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• The M5 Mentone earthquake occurred on a south-facing normal fault plane with strike 14 
and dip of 81 and 52 degrees. 15 

• Modeling shows shallow injection causing substantial poroelastic stress perturbations and 16 
promoting the triggering of the mainshock. 17 

• Rock properties of the injection layer can significantly affect the magnitude of coupled 18 
pore pressure and stress perturbations.  19 
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Abstract 20 

 21 

The M5.0 earthquake that occurred in March 2020 near the town of Mentone in the Delaware 22 
Basin, Texas, is one of the largest induced earthquakes recorded in the central US. A former 23 
study shows that the triggering of this event can be attributed to the nearby deep injection. 24 
Interestingly, the shallow injection wells in this region have an injection volume five times larger 25 
than that of deep injection wells. In this study, we investigate the role of these shallow injection 26 
wells in the triggering of the M5.0 event despite their farther distance from the mainshock. By 27 
performing focal mechanism inversion and earthquake relocation, we determine the precise 28 
orientation of the south-facing normal fault plane where the mainshock occurred, followed by 29 
fully coupled poroelastic stress modeling of the change of Coulomb Failure Stress (ΔCFS) on the 30 
fitted fault plane due to the shallow injection in the region. Results show that shallow wells may 31 
cause up to 30 kPa of ΔCFS near the mainshock location, dominated by positive poroelastic 32 
stress change. Such perturbation surpasses the general triggering threshold of faults that are well 33 
aligned with the local stress field and suggests a nonnegligible role of these shallow injection in 34 
the triggering of the mainshock. Our study also highlights the effect of rock properties of 35 
injection layers on the magnitude and spatial extent of pore pressure and stress perturbations, 36 
supporting the importance of detailed geomechanical evaluation of the reservoir when 37 
developing relevant operational and safety policies.    38 
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1. Introduction 39 

 40 

Underground fluid injection, out of various purposes, such as hydraulic fracturing, wastewater 41 

disposal, geothermal utilization and carbon sequestration, has caused a dramatic increase of 42 

seismicity globally (Ellsworth, 2013; Bao & Eaton, 2016; Keranen & Weingarten, 2018). With 43 

the increase of oil and gas activities in the Delaware Basin, Texas, seismicity rate has also 44 

increased drastically (Skoumal et al., 2020, 2021; Zhai et al., 2021). Just between 2014 and 2018, 45 

24 M ≥ 3 earthquakes have occurred in the Delaware Basin, while the number of M ≥ 3 46 

earthquakes in the previous 25 years combined (1970 – 2014) is only 20 (Skoumal et al., 2020). 47 

On March 26, 2020, an M5.0 event occurred near the border of Reeves County and Culberson 48 

county (Figure 1), which is one of the largest induced earthquakes to date. For induced events 49 

that occur on faults close to injection operations, their activation is typically attributed to the 50 

build-up of pore pressure from these neighboring wells (Keranen et al., 2013). However, for the 51 

Mentone case, there are only 4 shallow injection wells within 5 km, all with a small cumulative 52 

injection volume (< 6 × 10  BBLs). Wells with much larger volume are located at distances 53 

between 10 km and 25 km (Figure 1). The distance of the nearest fracturing well is even farther 54 

(> 40 km), which implies a weak link between hydraulic fracturing operation and the occurrence 55 

of the mainshock (Lund Snee & Dvory, 2020). 56 

 57 

 58 
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Figure 1. Location of injection wells (inverted triangles) and seismic events (red circles) within 59 

25 km of the mainshock (yellow star). The size and color of the inverted triangles are 60 

proportional to the injection volume and the vertical distance between the injection wells and the 61 

basement, respectively. Events in the purple dashed rectangle is the Mentone (mainshock) 62 

cluster. The bottom-right inset shows the location of the study area in western Texas. Purple 63 

inverted triangles are deep injection wells included in the study by Tung et al. (2020). 64 

