheric densities with horizontal wavelengths > 1000 km and periods between23

30 to 180 min. On 3 Nov 2017, LSTIDs were detected in Reverse Beacon Network (RBN),24

Weak Signal Propagation Reporting Network (WSPRNet), and Phase Shift Keying Re-25

porter (PSKReporter) observations for the first time. These observing networks are high26

frequency (HF, 3-30 MHz) amateur (ham) radio networks that provide data to the Ham27

Radio Science Citizen Investigation (HamSCI). LSTID signatures were observed simul-28

taneously over the continental United States in amateur radio, SuperDARN HF radar,29

and GNSS Total Electron Content measurements. The LSTIDs were estimated to have30

a period of 2.5 hr, propagation azimuth of 163◦, horizontal wavelength of ∼1680 km, and31

phase speed of ∼1200 km hr−1. SuperMAG SME index enhancements and Poker Flat32

Incoherent Scatter Radar measurements suggest the LSTIDs were driven by auroral elec-33

trojet intensifications and Joule heating.34

Plain Language Summary35

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are variations in the iono-36

sphere with wavelengths greater than 1000 kilometers, periodicities between 30 minutes37

to 3 hours, and speeds greater than about 1400 kilometers per hour. Auroral zone dis-38

turbances are generally cited as the energy source for LSTIDs. In this paper, we show39

for the first time that LSTIDs can cause variations in the distances amateur (ham) ra-40

dio operators can communicate using data from the Reverse Beacon Network (RBN),41

Weak Signal Propagation Reporting Network (WSPRNet), and Phase Shift Keying Re-42

porter (PSKReporter) amateur radio networks. The LSTID signatures in the amateur43

radio data are in excellent agreement with LSTID observations from two well-established44

instruments: the Blackstone, Virginia SuperDARN radar and a large scale network of45

GNSS based ionospheric Total Electron Content receivers. The observed LSTIDs appear46

2 to 3 hours after auroral zone disturbances are detected by ground magnetometers in47

the SuperMAG network and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska.48

Results suggest that auroral zone disturbances were the ultimate cause of the observed49

LSTIDs. This paper provides a foundation for using large-scale, crowd-sourced amateur50

radio observations of LSTIDs as a new method for the study of LSTIDs.51

1 Introduction52

Traveling ionospheric disturbances (TIDs) are quasi-periodic variations of ionospheric53

densities in Earth’s upper atmosphere, believed to be the ionospheric signatures of at-54

mospheric gravity waves (AGWs) (Hines, 1960). TIDs are generally categorized as ei-55

ther Large Scale TIDs (LSTIDs, horizontal speeds between 400 to 1000 m s−1, periods56

between 30 min to 3 hr, horizontal wavelengths greater than 1000 km) or Medium Scale57

TIDs (MSTIDs, horizontal speeds between 100 to 250 m s−1, periods between 15 min58

to 1 hr, and horizontal wavelengths of several hundred km) (e.g., Francis, 1975; Georges,59

1968; Ogawa et al., 1987). LSTIDs are typically associated with AGWs generated by Joule60

heating and particle precipitation from auroral zone disturbances (Hunsucker, 1982; Lyons61

et al., 2019). These AGWs may propagate equatorward for long distances, transport-62

ing energy from the auroral zone to middle and low latitudes (Richmond, 1979) and can63

even reach the opposite hemisphere (Zakharenkova et al., 2016).64

Since first reported by Munro (1948), TIDs have been studied using many differ-65

ent techniques. These include ionosondes (e.g., Galushko et al., 1998, 2003; Altadill et66

al., 2020), incoherent scatter radars (e.g., Thome, 1964; Kirchengast et al., 1996; Nicolls67

& Heinselman, 2007; S.-R. Zhang et al., 2021), HF Doppler radars (e.g., Samson et al.,68

