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Abstract 20 

Martian meteoritic petrology and regional chemistry of Hesperian-Amazonian volcanism support 21 

secularly decreasing degrees of partial melting and thickening crust underlain by simple mantle 22 

convection. However, the applicability of this interior evolution model and resurfacing trends to 23 

the Noachian remains unknown.  Using regional gamma spectroscopy and geophysical analysis, 24 

we find that supereruptions characterized Noachian volcanism in NW Arabia with co-enriched 25 

K, Th, and Si. Geophysical analysis reveals elastic thickness values below 20 km, indicating a 26 

heat flux exceeding many Hesperian volcanoes. Collectively, our results support large ion 27 

lithophile loss from low degrees of partial melting of the Noachian mantle, signifying an early 28 

stage of interior evolution that contrasts with the Hesperian-Amazonian model. Regional 29 

chemistry further suggests climate-altering supereruptive exhalations of ~109 kg S-phases.    30 

Plain Language Summary 31 

The chemical evolution of the martian mantle has long been hypothesized to follow a simple 32 

monotonic trend in incompatible elements between the mantle and crust. Since incompatible 33 

elements partition into the melt first, on a planet with decreasing partial melting as the crust 34 

thickens without recycling (i.e. Mars) the abundance of these elements within extruded rocks 35 

would increase with increasing time or volcanic activity. We find that this model oversimplifies 36 

the distinctness of the martian mantle during the Noachian. In this study, we show that a 37 

Noachian-aged region on Mars exhibits regional geochemical trends that are consistent with 38 

explosive igneous activity and that the abundances of incompatible elements (K, Th) within this 39 

region suggest low partial melting. We corroborate these findings with estimations of elastic 40 

thickness and heat flux in this region.      41 

 42 

1 Introduction 43 

Resurfacing from voluminous, explosive volcanic eruptions can provide compositional 44 

insight into mantle-depth geology on Earth (Annen et al., 2006; Reid, 2008). While their martian 45 

counterparts during the Noachian may likewise constrain the chemical evolution of the early 46 

mantle, they are mostly uncharacterized due to scarce chemical evidence of confirmed Noachian 47 

volcanoes (Balta & McSween, 2013; Baratoux et al., 2011). Nevertheless, Noachian 48 

supereruptions (eruptions that expel a volume of material exceeding 450 km3  (Baines & Sparks, 49 

2005)) have been hypothesized for Mars (Michalski & Bleacher, 2013) and their existence 50 
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inferred through observations of expansive friable deposits (Bandfield et al., 2013; Michalski & 51 

Bleacher, 2013). Prior works propose super-eruptive paterae in NW Arabia (Michalski & 52 

Bleacher, 2013), and mineralogical evidence of their associated eruptions in stratigraphy 53 

(Whelley et al., 2021). Notably, these (Kerber et al., 2012; Whelley et al., 2021) are within an 54 

igneous chemical province (Taylor et al., 2010) of unknown provenance. 55 

The chemistry of any supereruptions would provide a unique perspective into the melt 56 

processes of the martian mantle during the Noachian, while advancing prior mantle evolution 57 

models that were based on Hesperian-Amazonian regional geochemistry and martian meteorites. 58 

Some (i.e., Balta & McSween, 2013; Baratoux et al., 2011), predict an increase in incompatible 59 

elements (K, Th) within volcanic deposits through time corresponding to decreasing fractional 60 

melting (i.e., degree of partial melting), consequently necessitating highest fractional melting 61 

within the martian interior during the Noachian. Contrasting models, primarily based on thermal 62 

modelling, suggest rapid cooling of the martian mantle through significant (> 50%) removal of 63 

incompatible elements in forming the primary Noachian crust (Grott et al., 2012; Ojha, Karimi, 64 

et al., 2019; Plesa et al., 2015), leading to a secular decrease in incompatibles within volcanic 65 

deposits. Here we investigate which of these models best explains the geochemistry and 66 

geophysical data we have analyzed over NW Arabia.  67 

 68 

2 Data and Methods 69 

We identify a volcanic supereruption context region (SCR), located within a larger region 70 