 65 

Previous studies suggested that pore pressure built up through long-distance travel of injected 66 

fluid can trigger earthquakes remotely (Keranen et al., 2014; Yeck et al., 2016). In Mentone, 67 

Tung et al. (2020) attributed the cause of the M5.0 event to the change of pore pressure in the 68 

highly permeable Ellenburger group (limestone layer) due to eight deep injection wells located to 69 

the northwest of the mainshock, assuming a hydraulic connection between the limestone layer 70 

and the basement. Interestingly, apart from these deep wells, there are also a lot of shallow 71 

injection wells within 25 km of the mainshock with much larger total injection volume, 72 

approximately five times larger than that of deep injection wells (Figure 2). In particular, the 73 

total injection volume of shallow injection wells to the northeast of the mainshock alone have 74 

contributed a volume 2.5 times larger than that of the deep injection wells, which is also the 75 

largest among the four quadrants around the mainshock. These shallow wells, despite their 76 

relatively large epicentral distance (> 5 km), may entertain the possibility of remote triggering 77 

from the coupled poroelastic stress due to their high injection volume (Goebel et al., 2017; 78 

Goebel & Brodsky, 2018; Zhai et al., 2021). Motivated by this, we investigate in this study the 79 

possible contribution of shallow injection wells to the triggering of the M5.0 event. We analyze 80 

the contribution from these shallow injection wells to the pore-pressure change and the coupled 81 

poroelastic stress on the reactivated fault in the basement, without assuming any hydraulic 82 

connection in our model.  83 
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 84 

 85 

Figure 2. Cumulative seismic activities within 25 km of the mainshock (red graph) and injection 86 

volume of five well groups. “NE”, “NW”, “SW”, and “SE” represent cumulative injection 87 

volume of shallow wells in the northeast, northwest, southwest, and southeast quadrant, 88 

respectively. “Shallow” represents cumulative injection volume of shallow wells within 25 km of 89 

the mainshock, “Deep” represents deep injection wells used in Tung et al. (2020).  90 

 91 

2. Data and Methods 92 

 93 

We analyze the change of the Coulomb failure stress (∆CFS) on the mainshock fault plane caused 94 

by shallow injection wells and explore their roles on the triggering of the M5.0 event. Based on 95 

the Coulomb failure theory (Jaeger & Cook, 1979), the value of ∆CFS is defined as: 96 ∆CFS = ∆τ + μ(∆σ + ∆p)                                                                                                            (1) 97 

where ∆τ and ∆σ represent the change of shear stress (positive for promoting failure) and normal 98 

stress (positive for unclamping the fault), ∆p represents the change of pore pressure on the fault, 99 

and μ is the coefficient of friction. The failure is promoted when ∆CFS is positive, and vice 100 

versa. From equation (1), changes in direct pore pressure and the resulting poroelastic stress 101 

separately contribute to ∆CFS. 102 

Since the normal stress and shear stress on the fault plane are highly sensitive to the location and 103 

orientation of the fault (Deng et al., 2020; Lim et al., 2020), correctly resolving the orientation of 104 
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the fault plane is an imperative step in this study. Therefore, we first perform focal mechanism 105 

inversion on the mainshock and selected adjacent events considering their time and location 106 

proximity to the mainshock. Then we constrain the fault plane orientation by fitting relocated 107 

events. Lastly, we conduct fully-coupled poroelastic modeling to calculate ∆CFS on the fitted 108 

fault plane and investigate the effects of shallow injection wells on the occurrence of the M5.0 109 

event. 110 

 111 

2.1 Focal mechanism inversion 112 

To better constrain focal mechanism and to identify events potentially occurred on the 113 

mainshock fault plane, the Cut and Paste (CAP) method (Zhao & Helmberger, 1994) is utilized 114 

to perform the focal mechanism inversion. Through matching synthetic and observed waveforms 115 

of segmented body and surface waves, the CAP method is capable of resolving the optimal 116 

source mechanism by grid-searching the seismic moment (M0), strike, dip and rake of the target 117 

event with minimum misfit. Here we use the frequency-wavenumber method to compute the 118 