1989, 1990; Bristow et al., 1994; Frissell, Baker, et al., 2014; Frissell et al., 2016), broad-69

cast AM Doppler receivers (Chilcote et al., 2015), global navigation satellite system (GNSS)70
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total electron content (TEC) receivers (e.g., Tsugawa et al., 2007; Zakharenkova et al.,71

2016; Dinsmore et al., 2021), and airglow imagers (e.g. Mendillo et al., 1997; Otsuka et72

al., 2004; Ogawa et al., 2009). Each of these different techniques provides a unique and73

complementary view into understanding the nature of TIDs.74

In addition to their scientific value, TIDs are of interest technologically due to their75

impact on high frequency (HF, 3-30 MHz) terrestrial communications systems. The time-76

dependent variations in ionospheric electron density associated with TIDs cause a focus-77

ing and de-focusing of ionospherically refracted HF radio signals (Samson et al., 1990;78

Bristow et al., 1994; Frissell, Baker, et al., 2014). These effects can manifest as quasi-79

periodic fading and enhancements of HF communications signals. Work by the Ham Ra-80

dio Science Citizen Investigation (HamSCI; hamsci.org) collective have demonstrated that81

data collected by global-scale, automated HF receiving systems built and operated vol-82

untarily by amateur (ham) radio operators can be used for both scientific study of iono-83

spheric phenomena and as a way to assess ionospheric impacts on real communications84

systems. This work includes the impacts of solar flares and geomagnetic storms (Frissell,85

Miller, et al., 2014; Frissell et al., 2019), total solar eclipses (Frissell et al., 2018), and86

plasma cutoff and single-mode fading (Perry et al., 2018).87

In this paper, we present the first observations of LSTIDs in the ionosphere through88

data collected from the Reverse Beacon Network (RBN), Weak Signal Propagation Re-89

porter Network (WSPRNet), and the Phase Shift Keying Reporter (PSKReporter) am-90

ateur radio networks. These observations are compared to Blackstone Super Dual Au-91

roral Radar Network (SuperDARN) radar and Global Navigation Satellite System (GNSS)92

differential Total Electron Content (TEC) observations. Enhancements of the SuperMAG93

Electrojet (SME) Index and electron densities observed by the Poker Flat Incoherent Scat-94

ter Radar (ISR) prior to TID observation suggest auroral activity as the main driver for95

the observed LSTIDs.96

2 Datasets and Methodology97

2.1 Amateur Radio98

Amateur radio operators are communications hobbyists licensed to transmit on am-99

ateur radio frequencies. Radio signals that occur in the high frequency (HF, 3–30 MHz)100

bands can be refracted back to Earth by the ionosphere, thereby enabling long-distance,101

over-the-horizon communications. Variability in received signals may be related back to102

the variations in the ionospheric state. Amateur radio observations have been previously103

used to show the impacts of solar flares and geomagnetic storms (Frissell, Miller, et al.,104

2014; Frissell et al., 2019), and also to study the impact of a total solar eclipse (Frissell105

et al., 2018).106

In this paper, we use observations from the RBN (Sinanis et al., 2022), PSKRe-107

porter (Gladstone, 2022), and WSPRNet (Walker, 2022) amateur radio networks to study108

LSTIDs. Each of these networks consists of geographically distributed automated receiv-109

ing stations that are able to identify and log Morse code and/or digital amateur radio110

transmissions. Each observed radio transmission is referred to as a “spot” that includes111

the observation time, frequency, call signs of the transmitter and receiver, and sometimes112

the transmitter and receiver locations as reported by the radio operator. When station113

location is not provided, it is determined by looking up the station’s licensed callsign in114

the HamCall Database (2022).115

2.2 SuperDARN116

The Super Dual Auroral Radar Network (SuperDARN) is a global network of coherent-117

scatter HF Doppler radars that operates between 8 and 20 MHz (Greenwald et al., 1995;118
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Chisham et al., 2007; Nishitani et al., 2019). Although SuperDARN is primarily designed119

to study ionospheric convection by measuring the Doppler velocity of field aligned iono-120

spheric irregularities, it also routinely observes ground scatter. Ground scatter occurs121

when radar signals undergo ionospheric refraction back to Earth, reflect off the ground,122

and then return back to the radar via an ionospheric path. Although the radar returns123

are from ground reflections, ground scatter can still be used for ionospheric study be-124

cause the ionosphere will modulate the signals as they propagate through the medium.125

