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Abstract14

We present our new multiscale pairwise-force smoothed particle hydrodynamics (PF-SPH)15

model for the characterization of flow in fractured porous media. The fully coupled mul-16

tiscale PF-SPH model is able to simulate flow dynamics in a porous and permeable ma-17

trix and in adjacent fractures. Porous medium flow is governed by the volume-effective18

Richards equation, while the flow in fractures is governed by the Navier–Stokes equa-19

tion. Flow from a fracture to the porous matrix is modeled by an efficient particle re-20

moval algorithm and a virtual water redistribution formulation to enforce mass and mo-21

mentum conservation. The model is validated by (1) comparison to a finite element model22

(FEM) COMSOL for Richards-based flow dynamics in a partially saturated medium and23

(2) laboratory experiments to cover more complex cases of free-surface flow dynamics24

and imbibition into the porous matrix. For the laboratory experiments, Seeberger sand-25

stone is used because of its well-known homogeneous pore space properties. The satu-26

rated hydraulic conductivity of the permeable matrix is estimated from a pore size and27

grain size distribution analysis. The developed PF-SPH model shows good correlation28

with the COMSOL model and all types of laboratory experiments.29

We employ the proposed model to study preferential flow dynamics for different30

infiltration rates. Here, flow in fracture is associated with the term “preferential flow,”31

providing rapid water transmission, while flow within the adjacent porous matrix enables32

only slow and diffuse water transmission. Depending on the infiltration rate and water33

inlet location, two cases can be distinguished: (1) immediate preferential/fracture flow34

or (2) delayed preferential flow. In the latter case, water accumulates at the surface first35

(ponding), then the fracture rapidly transmits water to the bottom system outlet. For36

the immediate fracture flow response, ponding only occurs once the fracture is fully sat-37

urated with water. In all cases, preferential flow is much more rapid than diffuse flow38

even under saturated porous medium conditions.39

Furthermore, infiltration dynamics in rough fractures adjacent to an impermeable40

or permeable matrix for different infiltration rates are studied as well. The simulation41

results show a significant lag in arrival times for small infiltration rates when a perme-42

able porous matrix is employed, rather than an impermeable one. For higher infiltration43

rates, water rapidly flows through the fracture to the system outlet without any signif-44

icant delay in arrival times even in the presence of the permeable matrix. The analysis45

of the amount of water stored in permeable fracture walls and in a fracture void space46

shows that for small infiltration rates, most of the injected water is retarded within the47

porous matrix. Flow velocity is higher for large infiltration rates, such that most of the48

water flows rapidly to the bottom of the fracture with very little influence of matrix im-49

bibition processes.50

1 Introduction51

Most consolidated porous rocks are and/or have been subject to tectonically in-52

duced stress fields, which lead to discontinuities within the porous matrix (Nelson, 2001).53

Naturally fractured porous media consist of pore networks and interconnected or isolated54

fractures. Here, we adopt the notion that large pores and crevices are associated with55

the term fractures and have dimensions of 1× 10−4 m to 1× 10−2 m (Fischer et al., 1998;56

Tsang & Tsang, 1987), while pore throats of the matrix have dimensions of 1× 10−7 m57

to 1× 10−5 m (Thoma et al., 1992). In this study fractures are large pores or crevices,58

with an aperture of more than 1.0 mm and dimensions of width and length that can ex-59

ceed 10.0 mm. Furthermore, fractures have a much stronger anisotropic character com-60

pared to pores, i.e. their aperture is several orders of magnitude smaller then the other61

two dimensions (width and length). Apart from this classification and based on their ge-62

netic origin, fractures are associated with stress field changes, while pores (primary poros-63

ity) are commonly the result of sedimentation and consolidation processes of granular64
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media. In principle, fractures are considered fast flow and transport pathways (Zimmerman65

& Bodvarsson, 1996), however, under partial saturation conditions they can also impede66

flow (Wang & Narasimhan, 1985). Despite their importance for rapid transmission of67

water it should be noted that the bulk porosity of fractured-porous rocks is still dom-68

inated by the porous matrix (Singhal & Gupta, 2010). The strong contrasts in spatial69

scales between the fracture aperture, its in-plane dimensions and the pore throats of the70

matrix make the characterization of infiltration dynamics in fractured porous media dif-71

ficult with most numerical approaches.72

Flow in partially saturated porous media is commonly described by the volume-73

averaged Richards (1931) equation. While it was originally developed for soil systems,74

the Richards equation is often applied to model flow in fractured systems (Heilweil et75

al., 2015; Therrien & Sudicky, 1996) when the fracture density is sufficiently high (or frac-76

ture apertures are rather small) and an representative elementary volume (REV) can be77

defined. Given the complexity of gravity-driven flow, many discrete flow and transport78

processes, including fingering, preferential flow pathway formation, meandering, and er-79

ratic flow mode dynamics (droplets and rivulets), cannot be described properly by the80

Richards equation.81

The complexity of flow in fractured porous media is amongst others caused by the82

strong scale contrasts of the heterogeneity, i.e., the fracture thickness is associated with83

a much smaller scale than the fracture length. Furthermore, the scale contrast between84

porethroats of the matrix and the fracture scales make the characterization of infiltra-85

tion dynamics in fractured porous media difficult or impossible with a discrete approach86

resolving the porous systems as well as the fracture. On the other hand, volume-effective87

solutions often neglect the effects of preferential flow paths and are commonly applied88

for large-scale characterization. Approaches based on dual-domain concepts (Nimmo, 2010;89

Germann et al., 2007) assume that the porous medium consists of two interacting regions,90

one of them associated with the fracture system, another one with the rock matrix, and91

hence can resolve the dualistic nature of such systems, though without any information92

about geometry or topology of the macropore system. (Semi-analytical solutions for pref-93

erential flows are commonly taking into consideration a single specific flow mode (droplets,94

rivulets, films) or transitions between them (Ghezzehei, 2004). However, For fractured95

systems the porous matrix plays an important role in the formation of fracture flows and96

can therefore not be neglected. Tokunaga and Wan (1997) demonstrated that adsorbed97

films are an important mechanism for unsaturated flow in fractures, and a fast flow pro-98

cess in contrast to diffuse flow in the porous matrix.99

Preferential flow within the unsaturated (vadose) zone is known to strongly influ-100

ence groundwater recharge, infiltration, and contaminant transport. The conditions un-101

der which preferential flow occurs and what the main controlling parameters are is still102

subject to debate for soil systems (Nimmo, 2010). Even less studies have focused on its103

occurrence in consolidated fractured systems. (Buscheck et al., 1991; Nitao, 1991) for104

example provide a criterion for critical fluxes that lead to preferential flow. They state105

that for infiltration rates smaller than the critical flux, diffuse/porous-medium flow dom-106

inates system the flow dynamics. For fluxes larger than the critical flux, fracture flow107

dominates.108

For infiltration in soils various authors (Nimmo, 2010, 2012; Germann et al., 2007)109

demonstrated that preferential flow can occur under partially saturated conditions, in110

the absence of surface ponding or a fully saturated porous matrix, i.e. under non-equilibrium111

conditions.112

Partially saturated flow in fractures is not well understood due to the uncertainty113

in generalizing flow processes, and scale effects, characterization of process parameters114

across scales, and the assessment of their relevance in the prediction of large-scale prob-115

lems, such as the regional hydraulics of fault zones.116
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Therefore, we developed a multiscale smoothed particle hydrodynamics (SPH) model117

to study conditions that lead to preferential flow in partially saturated porous-fractured118

systems. The pairwise-force smoothed particle hydrodynamics (PF-SPH) is implemented119

within the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton,120

1995; Kordilla et al., 2017). The model is based on a PF-SPH discretization of the Navier–121

