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Abstract18

In this study, we apply causal discovery to analyse causal links among key processes that19

contribute to Arctic-midlatitude teleconnections. First, we calculate the causal depen-20

dencies from observations. We then evaluate climate models participating in the Cou-21

pled Model Intercomparison Project Phase 6 (CMIP6) via a comparison of their causal22

graphs for the period of 1979-2019 with those derived from observations. Based on ob-23

servations, we show that the increase (decline) of near-surface Arctic temperature is as-24

sociated not only with the reduction (increase) of sea ice over the Barents and Kara seas,25

but also with the strengthening (weakening) of atmospheric blocking over central Asia.26

We show that the near-surface westerly winds are strongly associated with the phase of27

the North Atlantic Oscillation (NAO). Observations show that the phase of NAO is con-28

nected with the polar vortex (PV), which is affected by the strengthening of the pole-29

ward eddy heat flux at 100 hPa. The analysis of CMIP6 historical simulations is in good30

agreement with the observations but reveals a negative connection between near-surface31

Arctic temperature and sea ice over Barents and Kara seas, which was not found in ob-32

servations during December-January-February 1979-2019. Moreover, climate models sim-33

ulate a more robust link between Arctic temperature and Barents and Kara sea ice to-34

wards the end of the century. The analysis of future changes in the Arctic-midlatitude35

teleconnections during cold seasons 2059-2099 also reveals that the connection between36

the Aleutian Low and the poleward eddy heat flux is expected to become more robust37

than in the analysed past.38

1 Introduction39

The warming of the Arctic is generally considered to be about twice as fast as the40

global average. This robust phenomenon known as Arctic amplification, emerged rela-41

tively recently (England et al., 2021) and is one of the prominent indications of climate42

change (Koenigk et al., 2020; Previdi et al., 2021). However, recently Rantanen et al.43

(2021) showed that during the last 40 years the pace of Arctic warming is almost four44

times that of the globe as a whole, which is higher than previously reported. Arctic am-45

plification occurs in all seasons except boreal summer, with the strongest warming in fall46

and winter (Cohen et al., 2020; Previdi et al., 2021). The Intergovernmental Panel on47

Climate Change (IPCC) Sixth Assessment Report (AR6) concluded that ”it is virtually48

certain that the Arctic will continue to warm more than global surface temperature, with49

high confidence above two times the rate of global warming” (IPCC, 2021). Different mech-50

anisms have been suggested to contribute to the amplified Arctic warming, such as changes51

in the snow- and ice-albedo feedback (Serreze & Barry, 2011), lapse rate feedback (Pithan52

& Mauritsen, 2014), cloud cover and water vapor feedback (Graversen & Wang, 2009),53

increase of atmospheric CO2 (Previdi et al., 2020), or atmospheric energy transport and54

ocean heat uptake (Previdi et al., 2021). The overviews of major Arctic climate feed-55

backs are for example provided by Goosse et al. (2018), Previdi et al. (2021), Vavrus (2018),56

and Wendisch et al. (2022).57

Meanwhile the Northern Hemispheric (NH) midlatitudes, in particular Eurasia, have58

experienced an increase in severe winter weather events, which coincided with a cooling59

or lack of warming over this region (Overland et al., 2015). A number of studies link Arc-60

tic amplification to midlatitude weather variability (Francis & Vavrus, 2012; Francis, 2017;61

Screen et al., 2018; Shepherd, 2016; Walsh, 2014), which is not a one-way connection,62

but also works in reverse (Screen, 2017a). Despite of the progress made, the possible con-63

tribution of Arctic amplification to midlatitude weather remains an open question. This64

is associated with the inconclusive results from observational studies and model simu-65

lations that obscure a full understanding of the teleconnections between the Arctic and66

midlatitudes (Barnes & Screen, 2015; Cohen et al., 2020) and are related to the inter-67

nal variability in the climate system with possible nonlinear connections, and biases of68

climate models.69
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In the following we discuss proposed plausible mechanisms for Arctic-midlatitude70

linkages. Amplified Arctic warming during boreal winters has been associated with the71

extensive reduction of sea ice (Cohen et al., 2014, 2020; Francis, 2017; Screen & Simmonds,72

2010; Serreze et al., 2009). Arctic sea ice strongly modulates near-surface atmospheric73

conditions at high latitudes, which then influence regional and, potentially, remote cli-74

mate (Cohen et al., 2014). In particular, the sea ice over the Barents and Kara seas has75

been identified as potentially being skillful in predicting midlatitude weather and climate76

(e.g. Hall et al., 2017; Scaife et al., 2014; Siew et al., 2020; Wang et al., 2017). In accor-77

dance, these studies provide evidence and are in agreement about the dynamical path-78

way linking sea ice changes over the Barents and Kara seas to the midlatitudes. This re-79

gion experiences sea ice loss not only in summer and autumn, but also in winter, which80

is the strongest and is associated with positive sea surface temperature anomalies. Pri-81

marily, during autumn and winter the release of additional longwave radiation as well82

as sensible and latent heat from the open ocean waters causes a strong warming of the83

lower troposphere over the Barents and Kara seas. This contributes to the weakening84

of the westerly winds and to more frequent and persistent Ural blocking (Yao et al., 2018).85

The diabatic heating of the lower troposphere over the Barents and Kara seas results in86

direct forcing and constructive interference with existing planetary Rossby waves (Honda87

et al., 2009), contributing to a northwestward expansion and intensification of the Siberian88

High. These changes in tropospheric circulation (Ural blocking, strengthened Siberian89

High) are characterized by increased amplitudes of planetary waves and are favourable90

for an initiation of the stratospheric pathway for Arctic-midlatitude linkages (Nakamura91

et al., 2015; Peings, 2019; Siew et al., 2020). Enhanced upward propagating planetary92

waves lead to wave breaking in the polar stratosphere which in turn may weaken the po-93

lar vortex (e.g. Hoshi et al., 2017; Jaiser et al., 2016; Kim et al., 2014). This is then fol-94

lowed by downward propagation of stratospheric circulation anomalies into the tropo-95

sphere. This mechanism favors the negative phase of the North Atlantic Oscillation (NAO,96

Baldwin & Dunkerton, 2001). Teleconnection patterns like the NAO are related to the97

zonal wind variability (Wallace & Gutzler, 1981), in particular the negative phase of the98