Samson et al. (1990); Bristow et al. (1994); Frissell, Baker, et al. (2014) and Frissell126

et al. (2016) have shown that TIDs moving through the field of view of a SuperDARN127

radar focus and de-focus the radar rays such that the ground scatter range and signal-128

to-noise ratio (SNR) vary with the period of the TID. In many ways, SuperDARN ground129

scatter observations are analogous to amateur radio HF communication links. In both130

cases, HF radio signals are modulated by the ionosphere before being returned to Earth.131

Therefore, TIDs have the potential to affect amateur radio HF communications range132

and SNR in a manner similar to SuperDARN ground scatter observations.133

2.3 GNSS Total Electron Content134

Dual-frequency Global Navigation Satellite System (GNSS) receiver measurements135

are now routinely used to measure the Total Electron Content (TEC) in a column be-136

tween a ground receiver and a satellite in space by measuring the phase difference be-137

tween the two signals (Coster et al., 1990, 1992). In this paper, we use GNSS TEC data138

from the CONUS region processed according to the algorithms by Rideout and Coster139

(2006) and Vierinen et al. (2016). Using a similar approach as Coster et al. (2017), S.-140

R. Zhang et al. (2017), and S. Zhang et al. (2019), we use a differential TEC (dTEC)141

analysis rather than absolute TEC to observe the TIDs. In this approach, dTEC val-142

ues were calculated by subtracting a background TEC variation computed with a low-143

pass Savitzky-Golay filter (Savitzky & Golay, 1964) using successive windows of 60 min144

length. Only GNSS satellite-to-ground ray paths with elevations ≥ 30◦ were used.145

2.4 Geomagnetic and Auroral Measurements146

We use the SuperMAG electrojet (SME) index and Poker Flat Incoherent Scatter147

Radar (PFISR) observations to quantify possible driving of LSTIDs from auroral sources.148

SuperMAG is an international collaboration of institutions that combines the observa-149

tions from over 200 ground-based magnetometers (Gjerloev, 2009). To observe auroral150

electrojet intensifications, we use the SuperMAG-derived SME index. This value is cal-151

culated using data from all available magnetometers between 40◦N and 80◦N magnetic152

latitude. Over this range, ∼110 stations are available, providing sufficient sampling den-153

sity to allow for the geographic localization of SME intensifications (Newell & Gjerloev,154

2011a, 2011b). The SME index is comparable to the traditional auroral electrojet (AE)155

index derived by Davis and Sugiura (1966). We employ the SME index because the AE156

index is derived from only 12 magnetometer stations, making geographic localization of157

AE enhancements difficult.158

PFISR is located near Fairbanks, Alaska (Geographic: 65.13◦N, 147.47◦W; Mag-159

netic: 65.3◦N, 92.1◦W). Magnetic midnight occurs at ∼UT−9.8 hours. For the interval160

of interest, two radar modes were used: GPSAC5 and IPY27. The GPSAC5 mode is com-161

prised of alternating code observations providing sufficient range resolution to measure162

E-region electron density (Lehtinen & Häggström, 1987). The IPY27 mode is a low duty163

cycle background mode composed of both alternating code and uncoded (long) pulse ob-164

servations. The long pulse observations in the F-region are further processed to estimate165

the electric field vector using the methodology described by Heinselman and Nicolls (2008).166