Stokes (NS) equation and can efficiently model flow through fractures or fracture net-122

works and adequately recover all relevant flow dynamics, including the effects of free sur-123

face flows and surface tension (A. Tartakovsky & Meakin, 2005; Kordilla J., 2013; Ko-124

rdilla et al., 2017; Shigorina et al., 2017, 2019). However, in porous-fractured systems,125

the porous and/or permeable matrix represents an important storage compartment and126

influences flow dynamics within the highly permeable fractures. This is the first model127

that tightly couples the Navier-Stokes flow in a fracture with the continuum (Richards)128

model of flow in the adjacent matrix. Most of the existing subsurface codes treat both129

fractures and matrix as continuums or a dual-continuum. These models cannot describe130

the complex physics of flow in fractures, e.g., complex infiltration dynamics in the un-131

saturated zone at Yucca Mountain (Doughty, 1999; C. & S., 1998). Such approaches are132

based on the assumption that the system is well mixed within the elementary represen-133

tative volume. Our approach does not rely on this assumption for flow in fracture – there-134

fore, it can be used to: (1) test the limits of applicability of the models using continuum135

description of fractured porous medium; (2) study the effect of boundary conditions on136

flow regimes in fractures; and (3) potentially improve continuum models.137

The PF-SPH-LAMMPS code has been extensively validated (Kordilla J., 2013; Ko-138

rdilla et al., 2017; Shigorina et al., 2017) for simulating gravity-driven free-surface and139

fracture flows under dynamic wetting conditions. The newly developed code for simu-140

lating flow in porous media, on and across the fracture–matrix interface is validated against141

a finite-element COMSOL model and small-scale laboratory experiments.142

In order to study preferential flow dynamics, we investigate for which infiltration143

rates fracture flow dominates and for which rates diffuse flow dominates. The latter sce-144

nario occurs when a fracture acts as a flow barrier and hence causes ponding. Finally,145

we study the influence of fracture wall permeability and storage properties of the porous146

matrix on the arrival times for different infiltration rates. We consider two types of rough147

fractures: (1) a fracture with a permeable adjacent matrix and (2) a fracture with an148

impermeable adjacent matrix. Each fracture has two surfaces with a width of 50.0 mm,149

a length of 100.0 mm, and a thickness of 10.0 mm that are separated by a 2.0 mm aper-150

ture. The fracture roughness is characterized by the Hurst exponent ζ (Bouchaud et al.,151

1990; Shigorina et al., 2019) and an initial maximum value ∆ for random displacement152

from a planar surface.153

2 Governing Equations and the PF-SPH Method154

In the following, we introduce the governing partial differential equations (PDEs)155

for the studied system and provide an overview of the employed SPH model, including156

SPH discretization of the PDEs and boundary conditions, as well as the coupling pro-157

cedure between the NS and Richards domains. The more detailed information about fun-158

damentals of SPH method is provided in Appendix A.159

Assuming that the air phase is connected and has constant pressure (which we set160

here to zero) the partially saturated flow in porous media is commonly modeled using161

the Richards equation and suitable pressure–saturation relationships. In our model we162

use the mixed form of the Richards equation (Celia et al., 1990; Cockett, 2013)163

∂Θ(ψ)

∂t
= (Cm + ρgSeSs)

∂ψ

∂t
= ∇ ·Kskr(ψ)∇ψ +

∂K(ψ)

∂z
, (1)164

where Θ is the water content, ψ(x, t) =
∫
dP/rho is the pressure head (the integral is165

taken from an arbitrarily chosen reference pressure Prto the pressure P at the point x),166
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Ks is the saturated hydraulic conductivity, Ss is the specific storage coefficient, ρ is the167

water density, and g is the gravitational acceleration. The parameters Cm (specific mois-168

ture capacity), Se (effective saturation), and kr (relative hydraulic conductivity) are de-169

rived from the van Genuchten relationships (van Genuchten, 1980):170

Se =


1[

1+|αψ|n
]m if ψ < 0

1 if ψ ≥ 0

, (2a)171

kr =

{
Se0.5

[
1−

(
1− Se 1

m

)m]2
if ψ < 0

1 if ψ ≥ 0
, (2b)172

Cm =


αm
1−m (Θs −Θr)Se

1
m

(
1− Se 1

m

)m
if ψ < 0

0 if ψ ≥ 0

. (2c)173

174

Here, α and n are the van Genuchten parameters, m = 1 − 1/n, and Θs and Θr are175

the saturated and residual liquid volume fractions, respectively.176

The free-surface fracture flow is governed by the continuity equation,177

dρ

dt
= −ρ(∇ · v), (3)178

and the momentum conservation equation,179

dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + g, (4)180

where ρ is the fluid density, v is the fluid velocity, P is the fluid pressure in the fracture,181

µ the viscosity, and g is the gravitational acceleration. At the water–air interface, the182

Young–Laplace boundary condition183

Pn = τw · n + Sσn, (5)184

and the continuity condition185

(v − vb) · n = 0, (6)186

are enforced. Here, τw = [µ(∇v + ∇vT)] is the viscous stress tensor, S is the inter-187

face curvature, σ is the surface tension, and vb is the boundary velocity, and n is the nor-188

mal vector pointing away from the non-wetting phase.189

The contact angle is prescribed at the water–air–solid contact line and the no-slip190

boundary condition at the boundary between the water and solid phases.191

To complete the formulation, we note that the pressure in the partially saturated192

matrix also satisfies the Young-Laplace boundary condition, where S is the curvature193

of the water-air interface in the pores of the matrix.194

To numerically solve these equations with the SPH method, we discretize the porous195

matrix with a set of solid particles and the fluid in the fracture with a set of fluid par-196

ticles. The positions of solid particles are fixed, and their velocities are set to zero. The197

positions and velocities of fluid particles are found from the momentum conservation equa-198

tion discretized with the weakly compressible pairwise SPH scheme (Morris et al., 1997;199

A. Tartakovsky & Meakin, 2005; Kordilla J., 2013; Kordilla et al., 2017):200

dvi
dt

= −
N∑
j=1

mj

(Pj
ρ2j

+
Pi
ρ2i

)rij
rij
· dW (rij , h)

drij
+

2µ

N∑
j=1

mj
vij

ρiρjrij
· dW (rij , h)

drij
+ g +

1

mi

N∑
j=1

Fij ,

(7)201
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and202

dri
dt

= vi, (8)203

where the summation is performed over all particles, including fluid and solid particles.204

In Eqs. (1)–(8), rij = ri−rj and rij = |ri−rj |, mi = mj = m0 is the (constant) mass205

of particle i and j, ρj and Pj are the density and pressure, respectively, of the fluid car-206

ried by particle j, and h is the support range (or, so-called, smoothing length) of the ker-207

nel W . Fluid and solid particles are assumed to have the same mass, and ρi is computed208

for both fluid and solid particles as (Morris et al., 1997; A. Tartakovsky & Meakin, 2005)209

ρi =

N∑
j=1

mjW (rij , h) . (9)210

The pressure of both fluid and solid particles is computed from the equation of state (Batchelor,211

1967):212

Pi = P0

{( ρi
ρ0

)γ
− 1
}
, (10)213

where214

P0 =
c2ρ0
γ

, (11)215

γ = 7, ρ0 is the equilibrium particle density, and the speed of sound c is chosen such216

that the relative density fluctuation |δρ|/ρ is small (less than 3%) to approximate the217

behaviour of an incompressible fluid.218

In Eqs. (15), (7), and (9), we use W in the form of a so-called “Wendland” kernel219

(Wendland, 1995):220

W = αk

 (1− |r|h )3 if 0 ≤ |r| < h

0 if |r| ≥ h
, (12)221

where αk = 168/16πh3.222

The force Fij in Eq. (7) is used to impose the Young–Laplace boundary condition.223

Following A. Tartakovsky and Meakin (2005); A. M. Tartakovsky and Panchenko (2016);224

Kordilla J. (2013); Kordilla et al. (2017), we employ a combination of kernel functions225

to generate a continuous function with short-range repulsive and long-range attractive226

components:227

Fij = sij


(ÃW̃ (rij , h1)

rij
rij

+ B̃W̃ (rij , h2)
rij
rij

) if rij ≤ h

0 if rij > h,

(13)228

where W̃ is the cubic spline function229

W̃ (rij , h) =


1− 3

2 (
rij
h )2 + 3

4 (
rij
h )3 if 0 ≤ r

h < 0.5

1
4 (2− rij

h )3 if 0.5 ≤ rij
h < 1

0 if
rij
h ≤ 1.