Green’s functions as 1D synthetic waveforms input for the inversion (Zhu & Rivera, 2002). The 119 

1D velocity model used in our inversion is derived jointly from sonic velocity logs of a well in 120 

the Delaware Basin (Sheng et al., 2020) and the central United States velocity model (CUS). 121 

Details of the model can be found in Figure S1 in Supporting Information S1. 122 

Apart from the small cluster containing the mainshock (the Mentone cluster in Figure 1), there 123 

are also some neighboring events located between 5 and 10 km to the west and northwest of the 124 

mainshock. To determine whether these events occurred on the mainshock fault plane, we 125 

conducted focal mechanism inversion on a total of seven events with M ≥ 3.0, three of which 126 

from the Mentone cluster and the other four from the neighboring clusters (Table 1). 127 

  128 
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Figure 3. Radial plot displaying events located within 25 km from the mainshock (the red star). 141 

Selected events for hypoDD relocation are enclosed within the red rectangle. Colorbar indicates 142 

the relative occurrence time of earthquakes to the mainshock. 143 

 144 

To efficiently obtain precise input phase arrival times for hypoDD relocation, we first use the 145 

powerful program PhaseNet (Zhu & Beroza, 2019) to generate phase arrival time automatically. 146 

An example of phase pick output from PhaseNet is included in Figure S2 in Supporting 147 

Information S1. To better constrain the accuracy of relocation result, we calculate the cross 148 

correlation of data with ObsPy’s cross-correlation pick correction function following Deichmann 149 

& Fernandez (1992). Data with correlations coefficient > 0.75 is then selected for hypoDD 150 

relocation. Parameters used are listed in Table S1 in Supporting Information S1.  151 

 152 

2.3 Pressure and stress calculation 153 

To calculate the temporal change of pore pressure and poroealstic stress caused by injection on 154 

the fault plane, we adopt the open-source package POEL, a semi-analytical method governed by 155 

the following equations (Wang & Kümpel, 2003):  156 (𝜆 + 2𝜇) ∇ (∇ ⋅  𝐮) −  𝜇∇ × (∇ ×  𝐮) −  𝛼∇𝑝 = 𝐟(𝐱, t)                                                                     (2) 157 

𝑄 +  𝛼 ∇ ⋅ 𝐮 −  𝜒 ∇ 𝑝 = 𝑞(𝐱, t)                                                                                                  (3) 158 

Where λ and µ are the Lamé parameters, 𝐮 is the displacement vector, α is the Biot’s coefficient 159 

of effective stress, p is pore pressure, 𝐟(𝐱, t) is the body force on the rock matrix,  𝑄  is bulk 160 

compressibility, 𝜒 is hydraulic conductivity, and 𝑞(𝐱, t) is the injection source. Both 𝐟(𝐱, t) and 161 𝑞(𝐱, t) are functions of space (𝐱) and time (t). Equation (2) depicts the solid deformation coupled 162 

with the change of pore pressure due to fluid injection, which is the fluid-solid coupling. 163 

Equation (3) depicts the fluid mass conservation coupled from the solid deformation, which is 164 

the solid-fluid coupling (Chang & Segall, 2016; Zhai et al., 2021).  165 
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𝛼 =  ( )( )( )                                                                                                                                      (5) 183 

𝑄 =  ( )( )( )( )                                                                                                                         (6) 184 

𝜒 =  ( )( )( )( )                                                                                                                               (7) 185 

The geological model implemented in Tung et al. (2020) is composed of five layers: (from top to 186 

bottom) anhydrite, sandstone, shale, limestone, and basement. According to the depth 187 

distribution of injection wells within 25 km of the mainshock (Figure S3 in Supporting 188 