The GPS mode and the IPY27 mode were integrated to 1 minute and 5 minute resolu-167

tion, respectively.168
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Electron density observations spanning the interval of interest are provided by the169

high range resolution alternating code data. For this study, we use the electric field ob-170

servations, which are limited to the IPY mode observations only, to quantify the pas-171

sive energy deposition rate, Q(z) = σP (z)E2, where σP (z) corresponds to the altitude172

resolved Pedersen conductivity. More details regarding how the passive energy deposi-173

tion rate was calculated using PFISR observations can be found in Zhan et al. (2021).174

The passive energy deposition rate is a proxy for the Joule heating rate, although it ex-175

cludes the effects from the neutral winds.176

3 Observations177

3.1 LSTID Observations178

Figures 1a and 1b show combined 14 MHz observations from the RBN, PSKRe-179

porter, and WSPRNet networks on 3 Nov 2017 for the period of 1200–2359 UT for transmitter-180

receiver (TX-RX) pairs with great circle distances < 3000 km (to avoid multi-hop sit-181

uations). This event was selected by making daily summary plots of amateur radio data182

in a format similar to Figures 1a and 1b and identifying a period with clear LSTID sig-183

natures. Figure 1a shows a map of the distribution of TX-RX midpoints of communi-184

cations observed over the continental United States (CONUS). TX-RX midpoints are185

calculated based on the assumption that ionospheric refraction occurs at the half-way186

point between the two stations. Figure 1b presents a time series showing the TX-RX dis-187

tance for the number of 14 MHz amateur radio spots in 2 min by 25 km bins. The bot-188

tom edge of the green-yellow region shows the communications skip focusing distance189

varying with time, especially between 13 and 18 UT. This skip-distance variation is high-190

lighted by red dots overlaid on the data, which shows a manually-fit fiducial sinusoid with191

a 2.5 hr period centered around 1050 km range with a 150 km amplitude. A version of192

this figure without the overlaid sinusoid is presented in Figure 4e.193

Figures 1c and 1d show observations from the Blackstone, Virginia (BKS) Super-194

DARN radar in a format comparable to the amateur radio observations of Figures 1a195

and 1b. Figure 1c shows the location of the BKS radar and its field-of-view (FOV). Com-196

parison of Figure 1c with Figure 1a reveals that BKS Beam 13 (highlighted in red) looks197

northwest over a region of dense amateur radio spot coverage. Figure 1d shows power198

parameter observations from BKS Beam 13. The radar transmit frequency ranged be-199

tween 10.802 – 11.736 MHz during this time. The scatter is predominantly ground scat-200

ter, which is analogous to the amateur radio TX-RX communications distances shown201

in Figure 1b. Large-scale features can be observed that are common to both the ama-202

teur radio and SuperDARN observations. Most importantly, skip distance oscillations203

are observed in the SuperDARN data that match the those observed in the amateur ra-204

dio data. The large-scale component of these oscillations is highlighted in Figure 1d with205

a red dotted sinusoid with identical parameters as the sinusoid in Figure 1b. In both Fig-206

ures 1b and 1d, it is noted that the sinusoid best matches the data at skip distance max-207

imum, and less so at skip distance minimum. This can be attributed to smaller-scale vari-208

ations consistent with MSTIDs mixing with the LSTID activity.209

We next compare the amateur radio and SuperDARN observations with GNSS dTEC210

measurements. Figure 1e shows a map of CONUS dTEC at 1343 UT, corresponding to211

the time of the first skip-distance maximum of the sinusoid in Figure 1b. LSTID wave-212

fronts occurred with a southwest to northeast orientation, especially in the central and213

Eastern portions of the CONUS. 1343 UT corresponds to a negative phase of the LSTIDs214

over the CONUS, as indicated by dTEC values of ∼ -0.2 for a large portion of the map.215

The black inset box in Figure 1e indicates the region from 30◦ to 50◦N latitude and 70◦216

to 120◦W longitude. A time series of the median dTEC values within this region is pre-217

sented in Figure 1f (blue line). The dotted orange line shows the data filtered with a 2218