(14)230

Here, Ã, B̃, h1, and h2 determine the shape of Fij . We set Ã = 8, B̃ = −1, h1 = 0.5,231

and h2 = 1. For a given Fij shape, sij determines the magnitude of surface tension and232

the static contact angle.233

The parameter sij is equal to sff for the interaction between two fluid particles234

and ssf for the interaction between fluid and solid particles. The ratio of sff and ssf235

controls the static and dynamic contact angles. For a liquid to wet the surface, sff should236

be set greater than ssf , and vice versa.237
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The SPH discretization of Eqs. (1)–(2) is:238

dΘi

dt
= (Cmi

+ρigSeiSi)
dψi
dt

=

N∑
j=1

2
mimj

mi +mj

ρi + ρj
ρiρj

·Kskri(dψij+dzij) ·
dW (rij , h)

drij
. (15)239

Here, each particle (solid and fluid) is assigned an initial water content Θ and initial pres-240

sure head ψ. The water content of a solid particle is defined as the volume of water in241

the particle divided by the volume of the particle. The water content of fluid particles242

is defined as the volume of fluid carried by the particle divided by its initial volume.243

The fluid particles are initially fully saturated and are assigned Θf = 1.0 and ψf =244

0.0 m. Depending on the type of problem, the solid particles are assigned Θb = 0.0 or245

Θb equal to a residual water content. Once fluid particles come into contact with solid246

particles, the exchange of fluid is governed by the Richards equation, i.e., a pressure-head-247

dependent transfer is established. The changes in water content and pressure head for248

solid and fluid particles are found using Eq. (15). The maximum Θb of solid particles249

is equal to the saturated water content of the porous matrix based on the user-defined250

porosity.251

If the water content Θf of fluid particles falls below a critical threshold Θf < 0.99,252

we redistribute the total water content of all particles below the threshold such that most253

particles are fully saturated again with Θf = 1.0. Fluid particles that are still below254

the critical threshold after the redistribution are marked and removed at the end of the255

time step (Fig. 1). The residual water content (commonly less than the water content256

of one single particle) is stored and taken into account during the next time step. This257

procedure is is applied to all particles within a single MPI domain.258

free-
surface
waves

<1000µm

droplets
<5000µm

adsorbed
films

<100µm

dry
porous
matrix

wetting
front

diffuse
interface

fluid particles
Θf =1.0

boundary particles
Θb =0.0

dry

saturation losses
Θf <0.99

saturated particles

water
redistribution

removedfully saturated

n
ex

t 
st

ep

Figure 1. Particle removal algorithm.

To properly conserve the water balance in the system, we rely on the mass conser-259

vation equation:260

∂Θ

∂t
= ∇ · (

∑
qin −

∑
qout) = 0 , (16)261
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where q is the specific flux. For every time step, we calculate the sum of Θf and Θb for262

all fluid and boundary particles based on Eq. (17). To control the water balance in the263

system, the total Θ must stay constant:264

Θ =
∑

Θf +
∑

Θb = const. (17)265

We employ a modified Velocity Verlet time stepping scheme (Ganzenmüller et al.,266

2011):267

vi(t+ 1
2∆t) = vi + 1

2ai(t) (18a)268

v̄i(t+ ∆t) = vi(t) + ∆tai (18b)269

ri(t+ ∆t) = ri(t) + ∆tvi(t+ 1
2∆t) (18c)270

vi(t+ ∆t) = vi(t+ 1
2∆t) +

1

2
ai(t+ ∆t), (18d)271

272

where the new particle acceleration ai(t+ ∆t) can be obtained using an extrapolated273

velocity v̄i.274

Time step constraints are given by (A. Tartakovsky & Meakin, 2005):275

∆t ≤ 0.25h/3c (19a)276

∆t ≤ 0.25min(h/3 | ai |)1/2 (19b)277

∆t ≤ min(ρih
2/9µi), (19c)278

279

where | ai | is the magnitude of acceleration ai.280

3 Model Validation281

3.1 Constant pressure head boundary282

Here we provide a validation procedure for the SPH discretization of the Richards283

equation applied to solid particles representing the porous matrix. We model the pres-284

sure head distribution inside a vertical porous column with a constant pressure head bound-285

ary. The dimensions of the column are 0.5×0.5×2 m. This model setup includes 38 720286

solid particles, with an initial pressure head ψ0 = −2.0 m, isotropic conductivity Ks =287

1× 10−4 m s−1, Ss = 7.5× 10−5 Pa−1, Θs = 0.25, Θr = 0.0, and the van Genuchten288

parameters n = 2, m = 0.5, and α = 1 (Fig. 2a). A constant pressure head boundary289

with ψb = −0.5 m is prescribed at the bottom of the domain. The particles are placed290

on a uniform cubic lattice with a lattice size of ∆x = 2.5× 10−2 m. The mass and den-291

sity of each particle is m0 = 1× 10−3 kg and ρ0 = 1000 kg m−3, respectively. The smooth-292

ing length is set to h = 8.55× 10−2 m. This yields an average number of 40 interact-293

ing particles, which was shown to be sufficient to achieve an accurate solution (A. M. Tar-294

takovsky & Meakin, 2005; Kordilla J., 2013; Kordilla et al., 2017). The simulation is run295

on 16 processors. Figure 2 shows the SPH simulation results for the pressure head in-296

side the vertical column at 0, 1, 6, and 16 hours.297

Validation is accomplished by comparison with a FEM COMSOL model. Figure 3298

shows the pressure head distributions along the vertical column at 1, 6, and 16 hours for299

our SPH and for the COMSOL model. To quantify the difference in the SPH and COM-300

SOL pressure head solutions, for t = 1, 6, and 16 hours, we calculate the standard de-301

viation302

st =

√∑N
i=1(ψszi − ψczi)2

N − 1
, (20)303

and standard error304

SEt =
st√
N
, (21)305
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Figure 2. Pressure head distributions for a vertical column with constant pressure head

boundary at different times: (a) t0 = 0 h, (b) t1 = 1 h, (c) t2 = 6 h, and (d) t3 = 16 h.

where ψsz and ψcz are the SPH and COMSOL pressure head solutions at distances z =306

0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 m, and the number of measurements is307

N = 9. Table 1 provides standard deviations and standard errors for t = 1, 6, and 16308

hours. The average standard deviation is s̃t = 3.9× 10−2 m, and the average standard309

error is ˜SEt = 1.0× 10−2 m, which is less than the particle spacing ∆x and indicates310

excellent numerical accuracy of the SPH model.311

Pressure head (m)
-2.5 -2 -1.5 -1 -0.5

L
e
n
g
th

 (
m

)

0

0.5

1

1.5

2

6h

1h

16h

COMSOL
SPH

Figure 3. Comparison of pressure heads at different times for SPH and COMSOL models.

