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Key Points:6

• Carbon emissions have increased CO2 concentration in the atmosphere and in-7

creased in global average temperature by 1 deg C.8

• The quantity of remaining fossil fuel reserves suggest that further increases in global9

average temperature will be less than 1 deg C.10

• The assumption that newly emitted carbon dioxide will remain in the atmosphere11

for millennia is not supported by observation.12
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Abstract13

The successful application of simple statistical methods in economic modelling suggest14

that similar methods could provide insight into global climate. We apply an autoregres-15

sive method to observed time series to determine the dependence of atmospheric CO216

concentration on carbon emissions and, in turn, the dependence of globally averaged tem-17

perature on atmospheric CO2 concentration. We ascribe physical meaning to the regres-18

sion parameters in terms of first order differential equations describing the diffusion of19

CO2 and heat between reservoirs, viz.: the diffusion of CO2 between the atmosphere and20

the deep ocean and the transport of heat from the mixed layer. A strong feature of re-21

gression models is their built-in mechanism for deciding when a model provides an ad-22

equate description of the given data. Two implications of this statistically robust approach23

are that CO2 diffuses from the atmosphere within a time scale of decades and that global24

average temperatures are unlikely to exceed 2◦C above pre-industrial values.25

Plain Language Summary26

We use a conventional, statistical method to estimate the dependence of carbon27

concentration on emissions, and, in turn, to estimate the dependence of temperature on28

carbon concentration. Then, based on general assumptions about future emissions, we29

make realistic forecasts of global temperature and show that human caused CO2 and its30

associated forcing are creating a temperature pulse and not a permanent plateau or self-31

amplifying feedback loop. There is no observational evidence that global climate is head-32

ing towards a catastrophe nor that carbon dioxide remains in the atmosphere indefinitely.33
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1 Introduction34

In the early days of economic modelling it was found that complicated models per-35

formed poorly when used for out-of-sample forecasting. Regression models with few in-36

dependent variables often produced better forecasts than did the big models (Nelson, 1972)37

(Ashley, 1988). Global Circulation Models are no less complicated than economic mod-38

els but, until now, this aspect of them has been ignored. Furthermore, there are issues39

with the fundamental physics of GCMs because they are deterministic and do not al-40

low for the Gibbs entropy associated with turbulence (Reid, 2019).41

The fundamental question such models are designed to answer is the extent to which42

increases in atmospheric greenhouse gas concentrations affect the Earth’s climate. We43

develop a simple physical model of the ocean-atmosphere system based on the diffusion44

of heat and carbon dioxide between reservoirs. This model has the advantage that re-45

gression methods can be used to estimate parameters from well-established time series46

data of emission, concentration and temperature. Once these parameters are known, they47

can be used to predict future CO2 concentrations and global average temperature based48

on reasonable assumptions about future carbon emissions.49

2 Diffusion and the ARX Model50

By convention, a fluid is assumed to be a Newtonian continuum describable by dif-51

ferential equations such as the Navier-Stokes equations and diffusion equations. In prac-52

tice, observations of fluids usually comprise time series, i.e. sequences of discrete num-53

bers sampled or averaged over equal intervals of time. Time series can be related to con-54

tinuous differential equations by means of finite difference approximations. Time series55

readily lend themselves to a statistical interpretation and allow high frequency noise and56

seasonal effects to be eliminated by choosing a suitable sampling interval.57

The diffusion of a chemical constituent or heat between two reservoirs is described58

by Fick’s Law. In one dimension59

J = −Ddc

dz
(1)

where J is the diffusion flux, D is the diffusion coefficient, c is the concentration and z60

is the spatial coordinate. Together with the continuity equation61

∂c

∂t
= F (t)−

∮
JdA (2)

this leads to the one dimensional diffusion equation62

∂c

∂t
+

∮
D(c− c0)

δz
dA = F (t) (3)

where F (t) is the rate of pumping into the source reservoir, c0 is the concentration in63

the sink reservoirs, δz is the thickness of the boundary layer between the two reservoirs64

and the integral is taken over the entire boundary layer area. (3) can be written65