(that we call broad SCR; BSCR), collectively bound by the chemical province in NW Arabia 71 

(Fig. 1). Accordingly, we delineate SCR and BSCR as distinct entities without overlapping 72 

chemical map pixels (derived from the Mars Odyssey Gamma Ray Spectroscopy, GRS, spectra), 73 
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maintaining consistency in mapped geology while also maximizing spatial extent to maintain 74 

sufficient coverage (> 10 pixels) for chemical analyses (Boynton et al., 2007; Carnes et al., 2017; 75 

Tanaka et al., 2014) (Fig. 1). Such GRS-derived chemical data are ideal for investigating 76 

regional trends in the bulk regolith, due to decimeter scale sampling depths and coarse spatial 77 

resolution throughout much of the mid-to-low latitudes (about 60o to -60o), with each pixel 78 

covering roughly 450 km (Boynton et al., 2007; Hood et al., 2016). While supereruptions could 79 

have a dispersed global footprint, SCR and BSCR target the area that would bear the thickest, 80 

most weathering-resistant, and compositionally representative units derived from potential 81 

supereruptions (Whelley et al., 2021; C. J. N. Wilson, 2008) tied to four putative Noachian 82 

paterae (Michalski & Bleacher, 2013).  83 

We emphasize regional K-Th and S-Cl concentration trends because these four elements 84 

can effectively discriminate among alternative geochemical processes, such as volcanic 85 

(Baratoux et al., 2011), subaqueous deposition and alteration (Ehlmann et al., 2011; Taylor et al., 86 

2006), and dust accumulation (Ojha et al., 2018). For example, K and Th fractionation trends can 87 

reveal the extent of aqueous alteration of soil and bedrock (basalt) in a region (Sawyer et al., 88 

2000; Taylor et al., 2006, 2010). K and Th are also indicative of volcanic origins because they 89 

correlate strongly in igneous rocks as large ion lithophiles (LIL), in part due to their 90 

incompatibility with cation sites in silicates (Taylor et al., 2006).  91 

We also compare S and Cl trends, because they are present in volatile phases of terrestrial 92 

volcanic degassing and may function similarly on Mars (Diez et al., 2009; Gaillard & Scaillet, 93 

2009; Keller et al., 2006; Ojha et al., 2018; Ojha, Karunatillake, et al., 2019). As key volatiles, 94 

they can serve as a proxy for eruptive explosivity, and offer insight into mantle pressure regimes 95 

(Baratoux et al., 2011; Burton et al., 2009; Gasnault et al., 2010; Hood et al., 2016; Ojha et al., 96 
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2018; Ojha, Karunatillake, et al., 2019; Spilliaert et al., 2006; Taylor et al., 2010). Furthermore, 97 

S and Cl have been used to characterize a global dust source region for Mars, through their 98 

consistent molar ratio observed in situ and within heavily mantled locales (Berger et al., 2016; 99 

Kerber et al., 2011; Ojha et al., 2018).  100 

We complement our geochemical analyses with geophysical results from gravity and 101 

topography to estimate load density and elastic thickness of the lithosphere within SCR. Elastic 102 

thickness is a key parameter, as it represents the thickness of the deformable lithosphere, a proxy 103 

for heat flow and how coupled the lithosphere is to the mantle. As such, elastic thickness can 104 

offer insight into the thermal environment of a region (Belleguic et al., 2005; Grott & Wieczorek, 105 

2012; McGovern et al., 2004) and the density of the crustal load provides insight into its 106 

composition (Ojha & Lewis, 2018). 107 

Our investigations of regional geochemistry involve comparative analysis between SCR 108 

and other geologically unique regions on Mars. However, instead of an exhaustive set of regional 109 

chemical references, we consider specific regions which are geographically distributed for 110 

chemical comparisons (Fig. 1). This is because the early geologic history of Mars is difficult to 111 

interpret due to diverse chemical overprinting resulting from a multitude of processes, including 112 

magmatism (Balta & McSween, 2013; Baratoux et al., 2011, 2013), dust transport (Ojha et al., 113 