NAO is related to a southward shifted and weakened North-Atlantic jet stream (Athanasiadis99

et al., 2010). Moreover, the negative phase of the NAO is associated with cold winters100

and increased occurrence of cold temperature extremes in Northern Europe (Hurrell &101

Deser, 2010; Marshall et al., 2001; Riebold et al., 2022). Thus, the variability of the NAO102

has an impact on the occurrence probability of extreme weather events.103

The link between Arctic sea ice cover and the NAO has been extensively analysed,104

for example, Pedersen et al. (2016) showed that the loss of sea ice in specific regions of105

the Arctic impacts the spatial structure of the NAO pattern, and Nakamura et al. (2015)106

discussed the contribution of the Barents-Kara sea ice changes to changes in the frequency107

of occurrence of positive or negative phases of the NAO. In turn, Ambaum et al. (2001)108

and Kolstad and Screen (2019) showed that the NAO strongly influences wintertime weather109

and climate in the North Atlantic region, therefore it can play a significant role in the110

linkage of Arctic and midlatitudes. Compared to the evidence found for the pathways111

for Arctic-midlatitude linkages related to Barents-Kara sea ice loss, the responses to sea112

ice loss and Arctic Amplification over other geographical regions are less robust. How-113

ever, recent coupled ocean–atmosphere model experiments (Screen et al., 2018) provide114

evidence for a strengthened Aleutian low in response to Arctic sea ice loss. This is con-115

sistent with radical circulation changes detected from reanalysis data over 1958-2007 show-116

ing strong covariability between the strength of pressure anomalies over the Eurasian Arc-117

tic coast and the area of the Aleutian Low. The Aleutian Low is a semi-permanent low-118

pressure system over the midlatitude Northern Hemisphere centered near the Aleutian119

Islands, which acts to increase the Okhotsk sea ice cover by cold air advection (Ogi et120

al., 2015; Tachibana et al., 1996). Moreover, it is the dominant mode of the atmospheric121

circulation on interannual to decadal time-scales over the North Pacific in winter (Hwang122

et al., 2022; Trenberth & Hurrell, 1994).123
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To analyse the connection between the Arctic and midlatitudes, we apply causal124

discovery (Runge, Nowack, et al., 2019; Runge, Bathiany, et al., 2019; Spirtes et al., 2000)125

to identify and quantify significant causal interactions among various local and remote126

processes and utilize it for causal climate model evaluation (Eyring et al., 2019; Nowack127

et al., 2020). The goal of causal discovery is to estimate causal links including their time128

lags among a number of processes, often referred to as actors. Previous studies on Arctic-129

midlatitude linkages using causal discovery have focused on observational datasets (Kretschmer130

et al., 2016, 2018; Polkova et al., 2021; Siew et al., 2020). Our study, in turn, assesses131

causal Arctic-midlatitude links based on a number of climate model simulations from the132

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016) operated133

under the auspices of the Working Group on Coupled Modelling (WGCM) World Cli-134

mate Research Programme (WCRP). The detection of similar causal links both in ob-135

servations and model simulations has been termed causal model evaluation (Nowack et136

al., 2020) and provides an opportunity to assess model performance, i.e. it indicates whether137

models are able to correctly reproduce local and remote processes in the climate system,138

and do not simulate expected links for the wrong or unknown reasons. In this study we139

compare causal graphs from CMIP6 historical simulations and reanalysis data to esti-140

mate how well these models reproduce the links in the current climate. Climate mod-141

els provide the additional opportunity to test possible changes in the causal graphs in142

future projections. Thus, we also compare causal graphs from CMIP6 historical and Sce-143

nario Model Intercomparison Project (ScenarioMIP, O’Neill et al., 2016) simulations to144

estimate future changes in Arctic-midlatitude teleconnections. Based on this, those links145

that are found in ScenarioMIP simulations are analysed to estimate the impact of the146

increasing Arctic Amplification in a future climate and to investigate future changes in147

Arctic-midlatitude teleconnections. Furthermore, we apply the causal model evaluation148

framework developed by Nowack et al. (2020) to evaluate the overall performance of cli-149

mate models in comparison to observations.150

2 Data151

2.1 Data sources152

In this study we use CMIP6 historical simulations that are forced by natural (e.g.153

solar variability, volcanic eruptions) and anthropogenic forcings (e.g. greenhouse gas con-154

centrations, land use, aerosols) and are available for the period 1850-2014 (Eyring et al.,155

2016). To extend the analysed period, we add data from ScenarioMIP (O’Neill et al.,156

2016) that provides climate projections based on different plausible scenarios of future157

emissions and land use changes during 2015-2100. In this study we use the Shared So-158

cioeconomic Pathway (SSP)5-8.5 representing emissions that produce a radiative forc-159

ing of 8.5 W/m2 in 2100, which is at the high end of the range of future pathways in the160

integrated assessment models (IAM) literature. We combine monthly mean CMIP6 his-161

torical simulations (1979-2014) and ScenarioMIP SSP5-8.5 (2015-2019) for the 41-year162

period of 1979-2019. We compare the CMIP6 historical simulations then with the monthly163

mean Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST, Rayner164

et al., 2003) and ERA5 reanalysis monthly mean data from the European Centre for Medium-165

Range Weather Forecasts (ECMWF, Hersbach et al., 2020). This comparison aims to166

identify the mechanism of Arctic-midlatitude teleconnections in the historical period. To167

address future changes, we analyse the ScenarioMIP SSP5-8.5 during 2059-2099, which168

is the same period length as historical simulations. In this study, we use data from 19169

CMIP6 models listed in Table 1. We consider all available ensemble members (three or170

more per model) to account for the intrinsic variability of the analysed models. How-171

ever, we show the analysis of only the first ensemble member (r1i1p1f1) for each of them.172

Following Gier et al. (2020), we do not use the ensemble mean of each model since it would173

reduce the intrinsic variability of the single realisations.174
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Table 1. CMIP6 models analysed in this study (both historical and ScenarioMIP SSP5-8.5

simulations).

