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Text S1: Eddy covariance flux estimation

The EC instruments are installed at 2.8 m a.g.l. and sampled at a frequency of 20 Hz.

The Li-7200 gas analyzer uses a 71 cm long heated (6 W) intake tube with a flow rate

of 15 L min−1. We processed the EC raw data to 30 minutes flux estimates following

the conventional EC methodology (Gu et al., 2012) using EddyPro version 6.2.0. We

extract turbulent fluctuations from block averages, use an anemometer tilt correction

by double rotation, a constant time lag compensation, and a high- and low-pass filter

correction following Moncrieff, Clement, Finnigan, and Meyers (2005) and Moncrieff et

al. (1997), respectively. For quality control, we use statistical tests on the raw data

proposed by Vickers and Mahrt (1997) and the flagging system proposed by Foken and

Wichura (1996) to filter out flux estimates that are affected by instrument errors (e.g.,

rain or frost on the anemometer) or unfavorable micrometeorological conditions (e.g.,

non-stationarity or insufficient turbulent mixing). Following Vickers and Mahrt (1997),

we estimate the number of spikes, drop-outs, as well as the absolute limits, amplitude

resolution, skewness and kurtosis, and discontinuities for the pairs of raw data time series

involved in the respective covariance-based flux estimates and discard data exceeding

established thresholds. We also discard data with mean horizontal wind speeds below

1.5 m s−1 as well as all fluxes with quality flag 1 and 2 in the scheme of Foken and

Wichura (1996).

The dynamic flux footprint function of each valid 30-minute flux is estimated based on

friction velocity, wind direction, Obukhov length, and cross-wind variance, all obtained

from EC measurements, as well as boundary layer height (linearly interpolated ERA5
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atmospheric reanalysis data (Hersbach et al., 2020)), following the flux footprint model by

Kljun, Calanca, Rotach, and Schmid (2015). For roughness length, we assume commonly

used standard values of 10 cm for grasslands-like surfaces (i.e., for all snow-free areas)

and 0.5 cm for snow-covered areas (Stull, 1988), and estimate a time series of roughness

lengths as the area-weighted averages using the remotely sensed fractional snow-covered

area (Aalstad, Westermann, and Bertino (2020), see Text S2 in this Supplement).
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Text S2: Ancillary data for flux predictors

We use ancillary data from sensors on our measurements tower as well as from satellite

remote sensing to quantify soil, surface, and atmospheric conditions during our flux mea-

surements. Near-surface air temperature (Tair) is measured by a resistance temperature

detector (PT-100) mounted in a radiation shield at 2 m a.g.l. Vapor pressure deficit (VPD)

is derived from measurements of Tair and relative humidity (HMP155, Vaisala, Finland)

mounted 2 m a.g.l. Soil temperature (Tsoil) and soil volumetric water content (VWC)

are measured at a depth of 8 cm (CS650, Campbell, USA). For incoming shortwave and

longwave radiation (SWin and LWin, respectively) we use a ventilated and heated ra-

diometer (CNR4, Kipp&Zonen, Netherlands) mounted on a south-west-pointing boom at

2.8 m a.g.l. The same sensor is used to measure surface broadband albedo. Surface tem-

perature (Tsurf) is estimated using an infrared radiometer (SI-411, Apogee, USA) directed

towards the surface approximately 2 m north of the tower. All these ancillary sensors are

sampled every 10 s, filtered for corrupted measurements, and aggregated to 30 minute

average values. Due to data logger problems, approximately 0.5% of the three year period

lacks valid local measurements. For atmospheric and surface variables these short gaps

are filled with estimates derived from a simple linear regression of the respective variable

against its corresponding estimate from ERA5 atmospheric reanalysis data (Hersbach et

al., 2020). Soil variables, which vary on longer timescales, are gap-filled with a simple

linear interpolation of neighboring measurements.

The fractional snow covered area (FSCA) and Normalized Difference Vegetation In-

dex (NDVI) are retrieved from multispectral satellite imagery covering the 500× 500 m2
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area around the flux tower at a ground sampling distance of 10 m as described in Pirk

et al. (2023). For this, we use surface reflectances from the Sentinel-2 satellite in 6 wave-

length bands. The FSCA is retrieved using the spectral unmixing approach outlined in

Aalstad et al. (2020). The NDVI, a widely used proxy for surface greenness, leaf area, and

vegetation development, is calculated according to its usual definition (Jia et al., 2003).