– 4 hr bandpass filter. Significant wave activity occurred in this time series data, and219
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comparison to amateur radio and SuperDARN observations show a general trend: de-220

pressions in median dTEC correspond to increases in skip distance, and vice-versa. The221

FFT spectral analysis of the median dTEC time series shown in Figure 1g shows that222

the dominant spectral component of dTEC had a period of 2.4 hr, in excellent agreement223

with 2.5 hr oscillations measured with the sinusoid fit to the amateur radio and Super-224

DARN data.225

Figure 2 further shows the spatial and temporal relationship between amateur ra-226

dio and GNSS dTEC LSTID observations. Figure 2a presents the amateur radio data227

first shown in Figure 1b. The 2.5 hr sinusoid from Figure 1b is overlaid with red dots228

and the median dTEC values from Figure 1f are overlaid as a solid white line. The dot-229

ted sinusoid and the median dTEC values exhibit an anti-correlated relationship. Four230

times, corresponding with the maxima and minima of the 2.5 hr sinusoid, are identified231

with vertical dashed lines. Maps of GNSS dTEC observations corresponding to these times232

are shown in Figures 2b – 2e. Results show an inverse relationship between the amateur233

radio skip distances observed in Figure 2a and the dTEC measurements in Figures 2b234

– 2e. Specifically, when maxima in amateur radio skip distances occur at 1343 and 1613235

UT, a decrease of ∼ 0.20 TECu is observed in the central regions of the maps. Conversely,236

when minima in amateur radio skip distances occur at 1458 and 1728 UT, an increase237

of ∼ 0.20 TECu is observed. Wavefronts oriented from southwest to northeast can be238

observed in the dTEC maps. This is most clearly seen in Figure 2d, where a black ar-239

row indicates the estimated horizontal wavelength (λh ≈ 1680 km) and propagation240

azimuth (α ≈ 163◦) of the largest wave feature in the map. Movie versions of Figure241

2 showing the full progression of dTEC with time are provided in Supporting Informa-242

tion S1 and S2. Using this movie and the open-source Tracker Video Analysis and Mod-243

eling tool (Brown & Cox, 2009), the phase speed of the southeastward propagating LSTID244

trough between 1300 and 1400 UT was estimated to be ∼1220 km hr−1.245

In order to estimate the phase speed of the LSTIDs in the amateur radio data, Fig-246

ure 3 shows time series of latitudinal and longitudinal data slices plotted using a satu-247

rated filled contour from 1400 to 1800 UT. This time range is centered around the 1618248

UT skip distance maximum identified in Figure 2a. The top four rows show 1◦ latitu-249

dinal slices that range from 42◦ to 38◦N and extend from 88◦ to 74◦W longitude. The250

bottom four rows show 2◦ longitudinal slices that range from 85◦ to 79◦W and extend251

from 37◦ to 44◦N latitude. Red arrows indicate the time of the skip distance maxima252

manually identified in each time series plot. The arrows in the latitudinal slices indicate253

a steady forward progression in time from the slice centered at 41.5◦N to the one cen-254

tered at 39.5◦N, consistent with a north-to-south propagating LSTID. Using a linear re-255

gression of distance traveled versus time, the north-to-south phase velocity was estimated256

to be ∼1206 km hr−1. Note that the skip distance maximum in the 38.5◦N slice appeared257

to move backwards in time. We ascribe this non-coherent behavior (compared to higher258

latitude bins) to the multi-dimensional complexity of the wave field the radio signals prop-259

agated through at that time. For instance, at ∼1620 UT in the dTEC movie Support-260

ing Information S1, a northward-propagating TID was observed in the region of the 38.5◦N261

slice simultaneously with the dominant southward-propagating TID. The red arrows in262

the longitudinal slices (Figure 2b) show almost no progression with time, which is con-263

sistent with a predominantly north-south propagating LSTID that has east-west oriented264

wavefronts spanning the entire longitudinal observational range.265

3.2 Geomagnetic Conditions and Auroral Zone Drivers266

Figure 4 shows evidence of auroral zone activity preceding the midlatitude obser-267

vation of LSTIDs by amateur radio. Signatures of two auroral electrojet enhancements268

can be seen in Figure 4a, where the SME index first peaked to ∼500 nT between 10 and269