Model Origin Reference

ACCESS-CM2 Commonwealth Scientific and Industrial Research Or-
ganisation, Australia and Australian Research Council
Centre of Excellence for Climate System Science

Bi et al. (2020)

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Or-
ganisation, Australia

Ziehn et al. (2020)

BCC-CSM2-MR Beijing Climate Center, China Wu et al. (2019)

CAMS-CSM1-0 Chinese Academy of Meteorological Sciences, China Rong et al. (2021)

CanESM5 Canadian Centre for Climate Modelling and Analysis,
Environment and Climate Change Canada, Canada

Swart et al. (2019)

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici, Italy

Cherchi et al. (2019)
CMCC-ESM2 Lovato et al. (2022)

EC-Earth3
EC-Earth consortium, Europe

Döscher et al. (2022);
Wyser et al. (2020)

EC-Earth3-Veg
EC-Earth3-Veg-LR

GFDL-CM4 National Oceanic and Atmospheric Administration,
Geophysical Fluid Dynamics Laboratory, USA

Held et al. (2019)
GFDL-ESM4 Dunne et al. (2020)

INM-CM4-8 Institute for Numerical Mathematics, Russian
Academy of Science, Russia

Volodin et al. (2018)
INM-CM5-0 Vorobyeva and Volodin

(2021)

IPSL-CM6A-LR Institut Pierre Simon Laplace, France Boucher et al. (2020)

MPI-ESM1-2-HR
Max Planck Institute for Meteorology, Germany

Müller et al. (2018)
MPI-ESM1-2-LR Mauritsen et al. (2019)

MIROC6 Japan Agency for Marine-Earth Science and Technol-
ogy, Atmosphere and Ocean Research Institute, The
University of Tokyo, National Institute for Environ-
mental Studies, and RIKEN Center for Computational
Science, Japan

Tatebe et al. (2019)

MRI-ESM2-0 Meteorological Research Institute, Japan Yukimoto et al. (2019)
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Table 2. Detailed overview of the actors and their corresponding regions used in this study.

No Actor Geographical area Label

1 Near-Surface Air Temperature 65°-90°N, zm TAS
2 Sea Ice Area Fraction Barents-Kara 70°-80°N, 30-105°E BK-SIC
3 Okhotsk 50°-60°N, 140-160°E Ok-SIC
4 Sea Level Pressure Ural blocking 45°-70°N, 40-85°E Ural-SLP
5 Siberia high 40°-65°N, 85-120°E Sib-SLP
6 Aleutian low 45°-80°N, 160-260°E Aleut-SLP
7 Poleward Eddy Heat Flux 45-75°N, zm, 100hPa vflux
8 Polar Vortex (geopotential height) 65°-90°N, zm, 100-10hPa PV
9 North Atlantic Oscillation 20°-80°N, 500hPa NAO
10 Near-Surface Zonal Wind 50°-70°N, zm U

2.2 Potential actors175

To understand the linkages within Arctic-midlatitude processes it is important to176

define a physically reasonable number of variables, so-called actors, that represent the177

investigated mechanisms. Table 2.2 provides a detailed overview of the actors used in178

this study, and Fig. 1 summarizes potential actors. To reconstruct an Arctic-midlatitude179

linkage that occurs in conditions of amplified Arctic warming we choose the near-surface180

air temperature (TAS) at high latitudes as one of the major actors. We include sea ice181

area fraction over the Barents and Kara seas (BK-SIC) similarly to Kim et al. (2014);182

Kretschmer et al. (2016); Siew et al. (2020). To understand the connections between the183

Arctic (and sub-Arctic) and Okhotsk sea ice variability, we include sea ice area fraction184

over Okhotsk Sea (Ok-SIC, Ogi et al., 2015). To represent the impact of changes in the185

high (Ural and Siberian) and low (Aleutian) pressure systems, we include sea level pres-186

sure over these regions (Ural-SLP, Sib-SLP, and Aleut-SLP correspondingly). The im-187

portance of Ural blocking and Siberian High for Arctic-midlatitude linkages has been ex-188

tensively discussed by Cohen et al. (2014), and the effect of the Aleutian Low on the Okhotsk189

sea ice is analysed by Ogi et al. (2015).190

To capture the linkage between troposphere and stratosphere through the upward191

propagation of planetary waves, we include the poleward eddy heat flux (vflux), which192

is proportional to the vertical component of the Eliassen-Palm flux in the transformed193

Eulerian mean framework (Andrews & Mcintyre, 1976). The poleward eddy heat flux194

has been calculated similarly to Kim et al. (2014); Kretschmer et al. (2016); Siew et al.195

(2020) as va*Ta* at 100 hPa, where va stands for the meridional wind velocity, Ta stands196

for the temperature, and the superscript * indicates the deviations from the zonal mean.197

To analyse the variability in stratospheric polar circulation patterns, we also include the198

Polar Vortex (PV), based on geopotential height anomalies. A recent study by Kolstad199

and Screen (2019) suggests a link between the reduction of Arctic sea ice and the neg-200

ative phase of the NAO. Therefore, we also include NAO in our analysis, which is based201

on the study by Hurrell and Deser (2010). Moreover, the NAO is linked to the variabil-202

ity of midlatitude tropospheric circulation (Smith et al., 2022), thus we include NH near-203

surface zonal mean zonal winds (U) at midlatitudes into our analysis. To summarize, we204

use the following potential actors that represent Arctic and midlatitude processes: near-205

surface air temperature over the Arctic (TAS), sea ice over the Barents and Kara seas206

(BK-SIC) and Okhotsk Sea (Ok-SIC), sea level pressure over Ural (Ural-SLP), Siberia207

(Sib-SLP), and Aleutian Islands (Aleut-SLP), poleward eddy heat flux (vflux), polar vor-208

tex (PV), NAO, and zonal mean zonal wind (U).209
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Figure 1. Summary of potential actors that represent Arctic and midlatitude processes in this

study: near-surface air temperature over the Arctic (TAS), sea ice over the Barents and Kara

seas (BK-SIC) and Okhotsk Sea (Ok-SIC), sea level pressure over Ural (Ural-SLP), Siberia (Sib-

SLP), and Aleutian Islands (Aleut-SLP), poleward eddy heat flux (vflux), polar vortex (PV),

North Atlantic Oscillation (NAO), and zonal mean zonal wind (U). The position of BK-SIC, Ok-

SIC, Ural-SLP, Sib-SLP, and Aleut-SLP corresponds to their approximate geographical location

defined in Table 2.