We compare our model to three laboratory experiments, (a) droplet imbibition into312

a porous permeable surface, (b) a flat fluid front resting on a porous permeable surface313

without a triple gas-solid-liquid line, and (c) a dynamic rivulet type fluid flowing on a314

porous surface. These three validation examples demonstrate important processes that315
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Table 1. Standard Deviations and standard errors of pressure heads at t = 1, 6, and 16 hours.

Standard deviation (m) Standard Error (m)

st=1h 3.9× 10−2 SEt=1h 1.3× 10−2

st=6h 3.0× 10−2 SEt=6h 1.0× 10−2

st=16h 2.1× 10−2 SEt=16h 0.7× 10−2

s̃t 3.0× 10−2 ˜SEt 1.0× 10−2

occur when simulating open surface, porous medium flow, and flow across the interface.316

The example (a) highlights the importance of proper treatment of the static triple con-317

tact line during imbibition and its effect on wetted area and static (dynamic) contact318

angles. Example (b) shows the ability of the model to simulate infiltration dynamics into319

a porous matrix for larger volumes of fluid and without the presence of a triple contact320

line at the solid-fluid interface. Finally, example (c) shows the ability of the model to321

recover the complex effects of matrix imbibition during rapid open surface flow (droplets,322

rivulets) and the respective outflow dynamics affected by the magnitude of retardation323

within the porous matrix.324

3.2 Drop imbibition325

3.2.1 Experimental and simulation setup326

First, we study the droplet imbibition into a porous sandstone. In the laboratory327

experiment, a water droplet with radius 1.8 mm is placed above a slice of sandstone (type328

“Seeberger”) at a distance of 5.8 mm between the surface and droplet center (Fig. 4a,329

top). The droplet size is controlled with an adjustable volume pipette. After the droplet330

is released from the pipette, it comes into contact with the sandstone surface and is slowly331

imbibed by the porous sandstone slice. During the experiment, changes in droplet size332

and shape are recorded with a camera with a frame rate 24 frames per second (about333

1 frame every 0.04 seconds), and the imbibition time is measured.334

Figure 4. Experimental (top) and simulation (bottom) results of droplet imbibition and sim-

ulated infiltration front (insets) at different times: (a) before start, (b) t1 = 0.4 s, (c) t2 = 1.84 s,

and (d) t3 = 2.68 s.
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The laboratory experiment is modelled by a rectangular block of solid particles that335

represents the sandstone slice and a sphere of fluid particles at a height of 5.8 mm above336

the solid surface (Fig. 4a, bottom). The dimensions of the solid block are 12×12×2 mm,337

and the water droplet has a radius of 1.8 mm.338

Solid particles are placed on a uniform cubic lattice with a lattice size of ∆x = 2.0× 10−4 m.339

Each particle (solid and fluid) has a density of ρ0 = 1000 kg/m3 and a mass m0 = ρ0(∆x)3 =340

8× 10−9 kg. The viscosity is set to µ = 1.296× 10−3 Pa s, the speed of sound to c =341

2.5 m/s, the gravitational acceleration to g = 9.81 m/s2, and the smoothing length to342

h = 3
√

40(∆x) = 6.84× 10−4 m, where 40 is the particle number density, i.e., the num-343

ber of interacting particles within the kernel range h. The system is resolved with 39 600344

solid and 3042 fluid particles. Input parameters are: porosity εp, permeability Ks, stor-345

age coefficient Ss, saturated Θs and residual Θr water content of the sandstone, and the346

van Genuchten parameters α, m, and n. These parameters can be estimated from the347

grain size and pore size distribution analysis of the Seeberger sandstone sample demon-348

strated in the following section. The simulation is run on 4 processors.349

3.2.2 Parameter estimation350

Effective porosity εp = 0.186 of the sandstone is determined by pore size analy-351

sis based on mercury porosimetry (Fig. 5, Sustrate (2017)).
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Figure 5. Porosimetry of Seeberger sandstone (Sustrate, 2017).

352

The (isotropic) conductivity Ks is estimated by Kozeny–Carmen empirical rela-353

tionship (Kozeny, 1927; Carman, 1937):354

Ks =
(ρg
µ

) ε3p
(1− εp)2

( d2m
180

)
. (22)355

Based on the results of a sieve analysis (Sustrate, 2017), the representative grain size was356

found to be dm ≈ 0.125 mm. Together with g = 9.81 m s−2 and ρ = 1000 kg m−3 the357

saturated hydraulic conductivity is determined with Eq. (22) as Ks = 6.39× 10−6 m s−1.358

The storage coefficient Ss is found from Eq. (23):359

Ss = εpχf + (1− εp)χp, (23)360

where χf = 4.6× 10−10 Pa−1 is the compressibility of water, and χp = 3.8× 10−6 Pa−1361

is the estimated compressibility of the porous matrix based on the porosity εp = 0.186362

(Hall et al., 1953). Using Eq. (23), we obtain the storage coefficient Ss = 3.09× 10−6 Pa−1.363
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The van Genuchten parameter α is found following Guarracino (2007):364

α =
( 2σcosθ

ρgrmax

)−1
, (24)365

where σ = 0.0735 N m−1 is the surface tension of water at 10 ◦C, θ = 90◦ is the static366

contact angle of the fluid on a solid surface, rmax = 15 µm is the maximum pore ra-367

dius (Fig. 5, Sustrate (2017)), g = 9.81 m s−2, and ρ = 1000 kg m−3. Employing Eq. (24),368

we obtain α ≈ 1.0 m−1. The parameters m and n = [1−m]−1 are found based on the369

fractal dimension D (Mandelbrot, 1983; Ghanbarian-Alavijeh et al., 2010):370

m =
3−D
4−D

. (25)371

The parameter D can be found from the mass-based relationship (Tyler & Wheatcraft,372

1992; Boadu, 2000):373

M(d < dm)

MT
=
( dm
dmax

)3−D
, (26)374

where dmax is the upper size limit of the particle sizes from the sieve analysis, MT is the375

total mass of a sample, and M(d < dm) is the mass of soil with grains smaller than dm.376

From the sieve analysis, we obtain MT = 159.0 g, M(d < dm) = 17.3 g, dm = 0.125 mm,377

and dmax = 1.0 mm. The parameter D = 1.93 is estimated from Eq. (26) by log trans-378

forming both sides of the equation, Eq. (25) yields m ≈ 0.5, and n = [1−m]−1 ≈ 2.0.379

3.2.3 Results380

During imbibition, the contact line between droplet and surface can evolve in two381

different ways (Marmur, 1988; Lee et al., 2016; Siregar, 2012): (1) the contact line moves382

while the static contact angle remains constant, or (2) the contact line is pinned to the383

surface while the contact angle decreases. According to our laboratory observations, droplet384

imbibition into the Seeberger sandstone takes place with the pinned contact line (Fig. 4a–385

d, top). The contact angle in this case varies from θ = 90◦ to its minimum value, while386

the contact line diameter stays equal to 3.9 mm until the droplet is completely absorbed387

after 2.8 s (Fig. 4, top).388

Figure 4 (bottom) shows the simulation results of the droplet imbibition at differ-389

ent times. Here, the fluid particles are initially fully saturated and have Θf = 1.0 and390

ψf = 0.0 m, and the solid particles are initially set to Θb = 0.01 and ψb = −3.8 m391

(fitted value for the given van Genuchten parameter set). The subscripts f and b stand392

for the fluid and boundary particles, respectively.393

To keep the contact line pinned to the surface after the droplet equilibrated on the394

surface, we linearly increase the interaction force ssf from ssf = 0.0 at teq = 0.4 s to395

ssf = 1× 10−5 at t′ = 1.06 s, and after t′ the force ssf stays equal its maximum value396

of 1× 10−5. The dynamic contact angle θ in this case decreases from θ = 90◦ at teq397

to its minimum value θ = 18◦ at t′, and stays equal to this value until the end of the398

simulation (Fig. 6). The contact diameter stays equal to 3.9 mm from teq to t′ = 1.06 s,399

when the droplet reaches its minimum dynamic contact angle.400

The absorption time for the simulated droplet is 2.59 s, which is close to the ex-401

perimental absorption time of 2.68 s.402

3.3 Water infiltration into sandstone403

Next, we consider the infiltration of 4.0 mL of water into a rectangular Seeberger404

sandstone sample. The dimensions of the sandstone block are 47.5×8.0×47.5 mm. The405

back, front, left, and right sides of the sample are sealed, and water is supplied to the406

top of the sample. During the experiment, we observe the infiltration front (Fig. 7, top)407

and measure the water level above the sandstone surface (Fig. 8).408
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Figure 6. Changes in droplet contact angle over time.