2018) and aqueous alteration (Bibring et al., 2006; Ehlmann et al., 2011). Our comparative 114 

region selections maximize insight from diverse subaerial sedimentary and igneous processes 115 

and minimize bias from chemical overprinting across proximal regions (Table 1). We delineate 116 

these regions following topography and mapped geology (Tanaka et al., 2014) and compare 117 

subsequently using GRS-derived geochemistry.   118 
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3 Results and Discussion  119 

The K and Th trends (Fig. 2A) within SCR are most consistent with igneous 120 

geochemistry of an enriched mantle source (Hefferan & O’Brien, 2010). SCR has the highest 121 

mean value of K and Th compared to the reference regions, a much lower dispersion in overall K 122 

and Th abundances in comparison to similarly enriched regions (i.e. Isidis and Apollinaris 123 

Mons), and a K/Th ratio resembling the crustal average (Table 1). A supereruption within SCR 124 

would have rapidly exhausted the source magma and terminated melting over a relatively short 125 

timescale (Scott et al., 2001). SCR’s limited dispersion in K and Th (Fig. 2A) is consistent with 126 

fast and voluminous igneous emplacement. In contrast, the large dispersion in Th and lower 127 

abundances of K and Th observed for Apollinaris correspond to its ~2 Ma eruptive life (Robbins 128 

et al., 2011) that may span a chemical transition in the martian mantle (Balta & McSween, 2013).  129 

The fast and voluminous emplacement indicated by the K and Th trends within SCR is 130 

unique among other regions on Mars. For example, our volcanic reference regions all appear to 131 

exhibit Th abundances consistent with mantle evolution models that suggest increasing 132 

abundances of incompatible elements with increasingly younger instances of magmatism (Fig. 133 

2A, Table 1) (Balta & McSween, 2013; Baratoux et al., 2011). These volcanoes also have K/Th 134 

mass ratios that resemble the crustal average more than sedimentary references, though some 135 

variability in overall abundances of K and Th among the volcanic references is also evident. K 136 

and Th abundances are affected by the hydration state of the mantle (Balta & McSween, 2013), 137 

by variations in chemistry and melt processes of martian mantle sources driven in part by 138 

enriched pockets of residual melt near the crust mantle boundary (Basu Sarbadhikari et al., 139 

2017), or by differing melt conditions (Baratoux et al., 2011; Hefferan & O’Brien, 2010). While 140 

these mechanisms may result in K/Th ratios that are distinct from the global spatial correlation, 141 
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K and Th abundances that strongly diverge from global linearity are generally due to secondary 142 

alteration (Taylor et al., 2006). This phenomenon is especially noticeable in our sedimentary 143 

reference regions (Fig. 2A), which consistently show a weaker bivariate correlation between K 144 

and Th, possibly from chemical weathering of igneous material that initially constituted the basin 145 

floors (Ehlmann et al., 2011; Taylor et al., 2006; Zalewska, 2013). In addition, our sedimentary 146 

references have K/Th ratios significantly above the crustal average (Table 1), consistent with 147 

low-pH alteration (Taylor et al., 2006; Zalewska, 2013).  148 

Martian dust is enriched in S and Cl (Berger et al., 2016) and has been shown to exhibit a 149 

consistent molar ratio of S/Cl (Ojha et al., 2018), distinct from volcanic degassing (Gaillard & 150 

Scaillet, 2009; King & McLennan, 2010; Ojha et al., 2018; Ojha, Karunatillake, et al., 2019). 151 

Our calculated mean molar S/Cl ratio for SCR (~4.6) does not fall within the global dust molar 152 

ratio range (3.0 – 4.4) (Table 1; (Ehlmann et al., 2011; Kerber et al., 2011). The observed S 153 

enrichment in SCR (Fig. 2B), coupled with a S/Cl molar ratio diverging from that of martian dust 154 

(Ojha et al., 2018), supports sulfur adsorbed or chemically bound in the soil and regolith from 155 

volcanic degassing (Bibring et al., 2006; Ojha, Karunatillake, et al., 2019). Si and K abundances 156 

can provide additional corroboration, as dust mantled areas are generally depleted in these 157 

elements relative to the average crust (Berger et al., 2016; Lasue et al., 2018; Viviano et al., 158 

