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Abstract18

Extensive regions in the permafrost zone are projected to become climatically unsuit-19

able to sustain permafrost peatlands over the next century, suggesting transformations20

in these landscapes that can leave large amounts of permafrost carbon vulnerable to post-21

thaw decomposition. We present three years of eddy covariance measurements of CH422

and CO2 fluxes from the degrading permafrost peatland Iškoras in Northern Norway, which23

we disaggregate into separate fluxes of palsa, pond, and fen areas using information pro-24

vided by the dynamic flux footprint in a novel ensemble-based Bayesian deep neural net-25

work framework. The three-year mean CO2-equivalent flux is estimated to be 106 gCO2 m−2 yr−1
26

for palsas, 1780 gCO2 m−2 yr−1 for ponds, and −31 gCO2 m−2 yr−1 for fens, indicat-27

ing that possible palsa degradation to thermokarst ponds would strengthen the local green-28

house gas forcing by a factor of about 17, while transformation into fens would slightly29

reduce the current local greenhouse gas forcing.30

Plain Language Summary31

Arctic and sub-arctic regions on the southern border of the permafrost zone often32

feature peatlands with a patchy surface of peat mounds, thaw ponds, and surrounding33

fens. As the permafrost underneath peat mounds thaws, these areas transform and can34

change their emission or uptake of greenhouse gases like CO2 and methane. Assessing35

this gas exchange on the patchy surface is difficult because our measurement techniques36

cannot directly observe the variability in space and time. We collected three years of gas37

exchange measurements at a Norwegian permafrost peatland and developed a new method38

using a collection of uncertainty-aware neural networks to predict the greenhouse gas ex-39

change of different surface types. Our work suggests that large amounts of methane are40

emitted by ponds and fens, while the elevated peat mounds have almost no methane emis-41

sions. For CO2, we see that ponds are strong emitters, while fens take up substantial amounts42

as their vegetation absorbs this gas. We are still unsure when the peat mounds will col-43

lapse and if they turn into ponds or fens, but we can say that pond formation would give44

a 17 fold increase in greenhouse gas emissions, while fen formation would slightly reduce45

today’s emissions of permafrost peatlands.46

1 Introduction47

Permafrost peatlands are considered to be some of the most dynamic and rapidly48

changing ecosystems in the permafrost zone (Olefeldt et al., 2016). These ecosystems cover49

large areas in often harsh and inaccessible arctic regions, playing an important role in50

the global carbon cycle as they have historically accumulated large amounts of soil or-51

ganic carbon which is vulnerable to microbial re-mobilization upon climate warming (Oechel52

et al., 2000; Schuur et al., 2015). The characteristic palsa peat mounds—elevated by ex-53

cess ground ice in the permafrost—are increasingly subject to thawing and degradation,54

resulting in thermokarst pond or wetland formation (Luoto & Seppälä, 2003; Sannel &55

Kuhry, 2011; Grosse et al., 2013; Borge et al., 2017; Martin et al., 2021). While irreversible56

palsa collapse is widely anticipated in large regions of the pan-Arctic over the coming57

century (Aas et al., 2019), the dynamics of the degradation as well as the state and fate58

of their carbon stocks remain elusive.59

The emission and uptake of the greenhouse gases carbon dioxide (CO2) and methane60

(CH4) is associated with a stark heterogeneity as a result of the patchy surface cover con-61

sisting of different plant and microbial communities, which can inform possible future62

trends of land-atmosphere interactions through space-for-time substitutions (e.g., Jiao63

et al., 2023). While moist or inundated areas typically feature microbes with anaerobic64

metabolisms producing CH4, drier areas are dominated by aerobic soil respiration that65

produces CO2 and may even consume considerable amounts of atmospheric CH4 (Voigt66

et al., 2019). Thermokarst ponds are typically supersaturated in dissolved CO2 and CH4,67
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and emissions can be associated with diffusive fluxes (Matveev et al., 2016) as well as68

gas ebullition (Walter et al., 2006; Serikova et al., 2019). The pathways of gas produc-69

tion, consumption, dissolution, transport, and emission in permafrost peatlands depend70

on a complex interplay of biogeochemical processes that are influenced by a plethora of71

interacting environmental factors, including soil, surface, and atmospheric conditions.72