Information S1), we make slight modifications to the thickness of these layers such that all the 189 

shallow and deep injections occur in the high permeable sandstone and limestone layers, 190 

respectively. Furthermore, we adjust the conductivity of two layers (anhydrite/halite and shale) 191 

and the Skempton coefficient of the shale layer based on relevant studies (Beauheim & Roberts, 192 

2002; Makhnenko et al., 2011; Suarez-Rivera & Fjær, 2013; Li et al., 2020; Zhai et al., 2021). 193 

Parameters of the modified geological model are listed in Table 2. Based on the pore pressure 194 

and strain tensor of the rock matrix modeled from POEL, we then perform tensor transformation 195 

to obtain the local pore pressure, normal stress and shear stress on the fault plane where the 196 

mainshock occurred (Zoback, 2010; Figure 4). 197 

 198 

Table 2. Geological model used in our analysis (modified from Tung et al., 2020). 199 

Rock type Depth (m) μ (Pa) 𝜈 𝜈  𝐵 𝐷 (𝑚 𝑠 ) 
Anhydrite, 

halite 0 - 700 5.96E+09 0.26 0.40 0.86 0.00002 

Sandstone 700 - 2500 26.91E+09 0.26 0.36 0.58 0.64000 

Shale 2500 - 4500 26.91E+09 0.26 0.37 0.60 0.00002 

Limestone 4500 - 5200 12.10E+09 0.26 0.36 0.65 1.00000 
Basement 5200 - 30.86E+09 0.26 0.33 0.80 0.00002 

 200 
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3. Results 201 

 202 

3.1 Focal mechanism inversion and earthquake cluster relocation 203 

Focal mechanism inversion parameters and results are listed in Table 3. Figure 5 shows the 204 

cross-correlation between synthetic and observed waveforms of the M5.0 event at the optimal 205 

depth, and the relative misfit error at different focal depths. Inversion results of other selected 206 

events are in Figures S4 – S9 in Supporting Information S1. Our results show that events 01, 02 207 

and 03 share similar focal mechanisms, which are different from that of events 04 and 05, and 208 

events 06 and 07. It implies that events 04-07 are likely from two other neighboring clusters that 209 

occurred on different fault planes with the consideration of the time and location of the Mentone 210 

cluster (Figure 1). 211 

 212 

Table 3. Parameters used in the CAP inversion and inverted focal mechanisms. Time windows 213 

for Pnl and S wave segments used in CAP are 35s and 70s, respectively.  214 

Event 
Filtered frequency  

range (Hz)  Focal Mechanism from CAP 
(strike, dip,rake) 

Optimal depth 
(km) Pnl waves S waves 

01 0.02-0.10 0.02-0.10 288°, 51°, -67° 74°, 44°, -115° 6.6 
02 0.05-0.20 0.05-0.20 280°, 49°, -58° 56°, 50°, -121° 5.4 
03 0.10-0.20 0.10-0.20 299°, 40°, -46° 67°, 62°, -120° 5.4 
04 0.12-0.22 0.10-0.20 322°, 39°, -35° 80°, 68°, -123° 5.4 
05 0.12-0.22 0.10-0.20 323°, 43°, -42° 86°, 62°, -124° 5.4 
06 0.12-0.25 0.15-0.30 17°, 57°, -15° 115°, 77°, -146° 3.3 
07 0.08-0.22 0.10-0.25 10°, 66°, -14° 105°, 77°, -155° 5.1 

 215 
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3.2 Fully-coupled poroelastic stress modeling 240 

To perform the fully coupled poroelastic stress modeling, we select wells within 25 km of the 241 

mainshock with relatively large injection volume and divide them into four groups based on their 242 

positions from the mainshock, i.e. the northeast, southeast, southwest and northwest quadrants. 243 