Figure 7. Comparison of experimental (top) and simulation (bottom) results of 4.0 mL of

water infiltrating into a sandstone at different times: (a) t1 = 3 s; (b) t2 = 16 s; (c) t3 = 30 s; (d)

t4 = 50 s; and (e) t5 = 100 s.

In the simulation, we created a block of 280 840 solid particles, which are placed409

on a uniform cubic lattice with a lattice size of ∆x = 4.0× 10−4 m. A block of 62 500410

(equivalent to 4.0 mL of water) fluid particles is placed above the solid (Fig. 7, bottom).411

To reproduce no-flow conditions at the back, front, left, and right side, we prescribe pe-412

riodic boundaries to the direction of length and width of the sample. Mass and density413

of each solid and fluid particle are m0 = 6.4× 10−8 kg and ρ0 = 1000 kg/m3, respec-414

tively, and the smoothing length is set to h = 1.37× 10−3 m. The viscosity is set to µ =415

1.296× 10−3 Pa s, the speed of sound to c = 2.0 m/s, and the gravitational accelera-416

tion to g = 9.81 m/s2.417
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The parameters εp, Ks, Ss, ψf , ψb, Θs, and Θr, and the van Genuchten α, m, and418

n are taken from the previous subsection. The simulation is run on 8 processors. Fig-419

ure 8 compares the experimental and simulation results of the decreasing water level and420

wetting depth during the infiltration into the Seeberger sandstone sample. Simulation
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(a)                                                                           (b)

Figure 8. Experimental and simulation measurements of (a) water level above the sandstone,

and (b) wetting depth during infiltration.

421

results are in good agreement with the laboratory experiment (Figs. 7 and 8). Small de-422

viations between simulated and experimental results in changes of water level (Fig.8, a)423

can be explained by small heterogeneities in the sandstone sample and the empirical es-424

timation of parameters based on poresize distributions in Section 3.2.2. In Fig.8(b) the425

simulated wetting front over time is a little bit larger than the experimental one. This426

deviation can be explained by boundary conditions. For the simulation, we apply peri-427

odic boundaries to the direction of length and width of the sample, which allows a uni-428

form water infiltration in each direction of the sample. Due to the sealed back, front, left,429

and right sides of the sample in the experiment, the infiltration velocity is most likely430

slightly faster in the center of the sample due to the influence of the boundary.431

3.4 Free-surface flow on a fracture wall adjacent to a porous sandstone432

matrix433

In this section, we compare the experimental and simulation results of free-surface434

flows on a fracture wall and in the adjacent permeable sandstone matrix and the respec-435

tive discharge rates at the outlet of the fracture.436

The experimental setup consists of a Seeberger sandstone sample with dimensions437

47.5×8.5× 47.5 mm, placed between two acrylic glass plates. A water inlet with a con-438

tinuous water flux of Q = 3.5 mL min−1 is located 5.0 mm above the upper right cor-439

ner of the sandstone. A silicon rubber sheet between the acrylic glass plate and the sam-440

ple prevents water flowing between the front and back side of the sample. The upper and441

right side surfaces are left open to allow free-surface films to evolve. During the exper-442

iment, the saturation of the porous matrix is observed (Fig. 9, top), and the water out-443

flow mass is measured (Fig. 10).444

In the SPH simulation, we create a block of 297 381 solid particles, which are placed445

on a uniform cubic lattice with a lattice size of ∆x = 4.0× 10−4 m. A certain amount446

of fluid particles (equivalent to the flux Q = 3.5 mL min−1) is added at each time step447
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Figure 9. Comparison of experimental (top) and simulation (bottom) results of free-surface

flows on a porous sandstone at different time intervals: (a) t1 = 5 s; (b) t2 = 22 s; (c) t3 = 44 s;

(d) t4 = 66 s; (e) t5 = 110 s.
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Figure 10. Experimental measurements and simulation results of (a) water outflow mass and

(b) wetted area.

to the upper right corner of the solid block within a small injection volume. The sim-448

ulation is run on 8 processors. The input simulation parameters are taken from the pre-449

vious subsection. Figure 9 (bottom) shows the porous matrix saturation during the sim-450

ulation. The experimental and simulation outflow mass measurements are shown in Fig. 10.451

The dotted line represents the outflow mass during the experiment, and the solid straight452

line represents the SPH simulation data. During the first 42 s of the experiment and 44 s453

of the simulation water infiltrates into the sandstone and accumulates mostly at the top454

of the sample, i.e., no outflow is observed. Once saturation of the sandstone reaches a455

critical threshold and enough water has accumulated at the top of the sandstone, rapid456

gravity-driven flow is initiated at the vertical surface and outflow increases nearly lin-457

early. At this point, the system is dominated by preferential flow at the free surface, and458

imbibition into the porous matrix decreases slowly. The simulation results are in good459

agreement with the laboratory experiment, both in terms of discharge rate, as well as460

the onset of the initial breakthrough.461
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4 Preferential flow dynamics at a fracture–matrix interface462

In fractured porous media in principle two flow types can be distinguished: (1) dif-463

fuse/porous medium flow, where water slowly and homogeneously saturates the porous464

medium, and (2) preferential flows, along macropores/fractures where water follows the465

path of least resistance and may bypass parts of the pore structure (?, ?). For fractured466

system with sufficient matrix porosity both flow types can occur simultaneously. The467

following section is devoted to the numerical investigation of flow type occurrence, i.e.,468

whether preferential or diffuse flow dominates the system. Here, we consider two types469

of vertical fractures, one with a permeable and one with an impermeable matrix. The470

simulation setup consists of two blocks of solid particles separated by a 2.0 mm fracture.471

Each block of solid particles has a width and length of 20.0 mm, and a thickness of 2.0 mm.472

The fluid is injected at a 12.0 mm distance that is measured from the fracture top473

with constant rates (Fig. 11). We consider 12 different injection rates, ranging from 2× 10−8474

to 2× 10−6 m3 s−1.475

(a)                                         (b)                                           (c)                                          (d)

Figure 11. Infiltration dynamics in fractures with impermeable (top) and permeable (bot-

tom) walls: (a) Q = 2 × 10−8 m3 s−1, t = 4.560 s; (b) Q = 8 × 10−8 m3 s−1, t = 0.912 s; (c)

Q = 6 × 10−7 m3 s−1, t = 0.251 s; and (d) Q = 1 × 10−6 m3 s−1, t = 0.228 s.