12 UT, and then subsequently increased to ∼700 nT between 12 and 13 UT. Figure 4b270

presents the regional SME index, which indicates that these enhancements occurred within271
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the 22 – 04 magnetic local time (MLT) sector. This occurs during the recovery phase272

of a minor geomagnetic storm with Kp ≤ 3+ and minimum Sym-H ≈ −30 nT at 00273

UT. Figure 4c shows that these electrojet surges were associated with electron density274

enhancements from 90 to 150 km altitude as measured by PFISR, whose observation point275

migrated from 2125 MLT at 8 UT to 0230 MLT at 13 UT. These electron density en-276

hancements were also associated with significant Joule heating measured by PFISR at277

these same altitudes, as shown in Figure 4d. Figure 4e again presents the amateur ra-278

dio data in a similar format to Figure 1a, now starting at 08 UT. Figure 4e shows that279

the TIDs are observed at midlatitudes by the amateur radio networks ∼2 to 3 hours af-280

ter the onset of auroral zone activity. Note that no radio spots were observed between281

8 and 12 UT because of a lack of 14 MHz radio propagation, due to lower nighttime mid-282

latitude ionospheric electron densities.283

The large-scale nature of the observed mid-latitude LSTIDs and their predominantly284

equatorward propagation suggest that an auroral zone source is likely. We can relate the285

TID observations to the auroral zone disturbances by estimating the location of the source286

region using the measurements of LSTID phase speed, propagation azimuth, and tim-287

ing. To estimate the location of the LSTID source region, we start at the point corre-288

sponding to the arrow tail in Figure 2d at the top of the LSTID observation region (44◦N,289

93◦W). We then project backwards from the 163◦ propagation azimuth at the phase speeds290

determined using the amateur radio and GNSS dTEC data. A low estimate using a 2291

hr propagation time and 1100 km hr−1 speed places the source region at geographic (62◦N,292

105◦W) and magnetic (70◦N, 43◦W, 0239 MLT). A high estimate using a 3 hr propa-293

gation time and 1300 km hr−1 speed places the source region at geographic (76◦N, 132◦W)294

and magnetic (77◦N, 87◦W, 2341 MLT). Both of these estimates place the source region295

in areas consistent with the auroral electrojet enhancement observed using SME index296

and the Joule heating enhancement observed using the PFISR radar. This supports the297

hypothesis that LSTIDs are generated by AGWs generated by auroral zone Joule heat-298

ing and particle precipitation (e.g., Hunsucker, 1982; Lyons et al., 2019).299

4 Discussion300

We used data from large-scale, automated, crowd sourced amateur radio networks301

to observe the effects of LSTIDs on 14 MHz HF communications paths over the conti-302

nental United States. These observations are in excellent agreement with skip-distance303

measurements made by the Blackstone, VA SuperDARN radar and dTEC measurements304

made by ground-based GNSS receivers. Observations of LSTIDs by these amateur ra-305

dio networks are significant for two reasons. First, these observations demonstrate a novel306

technique for the scientific study and characterization of LSTIDs. The RBN, WSPRNet,307

and PSKReporter amateur radio networks have global-scale data that extends over an308

entire solar cycle back to 2008 and simultaneously observes multiple frequency bands from309