2019). SCR is enriched in both Si and K (SI Appendix, Fig. S2) compared to the crust, further 159 

discounting compositional contributions from dust mantling within SCR. 160 

Localized chemical weathering of basalt is unlikely to substantially enrich S and Cl (Diez 161 

et al., 2009). This is best exhibited in our Eridania reference, composed primarily of weathered 162 

volcanic material (Tanaka et al., 2014), exhibiting one of the lowest overall abundances of S and 163 

Cl reported in this study (Fig. 2B). Conversely, the Medusae Fossae Formation (MFF) has the 164 
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highest observed S and Cl values in this study (Fig. 2B), associated with its origin as a 165 

pyroclastic deposit from massive eruptions (Diez et al., 2009; Ojha & Lewis, 2018). This makes 166 

the MFF’s S and Cl abundances key references for extensive explosive eruptions enhancing the 167 

volatile content of a region (Diez et al., 2009; Ojha et al., 2018). SCR is second in overall S and 168 

Cl abundances to Apollinaris (and by extension the MFF), which offers further support of 169 

volcanic degassing being the primary mechanism to enhance S and Cl within SCR (Diez et al., 170 

2009; Ojha et al., 2018). Nevertheless, the distinctness in S/Cl ratios between SCR and MFF 171 

suggest that the pyroclastic deposits that may constitute SCR’s chemistry do not serve as a major 172 

source of martian dust.     173 

The observed S trends within SCR are consistent with K and Th trends, indicating that 174 

SCR’s chemistry is not the result of aqueous alteration, despite a considerable enrichment in H2O 175 

(SI Appendix, Fig. S2). If SCR hosted abundant fluvial activity, as its H2O abundance may 176 

superficially suggest, S-phases would have been mobilized through interaction with water, 177 

resulting in substantial acidic weathering during the Middle to Late Noachian. Such sulfate-178 

driven alteration is typically associated with ancient ground water systems on Mars (Zalewska, 179 

2013), which would fractionate Th from K at low pH (Sawyer et al., 2000; Taylor et al., 2006). 180 

This would enrich the residual minerals in K, resulting in a K/Th ratio higher than that of the 181 

crust (Taylor et al., 2006), which is not observed at SCR (Table 1). In contrast, a high K/Th ratio 182 

is observed for Hellas, consistent with regional aqueous alteration within the basin (Zalewska, 183 

2013). SCR shows little chemical similarity to Hellas within the scope of this study (Figs. 2 and 184 

3), suggesting that SCR’s observed S abundances are unrelated to sulfate deposits in aqueous 185 

(e.g., fluvial, playa, lacustrine) settings. There are many mechanisms which could have 186 

influenced SCR’s H2O abundance, such as pyroclastic scavenging of atmospheric vapor, which 187 
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is primarily dictated by particle fall time through the atmosphere (Wilson & Head, 2007). 188 

Consequently, the simultaneous enrichment of H2O along with S and Cl, given the rest of the 189 

chemical context of SCR, is more consistent with a highly explosive volcanic provenance.  190 

Geophysical modeling also supports the geochemical evidence for SCR’s supereruptive 191 

provenance. We use admittance analysis from gravity and topographic data to provide estimates 192 

of the elastic thickness of the lithosphere and a range of potential densities for the loads (see SI 193 

for details). We use elastic thickness estimates as proxies for regional thermal flux (Belleguic et 194 

al., 2005; McGovern et al., 2004), which has implications for SCR’s inferred eruptive regime. 195 

SCR’s low elastic thickness of ~15 km (Fig. 3) roughly corresponds to a thermal gradient 196 

exceeding 19 K/km and a heat flux between 47 and 75 mW/m2, a range higher than for some 197 

martian volcanoes (Karimi et al., 2016; McGovern et al., 2004). This estimate resembles prior 198 

heat flow estimates (Belleguic et al., 2005; McGovern et al., 2004) which report similar elastic 199 

thickness values within the Arabia region. The increased thermal flux associated with 200 

predominantly low elastic thickness values for SCR is in turn consistent with both a mantle 201 

plume beneath SCR and enrichment of radioactive elements like K and Th (Michael, 1995).  202 