As a result, CO2 and CH4 exchange can vary tremendously on small spatio-temporal scales,73

which complicates the representative (unbiased) quantification of the greenhouse gas bud-74

gets of permafrost peatlands based on sparse flux measurements. Consequently, the quan-75

tification of the greenhouse gas balances not only reflects the ecosystem in its environ-76

mental setting, but can also depend strongly on the method used to estimate them.77

Using the manual chamber technique Nykänen et al. (2003) estimated that palsa78

surfaces with shrub vegetation in northern Finland were sinks of (atmospheric) carbon,79

whereas palsa surfaces with sparse vegetation were carbon sources. In their study, the80

annual emissions of CH4 ranged from 1.0 gC m−2 yr−1 on top of the palsas to 24.7 gC m−2 yr−1
81

at the palsa margins. However, the manual chamber technique only allows for sporadic82

spatio-temporal sampling, and unwanted disturbances by the manual deployment of the83

chamber are inevitable (Kutzbach et al., 2007), adding uncertainty to the estimated an-84

nual budgets. Year-round automatic chamber measurements in the Stordalen permafrost85

peatland in Sweden indicate CO2 sinks and CH4 sources in the mire, with a net carbon86

balance of −13 gC m−2 yr−1 for palsa areas and −91 gC m−2 yr−1 for fen areas (Holmes87

et al., 2022). While such estimates are derived from near-continuous flux measurements,88

the long-term presence of the chamber base can disturb the ecosystem as it locally in-89

creases air temperature similar to an open-top chamber (Frei et al., 2020) and a fair num-90

ber of automatic chambers are required to obtain spatially representative estimates. More-91

over, potentially important flux hotspots in wetlands can be unsuitable for the opera-92

tion of an automatic flux chamber, because water levels can be too high or too variable.93

Measurements with the micro-meteorological eddy covariance (EC) technique (Baldocchi,94

2020) in a nearby palsa-dominated area in Stordalen indicate a sink of CO2 with an an-95

nual balance amounting to between −20 and −95 gC m−2 yr−1 across the years, as well96

as relatively stable CH4 emissions of between 18 and 22 gC m−2 yr−1 (Christensen et97

al., 2012). The anemometer and gas analyzer needed for EC measurements can in prin-98

ciple be operated year-round, but unfavorable micro-meteorological conditions due to99

a lack of stationarity or weak turbulent mixing will inevitably cause gaps in the flux time100

series. As these gaps tend to occur systematically, e.g., in very stable conditions during101

nights or wintertime, gap-filling is needed to avoid biased seasonal or annual flux bud-102

gets. While EC measurements are widely regarded as the most accurate flux measure-103

ments on the landscape scale, it must be noted that the flux footprint of the measure-104

ments changes continuously depending on the wind conditions. So unless the ecosystem105

around the flux tower can be considered spatially homogeneous, the flux time series will106

contain confounding effects of both spatial and temporal variability. A possible indica-107

tion of this effect can be seen in the EC measurements from a Siberian palsa mire re-108

ported by Olchev et al. (2022), where CH4 fluxes show alternating uptake and release109

fluxes, possibly as a result of the surface heterogeneity. A simple flux footprint disag-110

gregation by wind sector can be a viable option in special cases (Griebel et al., 2016; Pirk111

et al., 2023), but a generally accepted disaggregation method remains lacking.112