3 Methods and tools210

3.1 ESMValTool and data preparation211

In this study, we use the Earth System Model Evaluation Tool (ESMValTool) ver-212

sion 2 (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020; Weigel et al., 2021). The213

development of ESMValTool is a community-based effort, and it provides well-documented214

source code and scientific background of developed diagnostics (see https://github.com/215

ESMValGroup/ESMValTool, last access: 05.10.2022). The output produced by ESMVal-216

Tool comprises provenance information, which allows for traceability and reproducibil-217

ity of the obtained results. ESMValTool provides for various simulations and experiments218

from CMIP6 models an additional recipe called recipe_filler, that offers the possi-219

bility to easily track a list of models that include necessary variables for the analysis. Since220

causal discovery requires the usage of timeseries, we use ESMValTool to obtain the time-221

series that correspond to each actor. With the application of ESMValTool preprocessor222

function called anomalies we compute climatological monthly anomalies. Then, by ap-223

plying the area_statistics preprocessor function we compute the area-weighted spa-224

tial average over the corresponding regions from Table 2. If the resulting timeseries has225

a linear trend, we remove it, since causal discovery requires a stationary timeseries (Runge,226

2018). Similar to Kretschmer et al. (2016) we invert the sign of PV, so the positive val-227

ues stand for the strong polar vortex, and negative values stand for the weak polar vor-228

tex. In this study we use a Climate Variability Diagnostics Package (CVDP, Phillips229

et al., 2014) implemented into ESMValTool (Eyring et al., 2020) to reproduce NAO for230

the analysed periods.231

–7–



manuscript submitted to JGR: Atmospheres

3.2 Causal discovery232

Correlation techniques that are commonly adopted in climate research, such as Pear-233

son correlation or linear regression models can hardly be used to understand causal re-234

lations that emerge from the physical mechanism behind the phenomena we observe (see235

e.g. Runge et al., 2014). Pearson correlation, also in its lagged form, is known to suf-236

fer from identifying spurious links due to confounders or even just autocorrelation (Runge237

et al., 2014). Granger causality (Granger, 1969), typically applied in a bivariate form,238

accounts for autocorrelation and has been recently suggested to detect and quantify cli-239

mate system teleconnections (Silva et al., 2021). Based on the example of El Niño events240

and precipitation anomalies, the others discovered statistically robust relationships sup-241

ported by physical mechanisms. However, it has been previously shown that Granger242

causality is limited to lagged causal dependencies and might detect misleading causal243

links in low-resolution data (see e.g. Runge, Bathiany, et al., 2019; Spirtes & Zhang, 2016).244

Moreover, the typically applied bivariate form of Granger causality cannot account for245

common drivers. Causal discovery methods (Runge, Bathiany, et al., 2019) utilize gen-246

eral assumptions about the underlying processes to fully account for common causes and247

reconstruct causal relations among multiple variables. Hence, they are a vital element248

for enhanced causal process understanding and can also be understood as an interpretable249

technique of machine learning (Xu et al., 2020). Here we employ the conditional independence-250

based causal discovery framework that utilizes the assumptions of time-order, causal suf-251

ficiency, the Causal Markov condition, and faithfulness (Runge, Nowack, et al., 2019).252

This method is based on iterative conditional independence testing and has already found253

its application in the analysis of various teleconnections based on observations (Di Ca-254

pua et al., 2020; Ebert-Uphoff & Deng, 2012; Kretschmer et al., 2016, 2018; Runge et255

al., 2014; Siew et al., 2020), pathways of teleconnections (Karmouche et al., 2022; Kretschmer256

et al., 2021; Runge et al., 2015), marine cold-air outbreaks (Polkova et al., 2021), Walker257

circulation (Runge et al., 2014; Runge, Bathiany, et al., 2019), and process-oriented cli-258

mate model evaluation (Nowack et al., 2020).259

The PCMCI causal discovery framework (Runge, Bathiany, et al., 2019; Runge, Nowack,260

et al., 2019) used here is based on a combination of the PC algorithm (named after its261

inventors Peter and Clark, see Spirtes & Glymour, 1991) and the Momentary Conditional262

Independence (MCI) test, which is adapted to the typically ubiquitous autocorrelation263

in timeseries data. In this study, we use an extended version of the PCMCI algorithm,264

called PCMCI+ (Runge, 2020), which detects not only lagged (time lag τ > 0), but also265

contemporaneous (τ = 0) causal links. Like the PCMCI algorithm, PCMCI+ optimizes266

the choice of conditioning sets and therefore improves the reliability of the conditional267

independence tests. Additionally, Runge (2020) showed that PCMCI+ benefits from strong268

autocorrelated timeseries, which are typical in climate science, and leads to stronger ad-269

jacency detection power with better control of false positives and higher orientation re-270

call for contemporaneous links compared to the standard PC algorithm or multivariate271

Granger causality.272

In the causal graphical model framework one assumes an underlying discrete-time273

structural causal process Xt = (X1
t , ..., X

N
t ), where N stands for the different actors274

represented by timeseries. To reconstruct the causal graph including their time lags among275

these actors, the PCMCI+ algorithm encompasses three phases (Karmouche et al., 2022)276

and for a detailed description and pseudo-code see Runge (2020). In the first phase, the277

so-called lagged skeleton discovery phase, the PC1 Markov set discovery algorithm (based278

on the PC algorithm) is iteratively applied for every lagged pair of actors (Xi
t−τ , X

j
t ) for279

τ > 0. For each pair of actors PC1 tests whether they are conditionally independent280

on defined conditions of other lagged actors. If yes, then the algorithm removes the link281

between these actors. At this stage the algorithm estimates a set of lagged parents for282

each actor. However this step might still include remaining spurious connections due to283

contemporaneous links. In the second phase, the contemporaneous skeleton discovery284

phase, the contemporaneous conditions are iterated in MCI tests:285
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Xi
t−τ ⊥⊥ Xj

t |S, B̂−
t (X

j
t ) \

{
Xi

t−τ

}
, B̂−

t−τ (X
i
t−τ ) (1)

where S stands for the subsets of contemporaneous adjacencies S ⊂ Xt, through286

which the algorithm is iterating to fully remove spurious links, B̂−
t (X

j
t ) are the lagged287

conditions of Xj
t , and B̂−

t−τ (X
i
t−τ ) are the (time-shifted) lagged conditions of Xi

t−τ ob-288

tained in the skeleton discovery phase. During the third so-called orientation phase the289

contemporaneous links are oriented based on the collider rule on unshielded triples Xi
t−τ -290