The selected wells account for about 69%, 40.7%, 59.8% and 46.7% of the total injection volume 244 

in each respective quadrants. To simplify the calculation process, within each quadrant, we 245 

further group injection wells that are close to one another (within about 0.5 km on average) and 246 

assign them the same average location. We then calculate the change in pore pressure, normal 247 

and shear stress resulted from individual wells on the fitted fault plane (Figure 4) and sum their 248 

results to obtain the total normal and shear stress change caused by the shallow wells in the 249 

region. Specific information about the selected wells, the resulted pore pressure, normal and 250 

shear stress are listed in Table S2 in Supporting Information S1. 251 

The time evolution of the total monthly injection rate of selected wells, as well as the resulted 252 

change in pore pressure, normal stress, shear stress, poroelastic stress and ΔCFS are displayed in 253 

Figure 8. It is found that at the early stage of the injection (before 2015) with low injection rate, 254 

pressure and stress perturbations near the mainshock are pretty small due to the large distance 255 

between selected wells and the mainshock (varies between 10 km and 20 km). Starting in 2015, 256 

with increasing injection rate, the total pore pressure perturbation near the mainshock 257 

transitioned from positive (encourage fault slip) to negative (inhibit fault slip), and the rate of the 258 

decrease increases with injection rate. This phenomenon is mainly caused by the coupling effect 259 

of the poroelastic stress on the pore pressure. Due to the low permeability of the thick shale layer 260 

below the shallow injection sandstone layer, direct pore pressure change due to percolation of 261 

injected fluid through the shale layer is unlikely. Instead, the change in pore pressure change is 262 

primarily resulted from the coupling effect of poroelastic stress. According to Chang & Segall 263 

(2016), injected fluid causes expansion of the layer below the injection layer, which 264 

subsequently compacts the layer at further distances. The boundary of expansion and compaction 265 

is determined by rock properties and injection parameters, and the zone of expansion gradually 266 

moves outward as injection continues. In the beginning, due to low injection rate and large 267 

distance between the injection wells and the mainshock, the basement rock layer near the 268 

mainshock location underwent compaction and, hence, the change in pore pressure remained 269 
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positive until early 2018. As injection continued, the expansion region continued to move 270 

outward, and pore pressure eventually transitioned from positive to negative. Both normal and 271 

shear stresses increase throughout the entire injection period and they increase more rapidly with 272 

the rise of injection rate. The resulting poroelastic stress change reaches about 19 kPa at the time 273 

of the mainshock. Since the change in pore pressure change at the mainshock location is 274 

negative, the positive ΔCFS was solely from poroelastic effects. 275 

Overall, the ΔCFS increased with an increasing rate and reached about 20 kPa when the 276 

mainshock occurred, which surpasses the general threshold of 10 kPa for seismic events to be 277 

triggered (Rothert & Shapiro, 2007; Deng et al., 2020). Since the fitted fault plane is well aligned 278 

with the local stress field, it is possible that even a small perturbation may reactivate the fault 279 

(Lund Snee & Dvory, 2020). Furthermore, rather than considering all the injection wells in this 280 

region, only wells with relatively large injection volumes were included in our calculation. Based 281 

on the injection volume and locations of all the shallow injection wells in this region, the total 282 

ΔCFS from all the shallow injection wells is estimated to be around 30 kPa. As aforementioned, 283 

Tung et al. (2020) analyzed the effect of eight deep injection wells in the Ellenburger group 284 

(limestone layer) near the mainshock location and obtained a ΔCFS of about 80 kPa, assuming 285 

the limestone layer and the basement are hydraulically connected. Without this assumption, the 286 

actual ΔCFS in the basement rock could potentially be lower. Therefore, while the ΔCFS from 287 

shallow injection appears to be less significant compared to that from deep injection, our result 288 

implies that the shallow wells in this region play a nonnegligible role in the triggering of the 289 