∂c

∂t
+
c

τ
= F (t) +

c0
τ

(4)

where c is spatially homogeneous and τ is a constant which has the units of time. The66

second term on the right is generally negligibly small and can be subsumed into the forc-67

ing function, F , or ignored. In finite difference terms, with c0 = 0, (4) becomes68

ci − ci−1
∆t

+
ci
τ

= Fi (5)
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where ∆t is the time step or sampling interval, ci and Fi designate values at time i∆t.69

The above equations are deterministic and apply equally well to a numerical fluid70

dynamical model as they do to the regression model we are developing here. However,71

in order estimate model parameters from the data we need to develop a proper regres-72

sion model and introduce random variables. We do this by making the forcing function,73

F (t), a random variable as the sum of a deterministic component, f(t), and a random74

component, εi, viz.:75

Fi = fi + ξi (6)

where the expectation mean of εi is zero, i.e. Eξi = 0 and EFi = fi.76

We now change notation so as to make a clear distinction between random vari-77

ables (upper case) and constants (lower case). Equation (5) becomes78

Yi = α0xi + α1yi−1 + Ξi , i = 1, ..., N (7)

where Yi = ci, xi = fi, yi−1 = ci−1,79

α0 =
∆t

1 + ∆t/τ
(8)

and80

α1 =
1

1 + ∆t/τ
(9)

This can be further generalized to81

Yi = α0xi +

p∑
j=1

αj .yi−j +

q∑
k=1

βjΞi−k , i = 1, ..., N (10)

where the atmospheric carbon concentration, ci in (5), is represented by both Y and y,82

xi = Γi is the exogenous variable and the Ξi are unselfcorrelated random variables with83

zero mean. The regression coefficients α0, αj and βj are to be estimated from the data84

and p and q are small positive integers.85

This is the ARMAX(p,q) model (for ‘autoregressive moving average with exoge-86

nous variable’). There are software packages for parameter estimation available under87

the aegis of the major programming languages. Unfortunately some of these, such as the88

Python Statsmodels package, are flawed, because they estimate the exogenous param-89

eter, α0, prior to estimating the other parameters, leading to omitted-variable bias (Greene,90

2003).91

Note the distinction between the random variable Yi and the sample values yi−j92

which are constants. Equation (10) is a state space representation(Hamilton, 1994) de-93

scribing states of the system at a succession of discrete instants; the random variable,94

Yi, at one instant becomes the constant, yi, in the following instant. The direction of time95

is important in regression, which, unlike correlation, allows causality to be inferred.96

Estimation of the MA coefficients, {βi}, requires an iterative Kalman filter method97

which does not always converge. The second, moving average summation in (10) is a blur-98

ring function, so that q > 1 when the sampling interval, ∆t, is too small. The given99

time series can be downsampled or ‘decimated’ by q to give a new time series with sam-100

pling interval q∆t with little loss of information and (10) becomes101
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Ym = α′0xm +

p∑
n=1

α′n.ym−n + Ξ′m , m = 1, ...,M (11)

where m = qi, qM ≤ N and102

Ξ′m =

q∑
k=1

βjΞm−k (12)

so that E(Ξ′mΞ′n) = 0 for m 6= n because the summations do not overlap. The {Ξ′m}103

in (11) are therefore unselfcorrelated with zero mean. This is a simple case of a Renor-104

malization Group Transformation(Wang et al., 2013). The aim here is to find the op-105

timum scale for the given problem. In our case the optimum scale is considered to be106

the finest scale which satisfies the statistical test for the validity of the model.107

The model summarized by (11) can be termed an ARX(p) model for ‘autoregres-108

sive with exogenous variable’. Its parameters and their confidence limits can be estimated109

using ordinary least squares. The sequence of residuals, {ξ′m}, is given by110

ξ′m = ym −

(
α̂′0xm +

p∑
n=1

α̂′n.ym−n

)
, m = 1, ...,M (13)

where ym is the sample value or ‘realization’ of Ym, α̂′0 and α̂′n are the coefficient esti-111

mates and the {ξ′m} are to be tested for self-correlation.112

3 The Bomb Test Curve113

Given the complexity of ocean-atmosphere interactions, the diffusion relationship114

(4) appears remarkably simple. However there is strong observational evidence that such115

a simple equation does indeed describe diffusion of atmospheric carbon into the ocean.116