− Xk
t − Xj

t , where τ ≥ 0, and finally further orientation rules are applied that make291

sure that no cycles occur (for more details see Runge, 2020). Then, under the standard292

assumptions of causal sufficiency, faithfulness, and the Markov condition (Runge, Bathi-293

any, et al., 2019; Runge, Nowack, et al., 2019), the outcome of the PCMCI+ algorithm294

is a causal graph with the following four types of links: (i) directed lagged causal links295

for τ > 0, where τ stands for the time lag, (ii) directed contemporaneous causal links296

for τ = 0, (iii) unoriented contemporaneous links indicating that the collider and orien-297

tation rules could not be applied due to Markov equivalence, and (iv) unoriented con-298

temporaneous links where a direction is not defined due to conflicting orientation rules.299

In this study we focus on linear dependencies and use linear partial correlation (Par-300

Corr) as a conditional independence test. In addition, we set the main parameters of PCMCI+301

as follows: the maximum time delay τmax = 5, which corresponds to 5 months, to ac-302

count for a range of possible dependencies in the Arctic-midlatitude teleconnections on303

a monthly time scale and the significance level αpc=0.01 for all tests. In the resulting304

causal graph the node color denotes the autocorrelation (auto-MCI) value at the lag with305

maximum absolute value and varies from 0 to 1. The strength of causal links is measured306

by the MCI partial correlation value (cross-MCI) and is, hence, normalized between -307

1 and 1. If links occur at multiple lags between two variables, the type of the link and308

its color shows the strongest link, but the label indicates all significant lags sorted by their309

strength. PCMCI+ is implemented in the python package Tigramite, freely available at310

https://github.com/jakobrunge/tigramite, last access: 05.10.2022.311

In this study we focus on the NH cold season, when near-surface amplified Arctic312

warming is the strongest (Cohen et al., 2020). Thus, we apply causal discovery for the313

winter season consisting of the months December-January-February (DJF). In order to314

identify the differences in the mechanism of Arctic-midlatitude teleconnections within315

the whole cold season, we perform further analyses on two additional periods, i.e. early316

winter (October-November-December, OND) and late winter (January-February-March,317

JFM). The additionally analysed periods are constructed in a manner so that there is318

no overlap between the early and late winter period, thus, excluding possible contribu-319

tions of a common month. The contribution of December from defined early winter pe-320

riod and January-February from late winter period is then included into the regularly321

analysed winter season DJF. To account for various months, we set mask_type = y within322

the PCMCI+ calculations. This implies that PCMCI+ will search for causal drivers of323

target actors restricted to defined seasons, e.g. DJF, but the potential causal drivers will324

be allowed outside of DJF, e.g. in autumn months. The resulting causal graphs contain325

the information on a direction and associated time lags of potential causal links, char-326

acterizing the pathways of the Arctic-midlatitude interaction network.327

We apply the causal discovery algorithm to CMIP6 historical simulations and com-328

pare resulting causal graphs with observational data. We also analyse causal graphs based329

on SSP5-8.5 model simulations. We do not calculate causal networks for multi-model mean330

data, since it would reduce the amplitude of interannual variability and therefore the abil-331

ity of the framework to detect connections.332

3.3 F1-score333

To evaluate the similarity of the resulting causal graphs that consist of multiple334

causal and contemporaneous links from observations and climate models, we use the asym-335

–9–



manuscript submitted to JGR: Atmospheres

metric F1-score method from Nowack et al. (2020). Generally, the existence or non-existence336

of each link detected in the observations (reference causal graph) is pair-wise compared337

to the links from the climate models. This method depends on the statistical significance338

threshold α used in PCMCI+. The F1-score varies from 0 indicating no match, and 1339

indicating a perfect match. The F1-score can be interpreted as a harmonic mean of the340

precision (P) and recall (R), which build the foundation of this method. The precision341

is defined as follows:342

P =
TP

TP + FP
(2)

where TP stands for the number of true positives, and FP stands for the number of false343

positive links in comparison to reference causal graph. The recall is defined as follows:344

R =
TP

TP + FN
(3)

where FN stands for not detected links. The relative contributions of precision and re-345

call to the F1-score are equal. The F1-score is defined as follows:346

F1 =
2× P ×R

P +R
(4)

Similarly to Nowack et al. (2020), the definition of TP in this work is slightly mod-347

ified to take into account the sign of each identified link (positive or negative). If the sign348

is the same, then we check if the time lag in matching causal links between reference and349

modelled causal graphs is the same. If not, we allow a difference in the time delay of up350

to ± 2 time lags, i.e. two months for a monthly time scale. If the same-sign link in the351

modelled causal graph was found in a different time step than the reference graph, then352

the sign of the connection is used at the original time step. If the sign is the same, then353

we consider that the link exists in both datasets. Therefore, the F1-score depends on the354

causal graph, which is considered as a reference. For the analysis of CMIP6 historical355

simulations, we define observational causal graphs as the reference. To estimate how strong356

Arctic-midlatitude linkages are affected by climate change, for each model from a CMIP6357

future simulation we choose historical simulations as a reference. In this case we do not358

allow a difference in the time delay between historical and future simulations and com-359

pare only identical matching links. To optimize the comparison among observational and360

number of modelled causal graphs, we relax the definition of contemporaneous links (with361

τ = 0), and do not distinguish between directed, unoriented, and conflicting contempo-362

raneous links. Instead, we combine them into one category of contemporaneous links to363

summarize the general outcome of modelled causal graphs.364

3.4 Causal model evaluation365

To characterize connections that occur in the framework of Arctic-midlatitude pro-366

cesses, Fig. 2 depicts the individual steps within the scope of causal model evaluation.367

First, based on the expert knowledge and literature review, we consider in the analysis368

potential actors (see Fig. 2a) that represent Arctic-midlatitude processes (see Sect. 2.2).369

In this step we involve ESMValTool to calculate the climatological anomalies of monthly370

mean data and the area-weighted spatial average over the defined region for observations371

and climate models (see Sect. 3.1). As a result, we receive a set of timeseries as prox-372

ies for different physical processes (Fig. 2b) for each data source (e.g. Observations, Model373