Levy et al. (2020) present a Bayesian method to infer spatial heterogeneity in sur-113

face fluxes from individual control variables at an EC tower using the information pro-114

vided by the temporally changing footprint. As the surface fluxes of CO2 and CH4 re-115

sult from a complex interplay of biogeochemical processes, the more advanced param-116

eterizations encoded in process-based land-surface models (Qiu et al., 2018; Lawrence117

et al., 2019) or non-linear data-driven models such as deep neural networks (Krizhevsky118

et al., 2012; LeCun et al., 2015; Murphy, 2023) can be appropriate options. Neural net-119

works can in principle approximate any functional relationship between inputs (predic-120

tors) and outputs (fluxes) (Hornik et al., 1989), but their parameters (weights of the net-121
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work edges and bias terms of the nodes) are less interpretable than those used in process-122

based models (Rudin, 2019). In practice, finding a suitable network architecture for a123

given problem can be challenging and training these networks may require vast amounts124

of data for complex relationships. To alleviate these challenges, one may incorporate Bayesian125

inference into the training process of the network by treating the model parameters as126

random variables with probability distributions representing their uncertainty. Such Bayesian127

neural networks (BNNs) produce uncertainty-aware outputs and—while being an old con-128

cept (Neal, 1996; MacKay, 2003)—are becoming increasingly popular in machine learn-129

ing where uncertainty awareness is becoming a vital consideration (Ghahramani, 2015).130

In Earth system science, BNNs remain a relatively unexplored topic (Clare et al., 2022;131

Lopez-Gomez et al., 2022), despite the popularity of deep learning (Reichstein et al., 2019).132

Here, we present three years of EC fluxes of CO2 and CH4 collected at a permafrost133

peatland in northern Norway. We develop a new flux disaggregation method using ensemble-134

based Bayesian deep learning with predictors from in-situ measurements and satellite135

remote sensing to estimate uncertainty-aware fluxes separately for palsa, pond, and fen136

areas. We use historic aerial photography as well as a modern drone-based survey of ter-137

rain changes to characterize the permafrost degradation and inform future scenarios for138

the carbon balance of permafrost peatlands through a space-for-time substitution.139

2 Materials and Methods140

2.1 Site description and surface characterization141

Our study is conducted at the Iškoras permafrost peatland (69.34◦N, 25.30◦E, 380 m a.s.l.,142

shown in Figure S1 in the Supplement), which is located on the Finnmarksvidda moun-143

tain plateau in northern Norway. The climate here is classified as subarctic or polar, with144

a mean annual air temperature of −1.2◦C and a mean annual precipitation of 417 mm145

for the period 1991-2020 (measured at weather station SN97251 approximately 15 km146

north of Iškoras). The site lies just above the current tree line with mountain birch trees,147

and features typical upland tundra vegetation. Shrubs and lichens dominate dry areas,148

while sedges and mosses dominate in wetter areas. The site features sporadic permafrost149

with organic-rich peat soils and active layer depths of up to 90 cm on the palsas.150

We geo-referenced a historic aerial photograph taken in 1955 by the Norwegian Map-151

ping Authority (Figure 1b, Kartverket survey WF-688 H-13) and conducted multiple drone152

surveys during our three-year study period. We produced digital elevation models us-153

ing the structure-from-motion technique (Ullman, 1979) from our drone imagery from154

2019 and 2022, which we subtracted to estimate the surface subsidence. We classified155

the landscape at the site into three discrete surface types (palsas, ponds, fens) based on156

a visual inspection of our ortho-rectified drone imagery from 2019 (Figure 1a).157

2.2 Eddy covariance flux measurements158

The EC flux system shown in Figure 2a was established at the Iškoras site in March159

2019. The data period in the present study covers three years, i.e., until March 2022. The160

EC system consists of a CSAT3 three-dimensional sonic anemometer (Campbell Scien-161

tific, USA), an Li-7200 closed-path infrared gas analyzer for CO2, as well as an Li-7700162

open path gas analyzer for CH4 (both Li-Cor, USA). The system is supplied with an off-163

grid power supply based on a wind generator and solar panels. An electronic relay is used164

to turn off the EC system when the battery voltage of the power supply becomes too low,165

while the sensors and logger of the ancillary measurements (described in Text S2 in the166