The testing of nuclear weapons during the 1950s and 1960s injected significant amounts117

of the radioactive 14C isotope of carbon into the atmosphere. More importantly, the abrupt118

cessation of atmospheric testing following the Nuclear Test Ban Treaty of 5 August 1963,119

meant that the rate of production of the 14C isotope reverted to the constant natural120

background level. This allows the movement of carbon dioxide between natural reser-121

voirs to be assessed in much the same way that radioactive isotopes are used to assess122

metabolic processes in nuclear medicine.123

The decrease in ∆14C is known as “The Bomb Test Curve”. Numerous observa-124

tions were made in the decades following the cessation of testing following the Nuclear125

Test Ban Treaty. Here we look at a single high quality data set from Fruholmen, Nor-126

way (Nydal & Lövseth, 1983) shown in Figure 1. The natural logarithm, ln(∆14C), is127

plotted on the vertical axis rather than ∆14C itself so that exponential behaviour be-128

comes linear. A regression line was fitted between January 1966 and the end of the data129

set in June 1993.130

Statistic Value

r -0.9939
slope -.06289 year−1

τ 15.9 years
t1/2 11.02 years

Table 1. Regression Statistics related to Figure 1
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Figure 1. The natural logarithm of ∆14C values recorded at Fruholmen, Norway as a function

of time Dashed line: regression line fitted between January 1966 and June 1993.

.

Regression statistics are shown in Table 1. The fit is remarkably good and accounts
for 98.8 percent of the variance. Hence, with a high degree of accuracy:

∆14C = Ae−t/τ (14)

where A is the value of ∆14C at t = 0. Thus half of the bomb test 14CO2 disappears131

from the atmosphere every 11 years1.132

Equation (14) is the solution of (4) with c = ∆14CO2 and F (t) specifies the rate133

at which concentration increases due to new material being introduced into the reser-134

voir. There was a spike in F (t) at the time of nuclear testing, after which it reverted to135

a constant background value due to the bombardment of upper atmosphere Nitrogen by136

cosmic rays.137

Carbon dioxide reacts with water to form carbonate and bicarbonate ions. Hence138

the diffusion rate of carbon per se involves reaction rates and diffusion rates for each of139

these three species. These are almost completely independent of atomic mass(Zeebe, 2011)140

and so all the isotopes of carbon, 12C, 13C, 14C, in the form of CO2 and its radicles, dif-141

1 Note that this half-life of atmospheric 14CO2 is due to diffusion of this gas from the atmosphere and

is unrelated to the radioactive half-life of 14C of 5730 years
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fuse through water at the same rate and the time constant, τ , applies equally to all iso-142

topic species of CO2.143

It is therefore reasonable to assume that CO2 diffuses from the atmosphere into144

some other reservoir or sink. The excellent fit of a single regression line indicates that145

any diffusion process must be dominated by a single sink with a single time constant and146

that this sink is not approaching saturation. Furthermore the fact that the atmospheric147

∆14CO2 has, by now, returned to its pre-bomb background level implies that the sink148

is much larger than the source, the atmosphere. The only candidate sink which fulfils149

these conditions is the deep ocean.150

4 Heat Transport151

Environmental temperatures are laregly dependent on the transport of heat and152

other forms of energy by turbulent processes(Hasselmann, 1976). Heat diffuses in the same153

way as chemical constituents described by (1) and (2) leading to Fourier’s heat equation:154

ρ0cp
∂T

∂t
= −

∮
A

K0
∂T

∂z
dA+Q(x, t) (15)

where ρ0 and cp are the density and specific heat of a reservoir, T is its temperature, t155

is the time, z is a spatial variable with the units of length, K0 is the conductivity or sim-156

ilar constant, Q is the flux of heat or other form of energy and A is the surface area of157

the reservoir.158

In the present case the reservoir is the mixed layer of the ocean. Because the spe-159

cific heat of water is much larger than that of air, the top 2.5 m of the mixed layer holds160

as much heat as the entire atmosphere above it. The globally averaged mixed layer depth(de161

Boyer Montgut et al., 2004) is about 100m, so that the heat capacity of the mixed layer162

is 40 times that of the atmosphere. Seventy percent of the Earth’s surface is ocean. Ef-163

fectively, mixed layer temperatures comprise the bulk of globally averaged surface air tem-164

perature measurements and the two measurements are highly correlated.165

Integrating (15) over the entire mixed layer and including a radiative forcing term,166