Our geophysical analyses also yield a load density for SCR resembling the low densities 203 

for MFF (Ojha & Lewis, 2018), consistent with thick pyroclastic deposits. The regional load 204 

density as obtained from gravity and topography (Fig. 3; SI Appendix, Fig. S3) is on average 205 

lower than 1900 kg/m3. Deposition of friable material derived from supereruptions with 206 

associated low top load density can arise from more buoyant magma containing dissolved gases 207 

(McSween Jr., 1994). Our estimated load density also constrains the amount of degassed sulfur 208 

from eruptions. Using the erupted volume estimated for one patera within SCR by (Michalski & 209 

Bleacher, 2013), and an average density of 1800 kg/m3 (Fig. 3), we estimate a 12 × 109 kg  210 
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maximum mass of erupted material. Of this total mass, approximately 2.8 × 108 kg is sulfur, 211 

based on our measured S abundances within SCR (averaging 2.4 wt%; Table 1). If this mass 212 

represents the 30% which was scavenged by ash, a percentage consistent with conservative 213 

estimates of atmospheric degassing (Ojha, Karunatillake, et al., 2019), the remaining mass of 214 

sulfur degassed to the atmosphere is approximately 6.5 × 108 kg. Considering all four paterae 215 

with volumetrically similar concurrent eruptions, the amount of degassed sulfur increases to 2.6 216 

× 109 kg. For comparison, the Toba eruption, the largest Quaternary volcanic eruption on Earth, 217 

emitted 1010-1012 kg of sulfur (c.f. Ojha et al., 2018). If eruptions within SCR were brief and 218 

clustered temporally, such amounts of degassed sulfur alone would have impacted global climate 219 

(Halevy et al., 2007; Rampino & Self, 1992; Tian et al., 2010).     220 

Given the evidence for volcanogenic Cl and S within SCR, the mantle context of the 221 

eruptions can also be considered. The average elemental abundances of S and Cl within SCR ( 222 

3wt%; Table 1) suggest that the magma source had a relatively high abundance of dissolved 223 

volatiles, which would lead to explosive eruptions that rival terrestrial supereruptions (Hefferan 224 

& O’Brien, 2010; Spilliaert et al., 2006). Shallow melting of even a dry mantle source can 225 

produce S-enriched magma, as S exsolves into the vapor phase at low pressures within drier 226 

magmas, also increasing the potential for explosive eruptions (Burton et al., 2009; Spilliaert et 227 

al., 2006). In addition, we observe an enrichment in Ca (SI Appendix, Fig. S2), consistent with 228 

more Ca-rich pyroxenes within the primary melt at this time relative to succeeding eons 229 

(Baratoux et al., 2013). We also observe a Si enrichment (SI Appendix, Fig. S2) within SCR 230 

which would cause the high melt viscosities implied for older, more explosive volcanism 231 

(Baratoux et al., 2011). SCR additionally exhibits similar degrees of enrichment in K and Cl 232 
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compared to the martian crust (SI Appendix, Fig. S2), consistent with their typical correlation 233 

within terrestrial basalts (Workman et al., 2006). 234 

Based on a Middle Noachian age for SCR, any eruptions were likely sourced from a 235 

hotter mantle with less confining pressure (Baratoux et al., 2011). This would suggest that any 236 

eruptions would have high degrees of partial melting (Baratoux et al., 2011), which contrasts 237 

with the observed abundances of K and Th (Fig. 2). However, large ion lithophile abundance 238 

may not be as representative of the chemical evolution of the martian mantle through time as 239 

posited by some mantle evolution models (i.e, Balta & McSween, 2013; Baratoux et al., 2011). 240 

Younger and older volcanoes differ categorically in Si abundance, but Th and Fe abundances 241 

overlap among age groups (Baratoux et al., 2011; Hahn, B C, Mclennan, 2007). Since Th 242 

abundance is inversely related to the amount of partial melting prior to eruption, the overlap in 243 