1.8 to 30 MHz. These datasets have the potential to complement and extend existing310

professional instrumentation networks both in geographic and spectral extent. The re-311

sults here indicate that these datasets are appropriate for statistical searches of LSTIDs312

similar to Frissell et al. (2016), and such analyses can provide further understanding of313

the nature of LSTIDs and their connection to space and the neutral atmosphere. Sec-314

ondly, this new technique now allows LSTID impacts on actual HF communications sys-315

tems to be assessed and directly related to measurements made by professional scien-316

tific instrumentation. This has the potential to enable the future development of method-317

ologies to better understand and potentially predict the impacts of space weather and318

the atmosphere on HF communications systems.319

While we have highlighted the agreement of the amateur radio, SuperDARN, and320

GNSS dTEC TID observations, it is also important to note some of the differences and321

recognize that each technique does in fact provide a unique view of the ionosphere. Am-322

ateur radio and SuperDARN both sense TIDs through bottomside oblique HF ionospheric323
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sounding and therefore have similar measurements. Still, the amateur radio observations324

are able to show a continental-scale ionospheric behavior that may not be appreciated325

with SuperDARN radars. Conversely, SuperDARN is able to better resolve fine-scale TID326

structures than the amateur radio technique.327

It is also not reasonable to assume a strict one-to-one mapping of TIDs observed328

with the bottomside HF sounding techniques and the GNSS dTEC technique. GNSS TEC329

is a height integrated measurement that is not guaranteed to be sensitive to ionospheric330

structures at the same altitudes as the HF systems. This is evidenced in the backward331

phase progression seen at 38.5◦N in Figure 3. This dichotomy has been reported in other332

studies. Chilcote et al. (2015) showed, for example, that TIDs detected using Doppler333

shift observations of AM broadcast signals propagated in the opposite direction of TIDs334

detected with GNSS dTEC. In general, we emphasize that different techniques may be335

useful for extracting greater information through collective multi-technique study of a336

single event, and also emphasize that each technique may provide unique information337

in its own right.338

This paper demonstrates only the first example of using amateur radio networks339

to study LSTIDs. Future work includes automating amateur radio LSTID detection, im-340

proving the ability to localize LSTID measurements and estimate propagation direction,341

conducting statistical studies, and working towards the development of methods to bet-342

ter resolve smaller-scale features such as MSTIDs. There are also important implications343

for ionospheric citizen science, as the HamSCI Personal Space Weather Station project344

(Collins et al., 2021) will be capable of contributing to both the WSPRNet and PSKRe-345

porter datasets.346

5 Summary347

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasi-periodic vari-348

ations in ionospheric density with horizontal wavelengths > 1000 km and periods be-349

tween 30 to 180 min. On 3 Nov 2017, LSTIDs were detected in Reverse Beacon Network350

(RBN), Weak Signal Propagation Reporting Network (WSPRNet), and Phase Shift Key-351

ing Reporter (PSKReporter) observations for the first time. These networks are high fre-352

quency (HF, 3-30 MHz) amateur (ham) radio networks that provide data to the Ham353

Radio Science Citizen Investigation (HamSCI). LSTID signatures were observed simul-354

taneously over the continental United States in amateur radio, SuperDARN HF radar,355

and GNSS Total Electron Content measurements. The LSTIDs were estimated to have356

a period of 2.5 hr, propagation azimuth of 163◦, horizontal wavelength of ∼1680 km, and357

phase speed of ∼1200 km hr−1. SuperMAG SME index enhancements and Poker Flat358

Incoherent Scatter Radar measurements suggest the LSTIDs were driven by auroral elec-359

trojet intensifications and associated Joule heating.360

Acknowledgments361

The authors gratefully acknowledge the support of NSF Grants AGS-2045755 and362

AGS-2002278 and NASA Grants 80NSSC21K0002 and 80NSSC21K1772. We are363

especially grateful to the amateur radio community who voluntarily produced and364

provided the HF radio observations used in this presentation, especially the op-365

erators of the reversebeacon.net, wsprnet.org, pskreporter.info, and hamcall.net.366

Blackstone SuperDARN data are made available with support from NSF AGS-367

1935110. This material is based upon work supported by the Poker Flat Incoherent368

Scatter Radar which is a major facility funded by the National Science Foundation369

through cooperative agreement AGS-1840962 to SRI International. Algorithms used370

to calculate the electric field and Joule heating rates were developed under National371