G(t), for the heat trapping effect of greenhouse gases gives Newton’s Law of Cooling for167

the mixed layer:168

ρcp
∂T

∂t
= −KT +G(t) + q(t) (16)

where ρ, cp are the density and specific heat of sea water and K is a global average of169

all forms of cooling which are approximately proportional to temperature differences, i.e.170

conduction via the thermocline into the deep ocean and convection to the top of the at-171

mosphere to be radiated into space. q(t) is the random component of heat gained and172

lost by the mixed layer due to clouds and similar unpredictable phenomena.173

In finite difference form (16) becomes174

Ti = a.Ti−1 + b.Γi + ξi , i = 1, ..., N (17)

where t = i∆t, ξi = ∆tqi/(ρcp+K∆t) and a and b are constants to be estimated from175

the N data values. Γi is given by176

Γ = ln([CO2]) (18)

where [CO2] is the atmospheric carbon dioxide concentration in parts per million (Huang177

& Shahabadi, 2014). This too can be further generalized to the form (10).178
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Model Exogenous Variables Q P
ARX(0) Ei only 1424.6 0.0000
ARX(1) Ei,Ci−1 95.4 0.0000
ARX(2) Ei,Ci−1,Ci−2 120.0 0.0000
ARX(3) Ei,Ci−1, ... ,Ci−3 91.3 0.0000
ARX(4) Ei,Ci−1, ... ,Ci−4 71.0 0.0000
ARX(5) Ei,Ci−1, ... ,Ci−5 71.4 0.0000

Table 2. Ljung-Box parameter, Q, and its probability, P , for ARX models of undecimated

CO2 concentration, Ci, and CO2 emissions data, Ei.

5 Finding Models179

We investigated the relationships between the the three time series: anthropogenic180

emissions, atmospheric CO2 concentration and global average temperature. We did so181

by estimating the coefficients α′0 and α′n in the ARX model, (11), using Ordinary Least182

Squares. All coefficients were estimated simultaneously to avoid omitted-variable bias183

and the complexities of de-convoluting a moving average component were avoided by dec-184

imating the data when necessary.185

We used the model twice; to estimate firstly, (i) the regression of atmospheric car-186

bon concentration, C, on anthropogenic carbon emissions, E, and then, (ii) the regres-187

sion of global average temperature anomaly, T , on the logarithm of atmospheric carbon188

concentration, Γ, estimated from step (i). In step (i), E is the exogenous variable. In step189

(ii) Γ is the exogenous variable.190

In each case we used the model with q = 0, 1, ..., 5 (q = 0 implying that the sec-191

ond term on the RHS of (11) is omitted) in order to determine the smallest value of q192

for which the residuals given by (13) could be deemed unselfcorrelated. The successful193

models were then used to forecast global average temperature from Hubbert curves of194

emission estimates (Hubbert, 1962).195

The sine qua non of all regression models is that the innovation, Ξ, be unselfcor-196

related. It is an assumption which can be validated by testing whether the sample resid-197

uals, {ξ′m}, given by (13), are self-correlated. If they are, then the random variables, {Ξ′m},198

in (11) cannot be assumed to be unselfcorrelated and (11) is not a valid regression model.199

The Ljung-Box test parameter, Q, is computed from the sample autocorrelation200

of {ξ′m} at lag k out to some maximum lag, kmax (Ljung & Box, 1978). Under the null201

hypothesis that the residuals are unselfcorrelated, Q has a χ2 distribution with k − n202

degrees of freedom where n is the number of regression coefficients fitted. From this a203

probability, P , can be found and suitable values of q, the decimation factor, and p, the204

number of autoregressive coefficients. By Occam’s Razor we chose the smallest values205

which satisfy this test.206

Step (i): applying Ljung-Box to the residuals given by (13) for ARX(p), p= 0, ...207

,5) gives the results shown in Table 2. Probabilities are zero for all values of p indicat-208

ing that the null hypothesis that the residuals are unselfcorrelated can be rejected. Both209

time series were then decimated by 2. The results are shown in Table 3. The probabil-210

ity, P , for the ARX(1) model has a value of 0.4259 indicating that the null hypothesis211

that the residuals are unselfcorrelated cannot be rejected. The ARX(1) case, is a good212

fit to the decimated data and constitutes a valid regression model for C on E.213