1, Model 2), which we further detrend.374

We calculate interactions among these processes in observations and model sim-375

ulations by the application of PCMCI+ (see Sect. 3.2). The resulting networks (see Fig.376

2c) contain the information on existence of associated links between actors at a given377

significance level. The color of the node of each actor indicates the autocorrelation and378

varies from 0 to 1 (predominantly 1-month lag, labeled auto-MCI). The color of the links379

stands for the sign and the strength of the connection (MCI), and varies from -1 to 1 (la-380

beled cross-MCI). Straight lines stand for the contemporaneous links, which do not have381
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Observations                         Model 1                                                          Model 2

(a)

(b)

(c)

(d) Summary graph                        Summary links                                     F1-score

Figure 2. Schematic representation of the causal model evaluation framework using ESMVal-

Tool and causal discovery based on example data. For more explanation see Sect. 3.4.

a time lag (see e.g. positive contemporaneous link between Actor 2 and Actor 3 in all382

data sources in Fig. 2c). Curved lines with the arrow stand for the causal links, the ar-383

row indicates the direction of the impact, and the number(s) stand for the time lag in384

months (see e.g. positive causal link from Actor 2 to Actor 1 in all data sources in Fig.385

2c). If two processes are causally linked with each other for more than one time lag, then386

all lags are shown sorted by the strength of the impact. In this case the link color would387

be based on the stronger connection. For example, Fig. 2c shows the negative causal link388

in Observations from Actor 1 to Actor 2 with time lags 2 and 1, where 2 has stronger389

connection, thus is indicated first.390

In the example given in Fig. 2b,c the analysis is based on three data sources with391

three actors. But the comparison of causal graphs can be a challenging task, especially392

if the number of actors and/or data sources are increased, since it can lead to complex393

causal structures. Therefore, Fig. 2d (left) summarizes the detection of various connec-394

tions in climate models in comparison to observations. The hexagon above each link in-395

dicates the number of models that reproduce (contemporaneous or causal) observed links396

identical by sign and type. The width of the links shows the fraction of the models, that397

simulate the particular connections. If none of the models simulate observed connection,398

then the link is dashed. For example, both models (Model 1 and Model 2) similar to ob-399
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servations, simulate a contemporaneous positive link between Actor 2 and Actor 3 (Fig.400

2c), which is indicated by the number ”2” in the hexagon on top of this link (Fig. 2d401

left). Neither of models simulate observed negative causal link from Actor 1 to Actor 2,402

which is indicated by ”0” in the hexagon on top of this link, and the corresponding link403

is dashed. This analysis is performed for all detected observational links and is done to404

provide an overview of how many models agree with observed links. While this analy-405

sis gives only an impression on how many models reproduce observed links, it does not406

include the information of (i) which models do not simulate the observed connections,407

and (ii) whether there are links that are found in model simulations, but not found in408

observations. Therefore, the matrix in Fig. 2d (middle) summarizes all discovered links409

(rows) versus data source (columns). Here the node color stands for the strength of the410

link, the number inside the node indicates the time lag in months, where 0 stands for411

a contemporaneous link, 1- causal link with one month delay, 2 - causal link with two412

months delay etc. And as a last step, to evaluate the general performance of climate mod-413

els, we calculate the F1-score (see Fig. 2d, right, see also Sect. 3.3). Here, rows stand414

for the reference data, columns are the data sources that are compared to the references.415

The lower values represent worse, and the higher values (close to one) better matches416

with the reference data.417

4 Results and discussion418

4.1 Causal links in observations419

To evaluate the performance of CMIP6 models and to understand the causal links420

in observations, we first reconstruct causal graphs of Arctic-midlatitude teleconnections421

based on ERA5 and HadISST datasets for the period 1979-2019. Figure 3 shows causal422

graphs for (a) winter (DJF), (b) early winter (OND), and (c) late winter (JFM) with423

a significance level of αpc=0.01 and a maximum time lag of τmax = 5 for all tests in PCMCI+.424

The node color represents the value of the auto-MCI at the lag with the maximum ab-425

solute value. Directed lagged and contemporaneous causal links are depicted by straight426

and curved arrows respectively pointing the direction of the impact. The position of ac-427

tors in Fig. 3 corresponds to their approximate geographical location defined in Table428

2.429

From the causal graph of Arctic-midlatitude linkages during DJF (Fig. 3a) among430

all actors we find the highest autoregressive values (auto-MCI) for Ok-SIC (0.6) and BK-431

SIC (0.58) both with a time lag of one month. Panel (a) shows a positive contempora-432

neous link (cross-MCI) between TAS and Sib-SLP (0.28), indicating the direct relation-433

ship between Arctic near-surface temperature and Siberian High. Since the link is not434

directed (no arrow), this connection only implies that (i) the increase (decline) of Arc-435

tic near-surface temperature is associated with the strengthening (weakening) of Siberian436

High, or (ii) the increase (decline) of sea level pressure over Siberia is associated with437

the increased (decreased) near-surface temperature over the Arctic. The relation between438

TAS and Sib-SLP also stands for a robust “warm Arctic- cold Siberia” pattern, since an439

anticyclonic anomaly around the Siberian coast induces cold air spells over NH midlat-440

itudes (Tyrlis et al., 2020). In turn, the Siberian High is positively contemporaneously441

linked with the Ural blocking (Sib-SLP and Ural-SLP, 0.54), which agrees with findings442

of (Cohen & Jones, 2011; Cohen et al., 2014; Peings, 2019; Tyrlis et al., 2020) that Ural443

blocking is a key driver of ”warm Arctic- cold Siberia” pattern”. Also, the increased sea444

level pressure over Ural and Siberia is associated with the near-surface temperature in-445

crease over the Arctic (direct link between TAS and Sib-SLP, and indirect link between446

Ural-SLP and TAS via Sib-SLP), which is in agreement with Luo et al. (2016), who stated447

that the Arctic warming favors midlatitude blocking flows.448

During DJF we find a contemporaneous positive link between the NAO and PV449

with a cross-MCI value 0.24, indicating direct tropospheric-stratospheric relationship be-450

tween Arctic and midlatitudes. It implies that the negative (positive) phase of the NAO451
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(a)                                                                   