Supplement), which consume only a fraction of the power of the EC system, continue167

to operate. We processed the EC raw data to 30 minute flux estimates following the con-168

ventional EC methodology (Gu et al., 2012). After filtering the flux time series for un-169

favorable measurement conditions, e.g., due to a lack of stationarity or turbulent mix-170
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ing (see Text S1 in the Supplement for details), we are left with 11 334 and 4 743 valid171

half-hourly flux estimates for CO2 and CH4, respectively.172

The total flux estimate from EC is the mathematical convolution of the surface flux173

distribution with the flux footprint function, which we estimate using the flux footprint174

model by Kljun et al. (2015). The resulting footprint weight-maps are combined with175

the surface type classification (see Section 2.1 and Figure 1a) to estimate the weight of176

the contribution of each of the three surface types (wpalsa, wponds, wfen) to each 30-minute177

EC flux estimate. The resulting average distribution (climatology) of these dynamic foot-178

print weights is shown in Figure 1d.179

2.3 Bayesian neural networks180

For our BNN flux disaggregation model we use a fully-connected feedforward neu-181

ral network, also known as a multilayer perceptron, with ten predictors as inputs (an-182

cillary variables) and one total flux as output (either CO2 or CH4, so we train two BNNs183

separately), as depicted in Figure 2b. We use a total of 300 nodes placed in five hidden184

layers with respectively 96, 48, 12, 48, and 96 nodes per layer, resembling the architec-185

ture of an auto-encoder (Goodfellow et al., 2016). This architecture results in a total of186

Np = 11 919 parameters (network weights and biases) collectively denoted through the187

random vector θ ∈ RNp that we infer. As is usually the case in deep learning there are188

thus more parameters than data points (Murphy, 2022), in which case the Bayesian ap-189

proach adopted herein helps to regularize the problem and avoid overfitting (MacKay,190

2003; Murphy, 2023). At each node, the inputs are multiplied by weights, summed, com-191

bined with an additive bias term, and passed through an activation function to produce192

the node’s output. For all the hidden layers we employ the widely used Rectified Lin-193

ear Unit (ReLU) non-linear activation function defined as ReLU(x) = max(0, x). Our194

BNN can be thought of as having two output layers with linear activation functions: the195

first output layer consists of three nodes, predicting the CO2 or CH4 fluxes for each of196

the three surface types based on the dynamic inputs x(t) and the (static) uncertain net-197

work parameters θ. In the second output layer, these fluxes are averaged using the de-198

terministic dynamic footprint weights ws(t) for each surface type at the corresponding199

30-minute interval (see Section 2.2), predicting the total flux Ftotal that can be compared200

to observations from the EC system, i.e.,201

Ftotal(ws,x,θ) = wpalsa Fpalsa(x,θ) + wponds Fponds(x,θ) + wfen Ffen(x,θ) (1)

This innovative network architecture with two consecutive output layers serves as202

the basis for the envisioned flux disaggregation between the three surface types. Note203

that this disaggregation assumes that the within-class flux is spatially homogeneous and204

can thus only estimate the spatial average of within-class flux dynamics.205

The BNN parameters are initialized by drawing from a standard normal distribu-206

tion as the (weakly informative) prior distribution. Unlike the more conventional approach207

of training a neural network by optimizing the parameters via backpropagation, we train208

our network parameters using (approximate) Bayesian inference techniques developed209

for geophysical data assimilation (Evensen et al., 2022), namely an iterative ensemble210

Kalman method (Emerick & Reynolds, 2013) (see details in Text S3 in the Supplement).211

To better represent the typically multi-modal posterior parameter distributions (Izmailov212

et al., 2021), we repeat the BNN training 100 times with different random seeds to cap-213

ture local modes and combine these 100 local ensembles to form one global ensemble,214

as a so-called deep ensembles approximation (Lakshminarayanan et al., 2017; Wilson &215

Izmailov, 2020) of the posterior predictive distribution (see Text S3 in the Supplement).216