Mass and initial density of each solid and fluid particle are m0 = 8× 10−9 kg and476

ρ0 = 1000 kg/m3, respectively, and the smoothing length is set to h = 6.84× 10−4 m.477

In the NS equations, the viscosity is µ = 1.296× 10−3 Pa s, the speed of sound is c =478

2.5 m/s, and the gravitational acceleration is g = 9.81 m/s2. In the Richards equation,479

the parameters εp, Ks, Ss, Θs, Θr, ψf , and ψb, and the van Genuchten α, m, and n are480

the same as described in Section 3. All simulations are run on 10 processors.481

Based on the flux supplied to the fracture, the infiltration process in fractures with482

impermeable (Fig. 11, top) and permeable (Fig. 11, bottom) walls can be characterized483

according to one of the following scenarios (Fig. 12):484

(1) For small fluxes Q < 6× 10−8 m3 s−1 (Fig. 11 a), accumulation of water at485

the top (ponding effect) and fracture flow occur simultaneously.486

(2) For fluxes Q in the range between 6× 10−8 and 1× 10−7 m3 s−1 (Fig. 11 b),487

water accumulates at the top of the solid; once a sufficient quantity of water has accu-488

mulated at the top, preferential/fracture flow occurs. A similar scenario was observed489

during the laboratory experiment for model validation (Section 3.4).490

(3) For fluxes Q in the range between 1× 10−7 and 8× 10−7 m3 s−1 (Fig. 11 c),491

preferential flow and ponding occur simultaneously.492
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(4) For large Q < 8× 10−7 m3 s−1 (Fig. 11 d), preferential flow dominates sys-493

tem dynamics. Once, the fracture aperture is fully saturated, ponding occurs.494
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Figure 12. Four scenarios of infiltration dynamics in fractures with impermeable and perme-

able walls: (1) for Q < 6 × 10−8 m3 s−1, preferential flow and ponding occur simultaneously; (2)

for Q in the range between 6 × 10−8 and 1 × 10−7 m3 s−1, ponding dominates; (3) for Q in the

range between 1 × 10−7 and 8 × 10−7 m3 s−1, preferential flow and ponding occur simultaneously;

and (4) for Q < 8 × 10−7 m3 s−1, preferential flow dominates.

5 Partially saturated flow in a rough walled fracture embedded in a495

porous medium496

In the following section, we study the influence of fracture wall permeability on ar-497

rival time and on volume of water stored in the porous matrix for different infiltration498

rates. For the simulations, we create two rough parallel fracture surfaces separated by499

a 2.0 mm aperture. Each fracture surface has a width of 50.0 mm, a length of 100.0 mm,500

and a thickness of 10.0 mm. The roughness of the solid surface is characterized by the501

Hurst exponent ζ (Bouchaud et al., 1990; Shigorina et al., 2019) and an initial maximum502

value ∆ for the random displacement from a planar surface. It was shown that ζ often503

assumes values of 0.80± 0.05 for consolidated rocks (Bouchaud, 1997; Ponson et al., 2006);504

however, wider ranges within 0 < ζ < 0.9 have been measured as well (Sahimi, 2011;505

Boffa et al., 1998). Here, we chose ζ = 0.75 and ∆ = 40.0 mm. The rough fracture506

surfaces are resolved with 6 784 800 solid particles with a particle spacing of ∆x = 2.0× 10−4 m.507

Simulations are run on 32 processors. The amount of fluid particles depends on the flux508

Q and the simulation duration. The parameters m0, ρ0, h, µ, c, g, εp, Ks, Ss, Θs, Θr,509

ψf , and ψb, and the van Genuchten parameters α, m, and n are the same as described510

in Section 4.511

We consider two types of rough fractures: (1) one with an impermeable matrix (Fig. 13,512

top) and (2) one with a permeable matrix in which Ks = 6.39× 10−6 m s−1 (Fig. 13,513

bottom). Under the term fracture wall, we consider a thick porous (permeable or imper-514

meable) matrix adjacent to the fracture void space. The fluid is injected along the top515

of the fracture with constant volumetric flux Q. Figure 13 shows the flow mode distri-516

butions inside fractures with impermeable and permeable walls for three infiltration rates:517

Q = 3× 10−6 m3 s−1 (Fig. 13a), Q = 9× 10−6 m3 s−1 (Fig. 13b), and Q = 2× 10−5 m3 s−1518
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(Fig. 13c) at arrival times for the fracture with impermeable walls. We measure arrival519

time as the time period between the start of the fluid injection and the time when the520

fluid in the fracture void space reaches the bottom of the fracture.521

Figure 13. Flow mode distributions inside a rough fracture with impermeable (top) and

permeable (bottom) walls for different fluxes at arrival times for permeable fracture: (a)

Q = 3 × 10−6 m3 s−1, t = 1.026 s; (b) Q = 9 × 10−6 m3 s−1, t = 0.570 s; (c) Q = 2 × 10−5 m3 s−1,

t = 0.388 s.

For the lower infiltration rate (Q = 3× 10−6 m3 s−1), the dominating flow modes522

are droplets and a combination between temporary rivulets (slugs and elongated droplets)523

and snapping droplets (Fig. 9a). For the higher flow rate Q = 9× 10−6 m3 s−1, we ob-524

serve a transition into a rivulet-dominated regime with the occasional (lateral) merging525

of rivulets. For even higher flow rates (Q = 2× 10−5 m3 s−1), flow transitions into snap-526

ping films that partially break up into rivulets.527

Figure 13 (bottom) shows the saturation of the porous matrix. In contrast to sim-528

ulations that employ an impermeable matrix (Fig. 13, top), a lower volume of fluid oc-529

cupies the fracture void space and hence alters the flow-rate-dependent formation of flow530

modes. Figure 14 compares the fluid arrival times for fractures with permeable and im-531

permeable walls. The ratios t∗ between arrival times for permeable and impermeable ma-532

trix systems are listed in Table 2.533

t∗ =
tim
tp
, (27)534
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where tim and tp are the arrival times for an impermeable and permeable matrix, respec-535

tively. As expected, the simulation results indicate a delay in arrival time when a per-536

meable matrix is present (Fig. 14). For an infiltration rate Q = 3× 10−6 m3 s−1, we537

measured a value of t∗ = 2.11, i.e., for a permeable fracture matrix breakthrough that538

is about two times slower than the breakthrough for an impermeable one. For the high-539

est infiltration rate of Q = 2× 10−5 m3 s−1, water is rapidly channeled through the frac-540

ture void space to the bottom of the fracture without any significant delay compared to541

a fracture with permeable walls.
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Figure 14. Dependence of fluid arrival time on infiltration rate for an impermeable and per-

meable matrix.

542

The volume of water stored in the fracture was calculated by the outflow ratio η:543

η = 1− Qout
Q

, (28)544

where Qout is the volume of water leaving the system at the bottom of the fracture di-545

vided by time, and η assumes values between 0 and 1. When η = 1, no fracture out-546

flow occurs and all of the injected water is kept in the porous matrix within the fracture547

void space or on the fracture surface, while a value of η close to zero represents a steady548

state condition where the outflow rate is equal to the infiltration rate. Figure 15 com-549

pares changes in η with time for an impermeable and permeable matrix. The difference550

in η between impermeable and permeable matrix systems corresponds to the relative amount551

of water stored in the porous matrix. Table 2 provides the difference in outflow ratio ∆η552

for an impermeable and permeable matrix at t = 3 s for different infiltration rates. The553

largest value of ∆ηt=3 = 0.71 occurs at the lowest flux of Q = 3× 10−6 m3 s−1, indi-554

cating that more than 70% of water is stored within the porous matrix. For larger in-555

filtration rates Q = 9× 10−6 and Q = 2× 10−5 m3 s−1, the outflow ratio decreases556

with ∆ηt=3 = 0.25 and 0.18, respectively. Due to the limited uptake capacity of the557

matrix, a smaller amount of water infiltrates into the porous matrix.558

6 Discussion559

In this paper, we present a novel multiscale SPH model investigating preferential560

flow dynamics in fractures adjacent to a porous matrix. As expected flow in fractures561
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Table 2. Statistical properties for different fluxes in rough fractures, respectively.