Step (ii): an ARX model of the regression of global average temperature, T , on the214

logarithm of atmospheric CO2 concentration is also required. These time series were also215
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Model Exogenous Variables Q P
ARX(0) Ei only 513.5 0.0000
ARX(1) Ei,Ci−1 28.5 0.4359
ARX(2) Ei,Ci−1,Ci−2 28.6 0.3830
ARX(3) Ei,Ci−1, ... ,Ci−3 24.5 0.5483
ARX(4) Ei,Ci−1, ... ,Ci−4 24.3 0.5049
ARX(5) Ei,Ci−1, ... ,Ci−5 22.0 0.5796

Table 3. Ljung-Box parameter, Q, and its probability, P , for ARX models of CO2 concentra-

tion, Ci and CO2 emissions, Ei, when both time series have been decimated by 2

Model Exogenous Variables Q P
ARX(0) Ti vs ln(Ci) only 158.4 0.000
ARX(1) Ti vs ln(Ci),Ti−1 60.9 0.0003
ARX(2) Ti vs ln(Ci),Ti−1,Ti−2 32.9 0.1995
ARX(3) Ti vs ln(Ci),Ti−1, ... ,Ti−3 31.2 0.2214
ARX(4) Ti)vs ln(Ci),Ti−1, ... ,Ti−4 32.5 0.1436
ARX(5) Ti vs ln(Ci),Ti−1, ... ,Ti−5 34.2 0.0807

Table 4. Ljung-Box parameter, Q, and its probability, P , for ARX models of global average

temperature and CO2 concentration data decimated by 2

Model α̂′0 α̂′1 α̂′2
Ci vs Ei, Ci−1 0.210 0.969
Ti vs ln(Ci),Ti−1,Ti−2 1.549 0.213 0.299

Table 5. Regression coefficients estimated from the selected models

decimated by 2 to keep the same sampling interval throughout. The results of the Ljung-216

Box test for these ARX models are shown in Table 4. The ARX(2) model was chosen217

as the simplest model with unselfcorrelated residuals. Estimates of the regression coef-218

ficients of (11), α̂′0, α̂′1 and α̂′1 for the two selected models are shown in Table 5219

The ARX(1) model of Step (i) could equally well have been derived by simply es-220

timating the regression of the first difference of observed CO2 concentration on CO2 emis-221

sions. However the present formalism led to recognition of the need to decimate these222

time series by two in order to satisfy the Ljung-Box test.223

6 The Impulse Response Function of CO2 Concentration224

The impulse response of a system is its output in response to a brief input signal.225

It completely characterises a linear time-invariant system; once the impulse response is226

known, the output corresponding to any input can be found by convolution. For con-227

tinuous time systems the impulse response is related to the characteristic equation of the228

differential equations describing the system. In discrete time systems the impulse response229

can by found experimentally by applying appropriate regression methods to the mea-230

sured input and output time series.231

In assessing the effect of various greenhouse gases on global climate, the impulse232

responses of climate parameters such as global average temperature to various greenhouse233

gas inputs are of major importance. This has been done for a number of gases in order234

to determine their “Global Warming Potential”, for example by Joos et al. (2013). Var-235

ious computed impulse response functions of the atmospheric concentration of CO2 in236

response to global emissions are shown in their Figure 1a. In every case more than 20237

percent of the emitted pulse supposedly remains in the atmosphere after 1000 years. Sim-238
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ilar results have been used by modellers as far back as the First IPCC Assessment Re-239

port as shown in their Figure 8.240

Although presented as such, the long-duration impulse responses for atmospheric241

CO2 described by Joos et al are not derived from observations of the real world. They242

are not based on observation; they are all derived from global circulation models. The243

use of a fluid dynamical model as a surrogate for the real world only works if the model244

is homologous with the real world, i.e. there must be an exact correspondence in every245

aspect of the model; the correspondence between a handful of model averages and their246

real world values is not sufficient. In the present case the long-duration of the model-247

derived, CO2 impulse response is most likely due to there being too little interaction be-248

tween the atmosphere and the deep ocean in the GCMs. The sequestration of CO2 in249

this very large, deep-ocean reservoir would be greatly inhibited in such a model.250