(b)               (c)                                                                    

Figure 3. Causal graphs based on ERA5 and HadISST datasets for the period 1979-2019

during (a) winter (DJF), (b) early winter (OND), and (c) late winter (JFM). The significance

level is αpc=0.01 and the maximum time lag τmax = 5. Similar to Fig. 1, the position of actors

corresponds to their approximate geographical location defined in Table 2.

is associated with a weakening (strengthening) of the PV. For example, a weaker PV pro-452

duces then circulation anomalies that are associated with an increasingly meandering453

jet stream that resembles the negative phase of the NAO. The contemporaneous posi-454

tive link between the NAO and U (0.86) indicates that the negative (positive) phase of455

the NAO results in a weakening (strengthening) of westerly winds, which is consistent456

with study of Wallace and Gutzler (1981) and more recent findings of Athanasiadis et457

al. (2010), Screen (2017b), and Smith et al. (2022). The link between NAO and U is the458

strongest among all detected DJF links in Fig. 3(a). Additionally, we find a causal neg-459

ative impact from NAO to BK-SIC (-0.31) with one month lag, which represents a tro-460

pospheric connection between midlatitudes and the Arctic.461

During DJF we also find the negative links between vflux and PV, which are as-462

sociated with the weakening of polar vortex due to increased poleward eddy heat flux463

not only instantaneously (-0.38), but also with one month delay (-0.37). In turn, the weak-464

ened PV induces further weakening of the poleward eddy heat flux, indicated via causal465

positive link with one month lag (0.28). In the North Pacific region during DJF we de-466

tect a causal negative link from the Aleutian Low to sea ice over the Sea of Okhotsk (from467

Aleut-SLP to Ok-SIC, -0.4) with one month delay. This is in agreement with Ogi et al.468

(2015), who linked the deepening of the Aleutian Low to the increase in the Okhotsk sea469
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ice cover. There is a negative contemporaneous link between Aleut-SLP and vflux (-0.3),470

so that a deepening of the Aleutian Low is associated with an increase in poleward eddy471

heat flux at 100 hPa.472

During early winter (OND, Fig. 3b) the distribution of contemporaneous and causal473

links differs from DJF (Fig. 3a). Therefore, in the following we focus only on those links474

and changes in the connections that appeared newly in comparison to DJF. During OND475

the highest auto-MCI values in observations are found for BK-SIC (0.41, which is lower476

than during DJF, see panel (a) and TAS (0.31) both with one month time lag. Contrary477

to DJF, the positive link between TAS and Sib-SLP is not found during OND. However,478

we find a contemporaneous negative link between TAS and BK-SIC (-0.35), which was479

not found during DJF. This link indicates that the increase (decrease) of near-surface480

temperature over the Arctic is related to the decline (increase) of sea ice over Barents481

and Kara seas. This is consistent with findings of Screen et al. (2012), who showed that482

Arctic sea ice changes are one of the main drivers of near-surface Arctic temperature trends.483

However it is important to highlight that since observational causal graph is also esti-484

mated with errors, the absence of the link (for example between TAS and BK-SIC dur-485

ing DJF) could happen if the connection is detected as false negative in the causal graph.486

We also find a causal positive link with two months lag from BK-SIC to Ok-SIC487

(0.31). Based on the causal graph, we find another positive causal link to the Ok-SIC488

from the Ural-SLP (0.26) with one month lag. Contrary to DJF (Fig. 3a), the link from489

NAO to BK-SIC is not lagged anymore, but is directed contemporaneous causal link (-490

0.25). There are no lagged causal links detected between PV and vflux, but only directed491

contemporaneous from PV to vflux (-0.36). And in the North Pacific region during OND492

we find a positive causal link from Aleut-SLP to vflux (0.29) with two months delay, which493

shows that the weakened Aleutian Low can lead to weaker poleward eddy heat flux at494

100 hPa.495

During late winter (JFM, Fig. 3c) the observations show pronounced auto-MCI val-496

ues for both Ok-SIC (0.63) and BK-SIC (0.57) similarly to panel (a). We detect a di-497

rected contemporaneous negative link from TAS to BK-SIC (-0.24). We also find an un-498

oriented, contemporaneous positive link between TAS and Sib-SLP (0.32), which was also499

found during DJF (panel a), but not during OND (panel b). Therefore, based on causal500

analysis of cold periods (panels a-c), the link between Arctic temperature and Siberian501

High is not occurring earlier than December and persists until late winter. We also find502

a directed contemporaneous link from Ural-SLP to BK-SIC (-0.25), which is in agree-503

ment with Yao et al. (2018), who reported that the reduction of sea ice cover over Bar-504

ents and Kara seas is due to regional blocking on weekly time scales. Similarly, Siew et505

al. (2020) suggested that the connection between Ural-SLP and BK-SIC is a matter of506

days to a week. The latter conclusion explains why the link between Ural-SLP and BK-507

SIC is detected as contemporaneous on a monthly time scale. Based on Fig. 3a-b, we508

do not find the link between Ural-SLP and BK-SIC during DJF or OND. This suggests509

that the impact of Ural blocking to the decrease of sea ice over the Barents and Kara510

seas occurs only during JFM. We detect a further negative connection to BK-SIC, but511

from U (-0.29), which is a causal link with three months lag.512

Similar to Fig. 3a, during JFM (panel c) in the North Pacific region we find a neg-513

ative causal connection from Aleut-SLP to Ok-SIC (-0.33), whereas it does not take place514

during early winter. During JFM we also find two causal positive links with one month515

lag associated with the PV. Similar to DJF, the first link is from PV to vflux (0.33), in-516

dicating that the weakened PV causes weakening of the poleward eddy heat flux. The517

second link is from PV to TAS (0.4), indicating that the weakening of polar vortex leads518

to a decrease of Arctic near-surface temperature. This link is associated with the down-519

ward coupling of stratospheric polar vortex anomalies, and it is known to be particularly520

strong during sudden stratospheric warming (SSW) events that can effect tropospheric521

weather for up to 60 days after the event (Baldwin et al., 2021). The surface temper-522

ature impact of SSWs is particularly strong throughout northern Eurasia, where neg-523

ative surface temperature anomalies often follow SSWs (see e.g. Baldwin et al., 2021;524
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Table 3. Summary of the Arctic-midlatitude connections based on the application of causal

discovery on ERA5 and HadISST datasets for the period 1979-2019. Link type stands for ei-

ther the lagged causal link (causal), where number in round brackets indicates the time lag in

months, or the contemporaneous (contemp.) link. The sign indicates a positive (+) or negative

(-) connection. The values in the last three columns show cross-MCI.