For the ensemble data assimilation-based BNN training, we assume a typical zero mean217

additive Gaussian observation error model with observation error standard deviations218
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Figure 1. Surface characterization of the Iškoras permafrost peatland. (a): Ortho-rectified

aerial photographs from 2019 with contour lines for palsa (orange) and pond (blue) areas (all

other areas are classified as fen). The white cross marks the location of the flux tower, from

which the black lines show an example of the 75%, 85%, and 95% contours of the cumulative

flux footprint function for 25 July 2019, 16:00 UTC. Colored crosses indicate independent vali-

dation flux measurements by chambers (red), dissolved gas concentrations in ponds (cyan), and

snowpack profiles (pink). (b): Ortho-rectified aerial photographs taken in 28 July 1955, overlain

with the same contour lines for palsa and pond extent in 2019. (c): Vertical difference between

elevation models from September 2022 and 2019 indicating surface subsidence. (d): Averaged

footprint weights of all valid flux measurements plotted by the corresponding wind sectors. Col-

ors indicate the footprint-weighted contribution of each surface type.
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of 0.1 µmol m−2 s−1 for CO2 and 2.5 nmol m−2 s−1 for CH4. As predictors, we use air,219

surface, and soil temperature (Tair, Tsurf , and Tsoil, respectively), vapor pressure deficit220

(VPD), shortwave and longwave incoming radiation (SWin and LWin, respectively), albedo,221

fractional snow-covered area (FSCA), the Normalized Difference Vegetation index (NDVI),222

and soil volumetric water content (VWC), estimated from in-situ measurements and re-223

mote sensing data as described in Text S2 in the Supplement. Figure S2 in the Supple-224

ment shows the scatter plot matrix of the predictors, fluxes, and footprint weights, which225

are all archived and avalable (Pirk, 2023). As the predictors are available continuously226

for the entire three year campaign, the BNN can simultaneously perform both flux dis-227

aggregation and gap-filling.228

A performance evaluation for the prediction of the total flux using a common 80%-229

20% train-test split (Murphy, 2022) indicates good prediction accuracy and generaliza-230

tion, with normalized root mean square error values of between 5 and 11% for both train231

and test datasets (Figure S4 in the Supplement). The coefficients of determination (R2)232

for CO2 range between 0.7 and 0.8. For CH4, we notice that while the dynamics of daily233

average fluxes are well captured in the BNN model (0.71 < R2 < 0.72), the model per-234

forms notably worse for the dynamics of the instantaneous 30-minute fluxes (0.28 < R2 <235

0.29), see discussion in Section 3.3.236

2.4 Independent flux validation237

As an independent validation of the disaggregated flux results, we conducted man-238

ual measurement campaigns to estimate fluxes on the plot scale using flux chambers, dis-239

solved gas concentrations, and snowpack gradients. The sampling locations were distributed240

around the EC tower as shown in Figure 1a. Chamber flux measurements of CO2 and241

CH4 were performed in palsa and fen areas on 2-3 July 2021, and 11 September 2021.242

We used a Li-7810 gas analyzer (Li-Cor, USA), with a plexiglass chamber covering 25×243

25 cm2, and followed Pedersen et al. (2010) to estimate fluxes from the measured con-244

centration sequences. Dissolved concentrations of CO2 and CH4 were measured in the245

surface waters in three ponds with the acidified headspace technique (Valiente et al., 2022)246

at five occasions during the snow-free season, ranging between 40 and 520 µmol L−1 for247

CO2, and between 1.1 and 26 µmol L−1 for CH4. Pond fluxes were estimated from these248

dissolved gas concentrations following the methodology in Clayer et al. (2021), using the249

surface renewal gas exchange model by MacIntyre et al. (2010) for the gas transfer ve-250

locity, accounting for the small pond sizes (Vachon & Prairie, 2013) and the typically251

low wind speeds at Iškoras (Crusius & Wanninkhof, 2003). We conducted a survey of252

snowpack CH4 concentrations on 14 March 2023, to estimate the magnitude and direc-253

tion of wintertime CH4 fluxes for all three surface types. Here, we used a portable CH4254

laser spectrometer (MIRA Strato, Aeris Technologies, USA) and estimated diffusive CH4255

emission from snowpack concentration gradients using the methodology described in Pirk256

et al. (2016) (see Figures S5 in the Supplement for examples of concentration time se-257

ries as well as snowpack density and temperature profiles).258

3 Results and discussion259

3.1 Disaggregated fluxes of palsas, ponds, and fens260

The estimated mean flux dynamics shown in Figure 3(a-f) indicate a clear sepa-261

ration of fluxes from the three surface types achieved by our BNN model. All surface types262

show a seasonal cycle of CO2 and CH4 flux dynamics. In summertime, after snow melt-263

out, CO2 fluxes exhibit diurnal cycles as expected for northern latitude ecosystems. For264