Q (m3/s) 3× 10−6 9× 10−6 2× 10−5

t∗ 2.11 1.38 1.24
∆ηt=3 0.71 0.25 0.18
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Figure 15. The outflow ratio over time for different infiltration rates: (a) Q =

3 × 10−6 m3 s−1; (b) Q = 9 × 10−6 m3 s−1; and (c) Q = 2 × 105 m3 s−1.

is much faster than in the porous matrix, yet flow within fractures is strongly affected562

by the interaction with the porous matrix and the diffuse flow component in the adja-563

cent porous matrix.564

Specifically, we study infiltration dynamics in a 2.0 mm fracture for fluxes ranging565

from 2× 10−8 to 2× 10−6 m3 s−1. For a given water inlet location, infiltration is char-566

acterized by one of the following four scenarios (see Figs. 11 and 12). In the first sce-567

nario (low infiltration rates of Q < 6× 10−8 m3 s−1), we observe droplet flow in the ver-568

tical fracture with some water accumulating at the top horizontal surface. In the sec-569

ond scenario (Q between 6× 10−8 and 1× 10−7 m3 s−1), the ponding effect dominates.570

In this case, water accumulates first at the top, until saturation is high enough to ac-571

tivate fracture flow. In the third case (Q is in the range between 1× 10−7 and 8× 10−7 m3 s−1),572

ponding and fracture flow occur simultaneously. As soon as fluid reaches the fracture573

top, it separates into two streams. One enters the fracture, while the other one connects574

to the horizontal top surface and feeds a growing droplet/puddle. In the last scenario575

(Q < 8× 10−7 m3 s−1), all water enters the vertical fracture. If the infiltration rate is576

high enough to fill all fracture space with water, water eventually starts accumulating577

at the horizontal surface. In all of these cases, preferential flow transmits water rapidly578

to the bottom of the fracture, while matrix flow occurs much slower than fracture flow579

even under saturated porous medium conditions.580

Next, we investigated infiltration dynamics in rough fractures with permeable and581

impermeable walls. We simulate a continuous water flux supplied to the top of a frac-582

ture with 50.0 mm width, 100.0 mm length, a 2.0 mm aperture, and 10.0 mm wall thick-583

ness. The roughness of the fracture walls is characterized by the Hurst coefficient ζ =584

0.75 and ∆ = 40.0 mm. We consider three infiltration rates of Q = 3× 10−6, Q =585

9× 10−6, and Q = 2× 10−5 m3 s−1. The simulation results show a delay in arrival times586

for a fracture with permeable walls as compared to a fracture with impermeable walls,587

especially for Q = 3× 10−6 m3 s−1 because low free-surface velocities and/or high im-588

bibition capacity causes water to efficiently saturate the porous matrix. For Q = 2× 10−5 m3 s−1,589

water flows rapidly to the bottom of the fracture without any significant delay in arrival590

time. Under the chosen conditions and depending on the flow rate, the permeable frac-591
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ture walls represent an efficient storage component capable of storing more than 70% of592

the infiltrated water.593

7 Conclusion594

We developed a fully parallelized multiscale SPH model to study infiltration dy-595

namics in porous-fractured rock formations. In our model, flow in the porous matrix is596

governed by the Richards (1931) equation, which is coupled to the free-surface flow in597

the adjacent fracture; the flow itself is governed by the Navier–Stokes equation. Inflow598

dynamics from the fracture into the porous matrix are realized by an efficient particle599

removal algorithm and a virtual water redistribution formulation in order to enforce mass600

and momentum conservation. The model is validated by comparison with a numerical601

COMSOL model and with laboratory experiments.602

The SPH model for free-surface flow in fractures was proposed and validated in our603

previous work. To demonstrate the implementation of the Richards equation in the SPH604

model, we calculated the time-dependent pressure head distribution inside a vertical solid605

column with a constant pressure head boundary and found a good agreement with the606

corresponding finite element solution obtained with the COMSOL package.607

The validation of infiltration dynamics, i.e., imbibition from a free-surface flow do-608

main into the porous matrix, is carried out via comparison to three types of small-scale609

laboratory experiments: (1) droplet imbibition on a horizontal sandstone plate, (2) wa-610

ter column infiltration into a sandstone sample, and (3) discharge of free-surface flow on611

a porous medium. For the droplet imbibition experiment, we observe changes in droplet612

size and shape, and measure the imbibition time. In the second experiment, time-dependent613

drawdown of a water column with a total initial volume of 4.0 mL above a sandstone slice614

is measured, and the saturation front in the porous matrix is observed visually. In the615

third experiment, we consider a continuous water flux of 3.5 mL min−1 supplied to the616

top right corner of a rectangular sandstone sample. Water accumulates at the top sur-617

face and is allowed to discharge across the open right vertical surface. In order to quan-618

tify the outflow and interaction of the fluid with the porous matrix, we measure the out-619

flow mass leaving the system and visually determine the saturation of the porous ma-620

trix. All laboratory experiments are carried out with Seeberger sandstone samples. The621

permeability and van Genuchten parameters of the sandstone are estimated from pore622

size and grain size distribution analyses. Our model is in very good agreement with all623

considered types of laboratory experiments.624

Next, we investigate under which condition preferential flow occurs. Our simula-625

tion results show, that a preferential flow occurs simultaneously with diffuse flow and626

transmits water much faster, providing rapid aquifer recharge even under unsaturated627

and partially saturated conditions. Depending on infiltration rate and water inlet loca-628

tion, preferential flow, ponding, or both can be dominant in the system. For ponding-629

dominated systems, we observe a short delay in fracture flow. In this case, the fracture630

transmits water if enough water accumulates at the top of the solid surface. For preferential-631

flow-dominated systems, fracture flow occurs immediately, and ponding occurs only if632

the fracture aperture is fully saturated.633

Finally, we study infiltration dynamics of rough fractures with impermeable and634

permeable walls. The 2.0 mm aperture fracture has a 50.0 mm width, 100.0 mm length,635

and 10.0 mm wall thickness. The roughness of the fracture walls is characterized by the636

Hurst coefficient. Using our fully coupled numerical model, we demonstrate the influ-637

ence of the fracture wall permeability on the fluid arrival time for different infiltration638

rates, as well as on the volume of water stored in the porous matrix adjacent to the frac-639

ture. We observe that the fracture wall’s permeability has a significant influence on the640

arrival time and outflow ratio for low infiltration rates.641
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Appendix A Fundamentals of Smoothed Particle Hydrodynamics method642

SPH is a mesh-free Lagrangian method where fluids are discretized with a set of643

N points, commonly referred to as particles. Each particle is defined by its position ri,644

mass mi, density ρi, and velocity vi, i = 1, ..., N . The solid particles do not have a phys-645

ical meaning, these are computational particles that are used to prescribe boundary con-646

ditions for the SPH Navier-Stokes equation.647

SPH is based on the approximation of a continuous function and its derivative:

f(r) =

N∑
j

mj

ρj
f(rj)W (|r− rj |, h), (A1)

∇f(r) =

N∑
j

mj

ρj
f(rj)∇W (|r− rj |, h) , (A2)

where the kernel W (|r− rj |, h) (Fig. A1) satisfies the normalization condition,∫
W (|r− rj |, h)dr = 1, (A3)

and has compact support h (h is also called as a smoothing length, or kernel length). In
the limit of h→ 0, W approaches the Dirac delta function δ(|r− rj |):

lim
h→0

W (|r− rj |, h) = δ(|r− rj |). (A4)

j
rij

W

Figure A1. Kernel W with a circular support domain of length h and value W (rij , h) be-

tween particles i and j at a distance rij .