M5.0 Mentone earthquake, primarily due to poroelastic stress increase.  290 

 291 

 292 
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𝑝 (𝐱, 𝑡) =  𝟏                                                                                                                                         (9) 330 

where 𝐱𝐬 is the position of the injection source, 𝑅 = |𝐱 − 𝐱𝐬| is the distance between the 331 

injection source and the mainshock, and 𝑞  is a constant injection rate. According to these two 332 

equations, 𝐮 and 𝑝 primarily depend on properties of the rock medium. Darcy conductivity 333 𝜒  and 𝜒  is about 4.2 × 10-11 𝑚 /(𝑃𝑎 ∙ 𝑠) and 1.5 × 10-11 𝑚 /(𝑃𝑎 ∙ 𝑠), 334 

respectively, which explains the larger pore pressure change in the sandstone injection layer in 335 

SI-1 than in the limestone injection layer in SI-2, according to equation (9). In equation (8), 336 ( )( )  for limestone and sandstone is 1.3812 𝑠/𝑚  and 1.9258 𝑠/𝑚 , respectively, and hence 337 

the resulted poroelastic deformation in a sandstone medium is larger than that in a limestone 338 

medium. Since SI-1 and SI-2 differs only by the rock type of the injection layer, the overall 339 

deformation 𝐮 (𝐱, 𝑡) in the basement layer where the mainshock occurs (6.7 km) would also be 340 

larger in SI-1 than that in SI-2 (Figure S13 in Supporting Information S1). 341 

We also compare the injection-induced volumetric strain at the mainshock depth of 6.7 km in 342 

both scenarios and find that due to the different rock properties, the resulted volumetric strain in 343 

SI-1 is much larger than that in SI-2 when wells are less than 20 km from the mainshock (Figure 344 

S14 in supporting information). Interestingly, volumetric strain decreases more slowly with 345 

distance in SI-2 (limestone), and hence the volumetric strain in SI-1 actually falls below that in 346 

SI-2 beyond 20 km. Furthermore, the volumetric strain in SI-1 becomes negative beyond 25 km. 347 

This can be explained by the injection-induced deformation transitioning from expansion to 348 

compression, and the exact position of this transition is, again, governed by the intrinsic rock 349 

properties, as well as the injection parameters (Chang & Segall, 2016).  350 

These modeling results demonstrate that the rock properties of the injection layer as well as the 351 

relative location of the injection to the mainshock both significantly influence the resulted 352 

poroelastic deformation. It explains the lower value of the ΔCFS of the deep injection in this 353 

case, and how the larger ΔCFS from shallow injection is primarily due to substantial coupled 354 

poroelastic stress change. In the Delaware Basin, there are a lot of shallow injection wells with 355 

large injection volume within 20 km of the mainshock location, and hence our modeling results 356 
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suggest that they can cumulatively cause significant poroelastic stress perturbations to the 357 

basement faults.  358 

 359 

5. Conclusions 360 

 361 

In this work, we explored the potential role of shallow injection wells in the triggering of the 362 

M5.0 Mentone earthquake in the Delaware basin. Although the injection depth of these wells is 363 

pretty shallow and far from basement faults, due to their large injection volume, the cumulative 364 

ΔCFS, which is mostly due to poroelastic stress perturbation, surpasses the common threshold of 365 

10 kPa at which critically stressed faults can be triggered. Based on this, it is concluded that the 366 

shallow injection in the region did contribute substantially to the triggering of the M5.0 367 

earthquake. Our results confirms the significance of poroelastic stress triggering over large 368 

distances, especially when the injection volume is large. Furthermore, our study highlights the 369 

effect of rock properties of injection layers in the extent of pressure and stress perturbations 370 

caused by fluid injection. In this case, injection in sandstone results in much more prominent 371 

stress perturbations than in limestone. Overall, our results have important implications for future 372 

injection operations, especially when there exists thick impermeable geologic layers between the 373 

injection and basement faults. Due to the cumulative coupled poroelastic stress perturbation over 374 

large distances, regulators should account for an extended region near injection sites when 375 

developing relevant operational policies.  376 
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