Th abundance among older and younger volcanoes reveals that partial melting may not follow a 244 

monotonic temporal trend. This contradicts the predictions of key petrologically-based mantle 245 

evolution models (i.e., Balta & McSween, 2013; Baratoux et al., 2011) from regional and 246 

meteoritic geochemistry. 247 

The observed compositional trends provide additional insight on an evolving mantle 248 

composition. If eruptive chemistry primarily represents sampling of a heterogeneous martian 249 

crust, consistent trends in Si and Th with age become less likely, as Hesperian to Amazonian 250 

volcanic provinces are not collocated, and therefore must be sampling the crust at different 251 

depths and in different ways (Annen et al., 2006). Indeed, on Earth, the intermingling of residual 252 

melt and crustal melt is responsible for much of the observed heterogeneity among surface 253 

expressions of magmatism (Annen et al., 2006). However, on Mars, crustal compositional 254 

heterogeneity is subdued compared to Earth (Baratoux et al., 2014), and the mantle is considered 255 
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generally less dynamic (Ruiz et al., 2011), suggesting that eruptive chemical changes are 256 

primarily driven by changing mantle composition (Balta & McSween, 2013). Thus, the 257 

temporally consistent trend in Si likely reflects a changing mantle composition wherein magmas 258 

experience similar degrees of compositional dilution from crustal assimilation, likely due to a 259 

substantially thick crust, among post-Noachian, martian volcanoes. Our study shows that SCR 260 

has the thermal properties of Noachian volcanoes (Fig. 3) (Baratoux et al., 2011; McGovern et 261 

al., 2004), but with a surface chemistry that is unique (Fig. 2). This chemistry indicates a 262 

compositionally distinct mantle source among contemporaneous volcanoes, capable of producing 263 

explosive eruptions. 264 

4 Conclusions    265 

From our collective observations, we hypothesize that a massive, volatile-enriched, 266 

mantle plume underwent low fractional melting (Workman et al., 2006) in the Noachian to yield 267 

a regional magma body, enriched in LILs like K and Th. Low fractional melting is imperative to 268 

cause SCR’s Th enrichment, unlike the sometimes lower Th across older volcanic provinces 269 

compared to younger counterparts (Balta & McSween, 2013; Baratoux et al., 2011). The 270 

deviation from the temporal trend in Th used in prior mantle evolution models would be 271 

consistent with SCR’s distinctness compared to other volcanic provinces, as reflected in 272 

supereruptions (Gravley et al., 2016; Reid, 2008; Taylor et al., 2010). The possibility of 273 

explosive eruptions from Si and volatile (S, Cl) enriched Noachian melts is broadly consistent 274 

with geomorphic and thermophysical evidence of explosive volcanic resurfacing in the Noachian 275 

(Bandfield et al., 2013). Low confining pressure from a thermally eroded local lithosphere – as 276 

consistent with our geophysical analyses – may have further enhanced explosivity.  277 
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The temporally and spatially localized explosive eruptions we infer early in martian 278 

history are consistent with massive, climate-transforming, volatile injections into the atmosphere 279 

(Ojha, Karunatillake, et al., 2019). If such eruptions were pervasive during the Noachian, it 280 

would dramatically affect the stability and availability of water on the martian surface (Halevy et 281 

al., 2007; Tian et al., 2010). The possible onset of glaciation from the explosive eruptions and 282 

sulfur degassing (Halevy et al., 2007; Tian et al., 2010) within SCR would affect surface 283 

habitability, likely driving those habitable zones underground where it was warmer. Furthermore, 284 

the regional magma body that fed eruptions within SCR likely remained thermally active long 285 

after the termination of surface volcanism (Annen & Sparks, 2002). Deep crustal intrusion zones, 286 

such as the one we hypothesize for SCR, can take millions of years to return to the global 287 

geothermal gradient state (Annen & Sparks, 2002). Future investigations of the larger chemical 288 

province that houses SCR focused on regolith mixing processes would help deconvolve varying 289 

compositional input from the diverse geologic units in the area. The contrast in SCR’s chemistry 290 

with key models of martian mantle evolution (Balta & McSween, 2013; Baratoux et al., 2011), 291 

also reinforces regional heterogeneity in mantle processes and makes NW Arabia an ideal 292 

endmember to refine the models. 293 

 294 
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 510 

Fig. 1: Geologic map of Mars (Tanaka et al., 2014) with Taylor et al.’s geochemical provinces 511 