CH4, there is a relatively weak indication of such diurnal cycles for pond and fen sur-265

faces, possibly due to the diurnal cycle of the ground temperature regulating CH4 pro-266

duction rates.267
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Figure 2. Flux estimation system. (a): The eddy covariance tower at the Iškoras permafrost

peatland. (b): Conceptual architecture of our Bayesian neural network with uncertainty-aware

parameters θ to estimate fluxes F of three different surface types and their weighted average with

weights ws based on the footprint model.

The dry palsa areas feature CO2 fluxes in a range between −2.4 and 1.4 µmol m−2 s−1.268

Palsa CH4 fluxes are relatively insignificant, but show persistent negative CH4 fluxes (av-269

erage of −1.8 nmol m−2 s−1). This CH4 uptake is consistent with our validation mea-270

surements with chambers in summertime (average of −0.95 nmol m−2 s−1) and snow-271

pack gas gradients in wintertime (average of −0.04 nmol m−2 s−1) as shown in Figure S6272

in the Supplement.273

Thermokarst ponds are estimated to emit CO2 at rates of up to 5.0 µmol m−2 s−1,274

which is relatively high compared to fluxes from thermokarst ponds in a Canadian per-275

mafrost peatland (around 2.8 µmol m−2 s−1) documented by Matveev et al. (2016). The276

magnitude and seasonal pattern of our BNN emission estimates are in very good agree-277

ment with our independent flux estimates from the dissolved gas measurements (Figure S6278

in the Supplement). The observed diurnal cycle of the summertime CO2 emission from279

the ponds could be due to periodic overturning of the water column or photo dissoci-280

ation of dissolved organic carbon in the surface water. Parts of this carbon can originate281

from collapsing palsa edges releasing labile organic carbon (Patzner et al., 2022), as doc-282

umented for our site in Figure 1c. Pond CH4 fluxes reach up to 73 nmol m−2 s−1, which283

is on the lower end of the range supported by our dissolved gas measurements, which may284

be attributed to differences between ponds as no water samples could be taken from the285

largest pond that dominates the pond flux signal in our EC measurements. The relative286

seasonal CH4 flux patterns still agree well, also with the wintertime snowpack flux es-287

timates (average of 1.4 nmol m−2 s−1) as shown in Figure S6 in the Supplement. For288

reference, Matveev et al. (2016) report maximum diffusive CH4 emissions from the afore-289

mentioned Canadian thermokarst ponds of around 120 nmol m−2 s−1, which is notably290

higher than our maximum pond CH4 flux.291

Among the three surface classes, fens feature the largest maximum CO2 uptake (7.0 µmol m−2 s−1,292

i.e., three times higher uptake flux than the palsas) and the largest maximum CH4 re-293

lease (134 nmol m−2 s−1, i.e., almost two times higher release flux than the ponds). The294

estimated CO2 fluxes are consistent with our chamber fluxes in summertime (Figure S6295

in the Supplement), and the large CH4 fluxes are also corroborated by summertime cham-296

ber fluxes (average of 145 nmol m−2 s−1) and snowpack fluxes in wintertime (average297

of 8.0 nmol m−2 s−1).298

The annual budgets of all these fluxes are relatively similar across the three years299

of our measurement campaign, which is in line with findings from other multi-year flux300
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Figure 3. Flux dynamics and budgets. (a-f): Posterior mean CO2 (left) and CH4 (right) flux

predictions for the three surface types as fingerprint plots using the same color scale. (g-h): Cor-

responding cumulative CO2 and CH4 fluxes with uncertainty bands representing the posterior

ensemble’s interquartile range. Stipulated vertical lines indicate one-year intervals for which the

numbers indicate annual budgets.