Science Foundation AGS-1853408 and AGS-1552269. GNSS TEC data products and372

access through the Madrigal distributed data system are provided to the community373

–8–



manuscript submitted to Geophysical Research Letters

by the Massachusetts Institute of Technology under support from US National Sci-374

ence Foundation grant AGS-1952737. Data for the TEC processing is provided from375

the following organizations: UNAVCO, Scripps Orbit and Permanent Array Center,376

Institut Geographique National, France, International GNSS Service, The Crustal377

Dynamics Data Information System (CDDIS), National Geodetic Survey, Instituto378

Brasileiro de Geografia e Estat́ıstica, RAMSAC CORS of Instituto Geográfico Na-379
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Figure 1. LSTIDs observed using amateur radio networks, the BKS SuperDARN radar, and

GNSS dTEC. (a) Geographic distribution of TX-RX midpoints of amateur radio communica-

tions observed over the continental United States on 3 Nov 2017 from 1200-2359 UT. (b) Time

series showing the TX-RX distance for 14 MHz amateur radio spots in 2 min by 25 km bins. (c)

Location and FOV of the BKS SuperDARN radar; Beam 13 is highlighted in red. (d) Ground

scatter power observations of BKS Beam 13 with ∼11 MHz transmit frequency. (e) GNSS dTEC

measurements at 1343 UT. (f) Time series (blue line) of GNSS dTEC median values calculated

from measurements in the black box region in (e). Dotted orange line shows data filtered with

a 2 – 4 hr bandpass filter. (g) FFT Magnitude spectrum of the unfiltered data in (f). Red dots

overlaid on (b) and (d) show a sinusoidal 2.5 hr oscillation in skip distance common to both the

amateur radio and SuperDARN measurements.
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Figure 2. Amateur radio and GNSS dTEC observations of the 3 Nov 2017 LSTIDs. (a)

CONUS amateur radio observations in the same format as Figure 1b. The red dashed sinusoid

highlights the 2.5 hour skip distance oscillation; the white solid line shows the median dTEC val-

ues first presented in Figure 1f. Vertical white dashed lines indicate sinusoid maxima and minima

times. (b – e) GNSS dTEC maps corresponding to the skip distance maxima and minima times

indicated in (a). A black arrow is drawn on (d) indicating the estimated horizontal wavelength

(λh ≈ 1680 km) and direction of travel (α ≈ 163◦) of the GNSS LSTIDs corresponding with the

amateur radio LSTIDs. A decrease of ∼0.2 TECu is observed in the central region of the maps

during skip distance maxima, while an increase of ∼0.2 TECu is observed during skip distance

minima. Movie versions of this figure are provided in Supporting Information S1 and S2.
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Figure 3. Plots of amateur radio data in latitudinal and longitudinal slices to estimate the

phase speed of the LSTIDs. The top four rows show 1◦ latitudinal slices that range from 42◦ to

38◦N and extend from 88◦ to 74◦W longitude. The bottom four rows show 2◦ longitudinal slices

that range from 85◦ to 79◦W and extend from 37◦ to 44◦N latitude. Red arrows indicate the

time of the skip distance maxima manually identified in each time series plot.
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Figure 4. Measurements of auroral zone activity followed by midlatitude amateur radio

LSTID observations for 0800 UT 3 Nov 2017 – 0000 UT 4 Nov 2017. (a) SuperMAG Electro-

jet (SME) Index. (b) Regional SuperMAG Electrojet Index. (c) Poker Flat Incoherent Scatter

Radar (PFISR) vertical beam electron density measurements. (d) PFISR vertical beam Joule

heating measurements. (e) Time series showing the TX-RX distance for continental U.S. 14 MHz

RBN/WSPRNet/PSKReporter amateur radio spots in 2 min by 25 km bins.
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