(Taylor et al., 2010) overlain. SCR and BSCR derived by us are shown along with three 512 

previously proposed paterae (Siloe, Ismenia, and Eden) by (Michalski & Bleacher, 2013). We 513 

delineated SCR using a combination of mapped geology, regional chemistry and topography, to 514 

ensure that geologic and chemical consistency within SCR was maintained. Thus, SCR is 515 

composed entirely of chemical Province 6 by (Taylor et al., 2010). BSCR represents the more 516 

heterogeneous Arabia region that surrounds SCR, which was also delineated using mapped 517 

geology, chemistry and topography. The black boxes outline comparative regions for 518 

compositional study. Our basin references are Argyre, Hellas and Isidis. Our volcanic references 519 

are Thaumasia and Hesperia Planae and Apollinaris Mons. We also selected a region to the east 520 

of Hellas (Eridania) which is composed of heavily eroded fluvial and volcanic material. More 521 

details on region selection can be found in section 1 of the Appendix.  522 
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Table 1: Average chemistry for each martian reference region, spatial extent in chemical map pixels, and 

geologic analog context for which they served as a reference. Underlying chemical data are the same as used 

in Figures 1 and 2. Values for SCR, BSCR and the martian crust are also given. The crustal proxy has SCR 

and BSCR removed to reduce sampling bias. Overall, our reference regions are close temporal counterparts to 

SCR. The mean mass fraction for K, Th, S and Cl is given for all the regions with K and Th reported in mg/kg 

and S and Cl reported as percentages (wt%). The ratios for K/Th and S/Cl are calculated from reported 

elemental weight percent. The 1 sigma error is the standard error of the mean; ratio error is calculated by 

(K/Th)[(K/K)2+(Th/Th)2]1/2, where K and Th are the mean concentration of K, Th. The same applies to S 

and Cl.         
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Fig. 2: (A) Mean K and Th values (large polygons), along with the underlying data (small circles) used to calculate the mean for 

reference regions on Mars - and the mid to low latitudes - which show a linear trend as highlighted by the dotted line. SCR and 

BSCR are shown as squares, Isidis is represented by a circle, igneous references as diamonds and sedimentary references as 

triangles. Standard error for average values is displayed in top left as a purple square. Isidis, BSCR and SCR are grouped together at 

the higher end of observed K and Th abundances. SCR differs from Isidis in overall dispersion of K and Th abundances, with SCR 

having a much smaller dispersion in values. (B) Mean S and Cl values (formatting the same as in 2A), from chemical maps, along 

with the underlying data used to calculate the mean for reference regions on Mars, as well as S and Cl throughout the low to mid 

latitudes. MFF and Apollinaris Mons have the highest abundances of S and Cl, with SCR and BSCR reporting the second and third 

highest values, respectively. The remaining regions all have abundances lower than the crustal average. BSCR has a large dispersion 

in Cl values, much larger than what is observed for Apollinaris and SCR, both of which vary similarly. BSCR exhibits the largest 

range in values, whereas Apollinaris, Hellas, and SCR all show comparatively smaller range in S abundance. The remaining regions 

all exhibit abundances of S and Cl that are lower than the global average, and tend to cluster near each other, independent of 

provenance.  
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 Fig. 3: Localized admittance and correlation between gravity and topography for the Arabia 548 

Terra area (centered on -5˚E,25˚N, for a spherical cap with a radius of 15˚), including the best-fit 549 

theoretical admittance and models within two times this best fit (A). A shows the best-fit 550 

admittance model of our geophysical analyses, which has a root-mean-square (RMS) of the 551 

misfit between the theoretical model and measured admittance of 1.34 mGal/km for our 552 

windowed region (SI Appendix, Fig. S3) (degree range 77-120). The error bounds on the 553 

admittance shown in Fig. 3A are computed from the relationship between admittance variance 554 

and correlation (Wieczorek, 2008).  Histograms of the values for load density (B) and elastic 555 

thickness (C) for the models are also included. 556 

 557 
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