The duration of the CO2 impulse response is crucial in forecasting future climate251

and in planning emission reductions. It is important that it be estimated from real world252

observations.253

It is clear from Figure 1 and Table 1 that the impulse response of atmospheric ∆14C254

is exponential with a half time in the atmosphere of 11 years. The presence of bomb test255

∆14C can no longer be detected because it has fallen below the level of the ∆14C cre-256

ated naturally by cosmic rays. There is no remaining twenty percent left over to last for257

a thousand years.258

It might be argued that Bomb Test Curve is not a fair test of the Joos et al im-259

pulse response because it only shows the carbon being absorbed. There are only very260

small pre-existing ∆14C values in the deep ocean, whereas there are regions of the ocean261

where CO2 exceeds atmospheric values and diffusion will occur in the opposite direction.262

In the first case the integrand, D(c−c0)/δz, in (3) is always positive whereas in the sec-263

ond case the integrand can be either positive or negative leading to a different net dif-264

fusion rate and a different time constant.265

The impulse response function of atmospheric CO2 concentration is the character-266

istic equation of (4) which is exponential. The time constant, τ , is found by substitut-267

ing α1 from Table 5 (0.969) into (9) which gives τ = 62.5 years, once again, much less268

than the millennial time scales postulated by Joos et al. The difference between the half269

life time from the bomb tests of 11 years and the time constant from the regression is270

explained by the obvious fact, that the bomb test curve only measures absorption of CO2271

in the ocean, whereas our regression also measures the delaying effect of outgassing CO2272

from the ocean to the atmosphere.273

7 Forecasting Global Average Temperature274

Numerical fluid dynamical models such as GCMs are not well suited to prediction275

because they are fundamentally unstable and must often be damped by setting artifi-276

cially high values of model parameters such as viscosity. Their value lies in providing in-277

sight into underlying physical processes. On the other hand, regression models are well278

suited to prediction when future values of exogenous variables are known or can be es-279

timated. Their statistical nature allows hypothesis testing and the provision of confidence280

limits whereas GCMs require computationally expensive and statistically dubious “en-281

sembles” of model runs for this purpose.282

Using regression models for prediction purposes is based on a single assumption
which may or may not be warranted depending on the circumstances: it is the assump-
tion of covariance stationarity. Under this assumption regression coefficients estimated
from the data, such as those of Table 5, can be substituted back into (11) to yield ex-
pectation values of Y outside the domain of the original data over the domain in which
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Figure 2. The solid black curve shows the recorded total carbon dioxide emission rate

(Gt/yr). The crosses show recorded and predicted emission rates quoted by Nehring(Nehring,

2009). Curve a is the symmetrical Hubbert curve which best fits Nehring’s data. Curve b is an

asymmetrical Hubbert curve with decay time constant set to five times the onset constant. The

grey dashed and dotted curves show the predicted CO2 concentrations forecast from the two

Hubbert emission curves.
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Figure 3. The grey curves show the logarithm of carbon concentrations resulting from the

emission curves shown in Figure 2. The solid black curve is the observed (HadCRUT.4.6.0.0)

global average temperature anomaly. The dashed black curves show the predicted global average

temperature anomalies corresponding to the Hubbert curves a and b in Figure 2.
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the exogenous variable, x, is known or can be estimated. This can be done by iteration.
Thus, from (11)

E(YM+1) = α′0xM +

p∑
n=1

α′n.yM+1−n (19)

since E(Ξ′m) = 0 by definition. If yM+1 is now defined as E(YM+1) for substitution into283

the right hand side of (19), the process can be repeated and the future behaviour of the284

endogenous variable, y, forecast over the domain for which the exogenous variable, x,285

is known.286

In order to forecast global average temperature we need to know the endogenous287

variable, Γ, a function of atmospheric carbon dioxide concentration, C, given by (18).288