studies in the sub-Arctic (e.g., Christensen et al., 2012). The cumulative carbon balance301

of each surface type is dominated by CO2 fluxes (Figure 3(g-h)). Palsa surfaces are mod-302

erate carbon sources (35 gC m−2 yr−1 on average), while fen areas feature a strong car-303

bon sink (−131 gC m−2 yr−1 on average, after accounting for CH4 release). Ponds, while304

only a small area in the EC footprint and therefore most uncertain, are strong carbon305

emission hotspots, releasing on average 420 gC m−2 yr−1 to the atmosphere as CO2 and306

CH4 combined. For CH4, the relative difference between surface types is larger than for307

CO2, with fens emitting most (on average 14 gC m−2 yr−1), followed by ponds (7.5 gC m−2 yr−1),308

and a small CH4 sink in palsa areas (−0.7 gC m−2 yr−1). These CH4 annual budgets309

are in general similar to those reported in a arctic-boreal synthesis compiled by Kuhn310

et al. (2021), which reports CH4 emissions with an interquartile range between 4.5 and311

29 gC m−2 yr−1 for fens, 3.3 and 52 gC m−2 yr−1 for diffusion and ebullition from small312

peatland ponds, and −0.3 to 0.5 gC m−2 yr−1 for dry tundra.313

3.2 Climate feedbacks and geomorphological trajectory314

Thermokarst ponds and lakes are currently estimated to cover about 7% of the per-315

mafrost region, and wetland thermokarst landscapes (including fens) cover a similar pro-316

portion of about 8% (Olefeldt et al., 2016). However, most areas of Fennoscandia and317

Western Siberia are projected to become climatically unsuitable to sustain permafrost318

peatlands over the next century, suggesting transformations in the landscapes that can319

leave an estimated 39 Gt of permafrost carbon (equivalent to twice the amount of car-320

bon stored in European forests) vulnerable to post-thaw decomposition (Hugelius et al.,321
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2020; Fewster et al., 2022). Our CO2 and CH4 flux budgets allow for a direct assessment322

of the fate of these carbon stocks in permafrost peatlands, and their effect on the atmo-323

spheric energy budget through greenhouse gas forcing. To this end, we combine the mean324

annual CO2 and CH4 budgets of each surface type to CO2-equivalent fluxes using a 100-325

year global warming potential for CH4 of 27 (Forster et al., 2021). Thus, the three-year326

mean (interquartile range) CO2-equivalent flux is estimated to be 106 gCO2 m−2 yr−1
327

(−252 to 469 gCO2 m−2 yr−1) for palsas, 1780 gCO2 m−2 yr−1 (725 to 2834 gCO2 m−2 yr−1)328

for ponds, and −31 gCO2 m−2 yr−1 (−375 to 274 gCO2 m−2 yr−1) for fens. The present329

day areal fraction of surface types contributing to the EC signal (52% palsa, 7% ponds,330

and 41% fen according to our EC footprint climatology shown in Figure 1d) suggests that331

the Iškoras site is currently a source of atmospheric carbon with a CO2-equivalent flux332

of 167 gCO2 m−2 yr−1. Using a space-for-time substitution, the ratios of the CO2-equivalent333

fluxes indicate that palsa degradation to thermokarst ponds would lead to a 17 fold in-334

crease in the local greenhouse gas forcing, while palsa transformation into fens would re-335

duce the local greenhouse gas forcing to slightly negative values.336

Simulations by Aas et al. (2019) indicate that the degradation of permafrost peat-337

lands in northern Norway is likely to accelerate in the next three to four decades. If and338

when palsa degradation creates ponds or fens will depend on the degradation rate and339

the amount of excess ice at the site (fast collapse at ice-rich sites likely favors pond for-340

mation). The geophysical interplay of processes causing lake formation and subsequent341

terrestrialization through drainage and infilling with fen vegetation is, however, still hard342

to predict. This complexity is exemplified by Nitze et al. (2018) who report both increas-343

ing and decreasing trends in limnicity (i.e., the areal fraction of ponds and lakes) for dif-344

ferent parts of the permafrost region. Moreover, even an overall constant limnicity in a345

region can mask extensive lake drainage combined with new thermokarst lake formation346