To avoid artifacts due to clouds in the reflectance data, we manually selected cloud-free

scenes. This selection provided a total of 82 Sentinel-2 scenes for the entire study period,

resulting in an average of just over 2 cloud-free scenes per month. The stack of cloud-

free retrievals of FSCA and NDVI for each pixel were independently interpolated in time

using Gaussian process regression (Rasmussen & Williams, 2005). We finally calculated

and used spatial averages of FSCA and NDVI for the 500× 500 m2 area around the flux

tower.
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Text S3: Training the Bayesian neural networks

The BNN training is performed with an iterative ensemble Kalman method, namely the

Ensemble Smoother with Multiple Data Assimilation (ES-MDA) (Emerick & Reynolds,

2013), a widely used scheme for computationally challenging Bayesian inference problems

such as flux inversion with large eddy simulations (Pirk et al., 2022). In contrast to

optimization, the Bayesian approach provides the necessarily probabilistic solutions to

the ill-posed under-determined inverse problem of fitting the parameters of a nonlinear

model (such as a neural network) to noisy data (Stuart, 2010). We use an ensemble size

of Ne = 100 and Na = 128 iterations with uniform observation error inflation (α = Na).

To ensure that the matrix inversion in the ES-MDA is not poorly conditioned and to

achieve a computational cost that is linear (rather than quadratic) in the size of the

training data, we adopt ensemble subspace inversion (Evensen et al., 2022). To further

improve computational efficiency and stability, each of the iterations only uses 10% of

the training data (randomly sampled, without replacement), in a process referred to as

mini-batching (Kovachki & Stuart, 2019; Murphy, 2022). Both the input and output data

are standardized with a z-score transform following common practice in machine learning

(Kovachki & Stuart, 2019; Murphy, 2022). This BNN training with flux data provides

strong constrains for the model parameters θ as exemplified by the prior and posterior

distributions shown in Figure S3 in this Supplement.

To better represent the highly multi-modal posterior parameter distributions (Izmailov

et al., 2021), we repeat the BNN training 100 times with different random seeds to cap-

ture local modes and combine these 100 local ensembles to form one global ensemble.
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The global ensemble is subsequently marginalized to obtain the (approximate) posterior

predictive distribution for the fluxes. This corresponds to a so-called deep ensembles ap-

proximation (Lakshminarayanan et al., 2017) of the posterior predictive distribution that

is similar in spirit to the MultiSWAG method of Wilson and Izmailov (2020). A closely

related iterative ensemble Kalman-based local updating method has been proposed by

Zhang, Lin, Li, Wu, and Zeng (2018) to sample from multi-modal posterior distribu-

tions of hydrological model parameters. To the best of our knowledge, although extended

(Singhal & Wu, 1988) and ensemble (Kovachki & Stuart, 2019; Lopez-Gomez et al., 2022)

Kalman methods have been used for optimization-based training of neural networks, this

is the first study to use ensemble Kalman methods to train an (approximately) Bayesian

deep ensemble of neural networks.

Training our BNN model with an iterative ensemble Kalman method was found to be

highly parallelizable and therefore computationally feasible, requiring less than one day

on our server with 128 cores (two AMD EPYC 7742 64-core processors). The widely used

gold-standard method for Bayesian inference, namely Markov Chain Monte Carlo, would

require many more parameter samples while being inherently less parallelizable and would

thus require a considerably longer wall clock time to train our BNN model (Kovachki &

Stuart, 2019; Izmailov et al., 2021).
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Figure S1. Overview aerial photograph of the Iškoras site taken on 20 October 2018,

i.e., before the installation of the eddy covariance tower. The tower was set up with ample

distance to the other installations seen in the picture (which are part of a different study).
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Figure S2. Scatter plot matrix of all predictors, fluxes, and footprint weights. The

panels on the diagonal show kernel density estimates of the marginal distributions of the

respective variables. The dataset is archived and available (Pirk, 2023).
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Figure S3. Kernel density estimates of the probability distributions of the first five

(out of 11 919) parameters in a local BNN used to predict CH4 fluxes. The priors are

drawn from a standard normal distribution and the visual deviation of the KDE priors

from the standard normal distribution are due to the finite ensemble size (Ne = 100). The

posteriors are estimated using the ES-MDA scheme with Na = 128 iterations.
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Figure S4. Train-test split evaluation of the BNN flux predictions of CO2 (a) and CH4

(b), both for 30-min (small dots) and daily average (larger circles) total fluxes. Statistics

given in the figure legend include sample size (n), normalized root mean square error

(NRMSE, normalized by the range), and the coefficient of determination (R2).
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Figure S5. Data from a field campaign on March 14, 2023. Left: Example sequences of

snowpack CH4 concentration probing different depth levels for approximately one minute

each, indicating CH4 uptake on the ground surface at palsa areas (a), while ponds (b) and

especially fen areas (c) feature CH4 release (indicated by the increasing concentrations

with depth). Center and right: Profiles of snow density (d) and temperature (e) obtained

in a snow pit that were used for diffusive flux calculations.
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Figure S6. Flux time series obtained from the BNN disaggregation (black lines as

ensemble means with shaded bands indicating the interquartile range of the ensemble

predictions) in comparison with independent flux estimates from chamber, aqueous con-

centration, and snowpack gradient measurements. Error bars represent the range of spa-

tial variability over the locations shown in Figure 1a in the main article. Inset sub-plots

show a zoom-in view of the CO2 fluxes for palsas and fens, which feature strong diurnal

variability. Data is shown for 2021, but snowpack flux estimates were taken in 2023 (and

assumed to be similar to 2021).
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J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological

Society , 146 (730), 1999–2049. doi: 10.1002/qj.3803

Izmailov, P., Vikram, S., Hoffman, M. D., & Wilson, A. G. G. (2021). What are bayesian neural

network posteriors really like? In M. Meila & T. Zhang (Eds.), Proceedings of the 38th

international conference on machine learning (Vol. 139, pp. 4629–4640). PMLR.

May 10, 2023, 11:58am



: X - 15

Jia, G. J., Epstein, H. E., & Walker, D. A. (2003). Greening of arctic Alaska, 1981–2001.

Geophysical Research Letters , 30 (20), 2003GL018268. doi: 10.1029/2003GL018268

Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2015). A simple two-dimensional

parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development ,

8 (11), 3695–3713. doi: 10.5194/gmd-8-3695-2015

Kovachki, N. B., & Stuart, A. M. (2019). Ensemble Kalman inversion: A derivative-free

technique for machine learning tasks. Inverse Problems , 35 (9), 095005. doi: 10.1088/

1361-6420/ab1c3a

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive

uncertainty estimation using deep ensembles. In I. Guyon et al. (Eds.), Advances in neural

information processing systems (Vol. 30). Curran Associates, Inc.

Lopez-Gomez, I., Christopoulos, C., Langeland Ervik, H. L., Dunbar, O. R. A., Cohen, Y., &

Schneider, T. (2022). Training Physics-Based Machine-Learning Parameterizations With

Gradient-Free Ensemble Kalman Methods. Journal of Advances in Modeling Earth Systems ,

14 (8). doi: 10.1029/2022MS003105

Moncrieff, J., Clement, R., Finnigan, J., & Meyers, T. (2005). Averaging, Detrending, and

Filtering of Eddy Covariance Time Series. In X. Lee, W. Massman, & B. Law (Eds.),

Handbook of Micrometeorology (Vol. 29, pp. 7–31). Dordrecht: Kluwer Academic Publishers.

doi: 10.1007/1-4020-2265-4 2

Moncrieff, J., Massheder, J., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., . . . Verhoef,

A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour

and carbon dioxide. Journal of Hydrology , 188–189 , 589–611. doi: 10.1016/S0022-1694(96)

May 10, 2023, 11:58am



X - 16 :

03194-0

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.

Pirk, N. (2023). Resources for ”Disaggregating the carbon exchange of degrading permafrost

peatlands using Bayesian deep learning” [Dataset]. Zenodo. doi: 10.5281/zenodo.7913027

Pirk, N., Aalstad, K., Westermann, S., Vatne, A., van Hove, A., Tallaksen, L. M., . . . Katul,

G. (2022). Inferring surface energy fluxes using drone data assimilation in large eddy

simulations. Atmospheric Measurement Techniques , 15 (24), 7293–7314. doi: 10.5194/amt

-15-7293-2022

Pirk, N., Aalstad, K., Yilmaz, Y. A., Vatne, A., Popp, A. L., Horvath, P., . . . Tallaksen, L. M.

(2023). Snow-vegetation-atmosphere interactions in alpine tundra (Preprint). Biogeochem-

istry: Air - Land Exchange. doi: 10.5194/bg-2023-21

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The

MIT Press. doi: 10.7551/mitpress/3206.001.0001

Singhal, S., & Wu, L. (1988). Training multilayer perceptrons with the extended kalman algo-

rithm. In D. Touretzky (Ed.), Advances in neural information processing systems (Vol. 1).

Morgan-Kaufmann.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica, 19 , 451–559.

doi: 10.1017/S0962492910000061

Stull, R. B. (1988). An introduction to boundary layer meteorology. Kluwer Academic Publish-

ers.

Vickers, D., & Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower

and Aircraft Data. Journal of Atmospheric and Oceanic Technology , 14 (3), 512–526. doi:

May 10, 2023, 11:58am



: X - 17

10.1175/1520-0426(1997)014〈0512:QCAFSP〉2.0.CO;2

Wilson, A. G., & Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective

of generalization. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.),

Advances in neural information processing systems (Vol. 33, pp. 4697–4708). Curran Asso-

ciates, Inc.

Zhang, J., Lin, G., Li, W., Wu, L., & Zeng, L. (2018). An Iterative Local Updating Ensemble

Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With

Multimodal Distributions. Water Resources Research, 54 (3), 1716–1733. doi: 10.1002/

2017WR020906

May 10, 2023, 11:58am