In order to forecast C we need to know the carbon dioxide emission rate, E.289

Although controversial, the Hubbert curve(Hubbert, 1962) provides a canonical start-290

ing point. The Hubbert curve for projected carbon emissions, fitted to known emissions291

and to the data of Nehring (Nehring, 2009) is shown as the dashed black curve, a, of Fig-292

ure 2. The atmospheric CO2 concentration forecast using the iterative method is shown293

as the grey dashed line.294

A major criticism of the Hubbert Curve is its symmetry. In reality, the decline in295

resources is usually significantly slower than the onset of the curve. The dotted black296

curve, b, in Figure 2, shows an asymmetrical Hubbert curve with the same onset and297

maximum as curve a, but with a decay time which is five times slower. The correspond-298

ing, atmospheric CO2 forecast is shown as the grey dotted line.299

The emissions-generated, grey CO2 concentration curves in Figure 2 were used via300

(18) to generate the (grey) log concentration curves a and b shown in Figure 3.301

8 Data Sources302

Time series in the form of annual averages of the relevant variables, E, C and T303

were downloaded from the Web in November 2020.304

The global average temperature anomaly data, T . were taken from the HadCRUT305

.4.5.0.0 data set(Morice et al., 2012).306

Carbon dioxide concentrations, C, were taken from the University of Melbourne307

Greenhouse Gas Factsheet(Mainshausen et al., 2017) supplemented with recent values308

from Mauna Loa.309

Global fossil fuel emissions, E, were downloaded from CDIAC, the Carbon Diox-310

ide Information Analysis Center(Boden et al., 2017).311

9 Results312

The temperature anomaly forecasts generated from the two Hubbert scenarios are313

shown as the black dashed and dotted curves labelled a and b in Figure 3. The dashed314

curve, a, predicted from the symmetrical Hubbert curve has a maximum in the year 2079315

with an anomaly value of 1.20◦C (i.e. 1.57◦C above the value in 1850 and 0.46◦C above316

the value in 2020). The dotted curve, b, predicted from the asymmetrical Hubbert curve317

has a maximum in the year 2145 with an anomaly value of 1.48◦C (i.e. 1.85◦C above the318

value in 1850 and 0.74◦C above the value in 2020).319

The total emissions for the two Hubbert curves for the 650 years displayed in Fig-320

ure 2 are also of interest, viz.: a 1824 Gt CO2 and b 6223 Gt CO2. Thus the total emis-321

sions for the Hubbert (b) curve are more than three times those for the Hubbert (a) curve322
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but the resulting temperature maxima differ by only 0.28◦C. It follows that peak global323

average temperature is only a weakly dependent on total carbon emissions.324

10 Conclusions325

This work began as an attempt to estimate Climate Sensitivity using rigorous re-326

gression methods. Climate Sensitivity is defined as the temperature response to a sus-327

tained doubling of atmospheric CO2 concentration and is used for the inter-comparison328

of GCMs. We soon realized that the concept itself is unrealistic because, according to329

(4) , CO2 diffuses into the ocean at a rate proportional to its concentration so that, in330

order to sustain the higher concentration, a high rate of emissions would need to be sus-331

tained indefinitely. Given the finite nature of viable hydrocarbon resources, this is an332

unrealistic scenario.333

Viewed on a time scale of centuries, human exploitation of fossil fuels in the indus-334

trial era is generating a pulse in atmospheric carbon concentration termed “Peak Car-335

bon”. This, in turn, generates a pulse in global average temperature. The world is presently336

in the onset phase of this pulse; reasonable estimates of recoverable fossil fuel reserves337

suggest that the Peak Carbon pulse will reach a maximum within the next century or338

so. Global average temperature will follow suit with a maximum value which is less than339

2◦C above pre-industrial values.340

The impulse response of atmospheric CO2 concentration is the response caused by341

a hypothetical, short variation in CO2 emissions. The supposed, long-lived impulse re-342

sponse, widely accepted by the climate modelling community, is the most egregious flaw343

in the application of numerical global circulation models to climate. It implies that CO2344

emitted now will linger in the atmosphere for millennia. It sets the scene for the vari-345

ous catastrophes and tipping points presented in IPCC reports and justifies stringent emis-346

sion regulations. It is based on the unwarranted assumption that GCMs provide a pre-347

cise description of the ocean/atmosphere system as if it were some sort of clockwork mech-348

anism. In contrast, our statistical model implies that the atmospheric concentration of349

CO2 is self-regulated by diffusion into the deep ocean and that the small perturbation350

of the global environment caused by the combustion of fossil fuels will be brief.351
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