(Sannel & Kuhry, 2011). Future studies combining even more Earth observations could347

help to refine our understanding of permafrost peatlands and upscale our benchmark of348

the greenhouse gas exchange beyond our EC footprint.349

3.3 Bayesian deep learning for flux disaggregation350

Using the BNN model for flux gap-filling and disaggregation yields considerable flex-351

ibility, generalization, and predictive accuracy, but comes at the cost of limited interpretabil-352

ity (Rudin, 2019), as the parameters of this black box model are not directly associated353

with any real-world process. At the same time, to the best of our knowledge, no inter-354

pretable mechanistic modeling approaches exist for EC flux disaggregation. In the in-355

terim, the BNN proposed herein serves as an uncertainty- and sparsity-aware data-driven356

approach that can help guide future method developments. For example, this flux dis-357

aggregation approach can be used to validate emerging drone data assimilation-based358

flux estimation methods (Pirk et al., 2022), guide land surface model developments (Aas359

et al., 2019), and incorporate uncertainty in flux gap filling approaches (Pirk et al., 2023).360

Neural networks are in principle universal function approximators (Hornik et al.,361

1989), but we must assume that unobserved fluxes follow the same predictor relation-362

ship as the observed fluxes. The good generalization seen in our train-test split evalu-363

ation (Figure S4 in the Supplement) suggests that our CO2 and CH4 flux datasets are364

sufficiently representative. Interestingly, our BNN model for CH4 flux has a low value365

of R2 (around 0.3) for instantaneous CH4 fluxes compared to daily average fluxes (R2
366

around 0.7), which could be related to ”unpredictable” ebullition events, or, more gen-367

erally, to important but unobserved predictor variables. Compared to CO2, CH4 dynam-368

ics likely have a stronger dependency on processes occurring in the soil (Treat et al., 2015),369

where conditions change on small spatial scales and only few sensors were available, so370

that many of the control mechanisms are only indirectly captured through our surface371

and atmospheric sensors. A spatially distributed network of soil sensors could be em-372

ployed to reduce the associated uncertainty.373
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Despite the partly opposing flux directions (release vs uptake) between the three374

surface types, the BNN flux disaggregation yields realistic flux magnitudes without clear375

indications of equifinality problems (e.g., large fluxes in opposing directions). Future work376

could explore other network architectures for flux data analysis, such as recurrent or con-377

volutional networks, combined with marginal likelihood methods for hyperparameter and378

architecture optimization (Murphy, 2023). Another aspect with potential for improve-379

ment is the assumption of deterministic footprint weights ws between the ultimate lay-380

ers of the BNN. Here, future studies could use an ensemble of footprint models repre-381

senting the uncertainty in the footprint input parameters using uncertain hyperparam-382

eters that are then inferred from the measurements together with the other network pa-383

rameters. Such approaches could result in even better calibration of flux uncertainties.384

4 Conclusions385

Representative, high resolution, and uncertainty-aware flux estimates are invalu-386

able to confidently assess land-atmosphere interactions in heterogeneous and dynamic387

ecosystems like permafrost peatlands. To achieve this goal, we developed an ensemble-388

based BNN model for EC flux disaggregation, which we compared against three other389

flux estimation methods. These independent flux estimates are compatible with our BNN390

results, but their large spatial variability also demonstrate the challenges to obtain landscape-391

scale flux measurements with manual sampling techniques.392

Our BNN results indicate that while palsa areas have a near-zero annual CH4 bal-393

ance, the fens and ponds that form upon palsa degradation emit large amounts of CH4.394

Fens compensate this greenhouse gas forcing with a strong annual CO2 sink, while ponds395

are also strong—yet uncertain—CO2 emission hotspots. Our flux results indicate that396

palsa degradation to thermokarst ponds would lead to a 17 fold increase in the local green-397

house gas forcing, while transformation into fens would reduce the local greenhouse gas398

forcing.399
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