A number of functional forms of W have been used in the literature. In this study,
we use W in the form of a so-called “Wendland” kernel (Wendland, 1995):

W (rij , h) = αk

 (1− rij
h )4(4

rij
h + 1) if 0 ≤ rij < h

0 if rij ≥ h
, (A5)

where αk = 21/(2πh3).648

The main equations, which we discretize with the PF-SPH method are the conti-
nuity equation,

dρ

dt
= −ρ∇ · v, (A6)
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the momentum conservation equation,

dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + g, (A7)

and the Richards equation,

∂Θ(ψ)

∂t
= (Cm + ρgSeSs)

∂ψ

∂t
= ∇ ·Kskr(ψ)∇ψ +

∂K(ψ)

∂z
. (A8)

The parameters are the pressure P , viscosity µ, gravity g, water content Θ, pressure head649

ψ, specific storage coefficient Ss, Cm specific moisture capacity, effective saturation Se,650

relative hydraulic conductivity kr, and saturated hydraulic conductivity Ks.651

In this framework, we consider two types of particles: (1) solid/boundary particles,652

which represent a solid surface, fracture walls and/or porous media, and (2) fluid/water653

particles. The solid particles are immobile, and placed on a uniform cubic lattice with654

a lattice size ∆x. The spacing ∆x may vary depending on the simulation setup and on655

the required resolution. The fluid particles are initially placed on a uniform cubic lat-656

tice with the same ∆x as solid particles, or they can be randomly added to the simu-657

lation domain within a defined region during the simulation. Changes in positions of fluid658

particles are found via an SPH discretization of Eqs.(A6)-(A7):659

dri
dt

= vi, (A9)

dvi
dt

= −
N∑
j=1

mj

(Pj
ρ2j

+
Pi
ρ2i

)rij
rij
· dW (rij , h)

drij
+ 2µ

N∑
j=1

mj
vij

ρiρjrij
· dW (rij , h)

drij

+ g +
1

mi

N∑
j=1

Fij , (A10)

where the density ρi is obtained from kernel summation as

ρi =

N∑
j=1

mjW (rij , h) . (A11)

This expression conserves mass exactly and, therefore, can be used instead of the mass660

conservation (continuity) Eq.(A6).661

The particle-particle interaction force Fij in Eq. (A10) is used to generate surface
tension and the fluid wetting behavior. Here, we use Fij in the form (Kordilla J., 2013;
Kordilla et al., 2017):

Fij = sij

[
ÃijW̃

(
rij ,

h

2

)rij
rij
− W̃ (rij , h)

rij
rij

]
, (A12)

where W̃ is a cubic spline function:

W̃ (rij , h) =


1− 3

2 ( r
h )2 + 3

4 ( r
h )3 if 0 ≤ r

h < 0.5

1
4 (2− r

h )3 if 0.5 ≤ r
h < 1

0 if r
h ≥ 1

(A13)

Here, sij , Ã, B̃, h1, and h2 are the parameters in the function Fij(r), which com-662

bination determines the surface tension. Following (Kordilla et al., 2017), we set Ã =663
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8, B̃ = −1, h1 = 0.5, and h2 = 1 and use sij as a calibration parameter to match the664

surface tension.665

Our SPH model does not require the discretization of an air-phase, which strongly666

reduces computational costs, specifically when a large continuous air-phase is present.667

However, this also prevents the implementation of continuum surface force methods for668

the calculation of surface tension. Interaction forces are a suitable and efficient alterna-669

tive and work for multi-phase as well as pseudo-multiphase (i.e. fluid + non-discretized670

airphase) problems. The exact analytical relationship between pairwise interaction forces671

and surface tension has been demonstrate by (A. M. Tartakovsky & Panchenko, 2016).672

In our model, we have two types of interaction forces: between two fluid particles673

(with a coefficient sff ), and between one solid and one fluid particle (with a coefficient674

ssf ). The coefficient sff is chosen in such a way, that water-air pressure difference sat-675

isfies the water surface tension. The coefficient ssf controls the static contact angle of676

the fluid on the solid surface. As larger the ssf , as more fluid attracted to the solid and677

as smaller the static contact angle is.678

The interaction force as a function of r is shown in Fig. A2. The balance between679

attraction and repulsion keeps particles at a certain distance between each other.680

~ 
AW

~ 
AW
~ 
BW

~ 

Fij

F i
j

8

0

-1

0 1

repulsion

attraction

rij/h

Figure A2. Interaction force between particle i and j depending on a distance rij between

them and kernel length h.

The smoothing length h is chosen for each simulation in such a way that h = 3
√

40(∆x),681

where ∆x is the particle spacing, and 40 is the particle number density, i.e., the num-682

ber of interacting particles within the kernel range h, which was shown to yield sufficient683

numerical accuracy (A. M. Tartakovsky & Meakin, 2005; Kordilla J., 2013; Kordilla et684

al., 2017). The mass of each particle m0 is set to m0 = ρ0(∆x)3. Both solid and fluid685

particles have the same mass and volume, and hence the same smoothing length h.686
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Acronyms687

EOS Equation of State688

FEM Finite element model689

LAMMPS Large-Scale Atomic/Molecular Massively Parallel Simulator690

MPI Message Passing Interface691

NS Navier-Stokes equation692

PF-SPH Pairwise-Force Smoothed Particle Hydrodynamics693

PDE Partial differential equation694

REV Representative Elementary Volume695

Notation696

ai particle acceleration697

Ã interaction forces coefficient698

B̃ interaction forces coefficient699

c speed of sound700

Cm specific moisture capacity701

D fractal dimension702

dm representative grain size703

dmax upper grain size limit704

F force705

Fij interaction force acting between particle i and j706

g gravitational acceleration707

h kernel length708

i particle index709

j particle index710

kr relative hydraulic conductivity711

Ks saturated hydraulic conductivity712

m van Genuchten parameter713

m0 particle mass714

M(d < dm) percentage of mass less than dm715

Mout outflow mass716

Mt total mass717

n van Genuchten parameter718

n normal vector719

N number of measurements720

P pressure721

q specific flux722

Q volumetric flux723

Qin inflow volumetric flux724

Qout outflow volumetric flux725

r position vector726

rij distance between particle i and j727

rmax maximum pore radius728

S water-air-solid contact line729

st standard deviation730

Se effective saturation731

sff fluid-fluid interaction coefficient732

ssf solid-fluid interaction coefficient733

Ss specific storage coefficient734
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SEt standard error735

t time736

t∗ ratio between arrival times737

tim arrival time for impermeable fracture738

tp arrival time for permeable fracture739

v particle velocity vector740

W kernel function741

W̃ interaction forces kernel function742

α van Genuchten parameter743

αk Wendland function coefficient744

γ EOS coefficient745

∆ Hurst exponent random variance746

∆t time step747

∆x particle spacing748

εp porosity749

µ viscosity750

η outflow ratio751

∆ηt=3 difference in outflow ratios at t = 3s752

ψ pressure head753

ψb pressure head of boundary particles754

ψf pressure head of fluid particles755

ψd draining pressure head756

ψw wetting pressure head757

ρ density758

σ surface tension759

τw viscous stress tensor760

Θ water content761

Θb water content of boundary particles762

Θf water content of fluid particles763

Θr residual water content764

Θs saturated water content765

θ contact angle766

χf fluid compressibility767

χp porous matrix compressibility768

ζ Hurst exponent769
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