No Link Link type Sign OND DJF JFM

1 TAS and BK-SIC contemp. - -0.35 -0.24

2 TAS and Sib-SLP contemp. + 0.28 0.32

3 Sib-SLP and Ural-SLP contemp. + 0.54 0.54 0.56

4 Ural-SLP and PV causal (1) - -0.42

5 Ural-SLP and BK-SIC contemp. - -0.25

6 BK-SIC and Ok-SIC causal (2) + 0.31

7 Ural-SLP and Ok-SIC causal (1) + 0.26

8
NAO and BK-SIC

causal (1) - -0.31
9 contemp. - -0.25

10 NAO and PV contemp. + 0.35 0.24

11 NAO and U contemp. + 0.82 0.86 0.87

12
Aleut-SLP and vflux

causal (2) + 0.29
13 contemp. - -0.3 -0.29 -0.32

14
vflux and PV

causal (1) - -0.38 -0.45
15 contemp. - -0.37 -0.42

16
PV and vflux

causal (1) + 0.28 0.33
17 contemp. - -0.36

18 Aleut-SLP and Ok-SIC causal (1) - -0.40 -0.33

19 PV and TAS causal (1) + 0.4

20 U and BK-SIC causal (3) - -0.29

Hall et al., 2022). These negative anomalies dominate the polar cap mean temperature525

response to SSWs. Consequently, this can explain the positive causal link between PV526

and Arctic TAS.527

The summary of discussed links is provided in Table 3, where the second column528

indicates the linked actors, and the third column stands for the type of the link (causal529

or contemporaneous). If the link is causal then the number in round brackets shows the530

time delay in months. The forth column shows whether the link is positive (+) or neg-531

ative (-). The last three columns show the cross-MCI values for those links, which were532

found in the observations. To summarize the changes in the connections within the cold533

period, we sort the periods from early (OND, column five) to late (JFM, column seven)534

winter. According to Table 3, there are four links that appear during all three analysed535

periods (OND, DJF, and JFM), namely contemporaneous links (sorted by the cross-MCI536

strength) between (i) NAO and U, (ii) Sib-SLP and Ural-SLP, (iii) PV and vflux, and537

(iv) Aleut-SLP and vflux. There are a number of connections that are found in only one538

of the analysed periods. For example, the tropospheric causal links associated with Ok-539
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SIC such as from BK-SIC to Ok-SIC and from Ural-SLP to Ok-SIC are found only dur-540

ing OND, the downward coupling from the stratosphere to the troposphere via PV to541

the TAS and link between U and BK-SIC are found only during JFM.542

4.2 Evaluation of causal links in CMIP6 historical simulations543

Similar to observations, we reconstruct causal graphs for each individual climate544

model from Table 1 as indicated in Fig. 2c. The representation of all causal graphs in545

DJF is shown in Fig. S1 in the supporting information. To generally estimate how many546

climate models simulate physical processes detected in observations, Fig. 4 shows causal547

graphs based on observations from Fig. 3, but in this case the number in the hexagon548

above each link indicates how many models out of 19 simulate the link identical to ob-549

servations by sign (positive or negative) and type (contemporaneous or causal). Addi-550

tionally, the width of the lines in Fig. 4 visualizes the fraction of the models, that sim-551

ulate these particular connections. The dashed lines stand for the connections that were552

not found in the models (also denoted by the ”0” in the hexagon). To optimize the com-553

parison between observations and models, in the following we do not distinguish the three554

types of contemporaneous links, namely (i) directed contemporaneous causal links, (ii)555

unoriented, and (iii) conflicting contemporaneous adjacencies, but summarize them into556

one category and simply refer to these connections as contemporaneous connections. It557

is important to note, that Fig. 4 exhibits those connections, that were detected in ob-558

servations and excludes those, which were detected by models, but not by the observa-559

tions. We adhere to a criterion of more than half of analysed models (i.e. ≥ 10) to rep-560

resent a robust model response.561

Many links between Arctic and midlatitudes that were detected in observations are562

simulated by most of the 19 analysed models. However, there are some links that are de-563

tected by less than half of the considered models. For example, during DJF (Fig. 4a)564

the contemporaneous link between TAS and Sib-SLP is simulated by 8/19 models and565

during JFM (Fig. 4c) by 7/19 models. The contemporaneous link between NAO and PV566

during both DJF (panel a) and OND (panel b) is simulated by 6/19 models. Only 1/19567

models simulates causal positive link from PV to vflux during DJF and 5/19 models de-568

tect this link during JFM (panel c). During JFM there is also 1/19 models that simu-569

lates contemporaneous link between BK-SIC and Ural-SLP. We found that 5/19 mod-570

els simulate the causal link from Ural-SLP to PV, which was detected only during OND571

(panel b). In the North Pacific region, the causal link from Aleut-SLP to Ok-SIC is found572

in 2/19 models in DJF (panel a) and in 1/19 models during JFM (panel c). While dur-573

ing DJF the contemporaneous link between vflux and Aleut-SLP is simulated by most574

of the analysed models (12/19), this connections becomes less robust during OND (panel575

b, 6/19) and JFM (panel c, 9/19 models).576

Additionally, we found several links that were found in observations, but were not577

simulated by models. During DJF (panel a) this is the causal link with one month lag578

from NAO to BK-SIC. During OND (panel b) there are three of such links: the contem-579

poraneous link between NAO and BK-SIC, the causal links from Ural-SLP to OK-SIC580

and from Aleut-SLP to vflux. And during JFM (panel c) this is the causal link from U581

to BK-SIC.582

While Fig. 4 shows general agreement of the analysed models based on the obser-583

vational links, with Fig. 5 we summarize for observations and each out of 19 analysed584

CMIP6 models (x-axis) all detected contemporaneous and causal links (y-axis) during585

DJF 1979-2019. Similar to Fig. 4, here we do not separate three types of contempora-586

neous links, but summarize them into one group of contemporaneous connections. Fig-587

ure 5 gives a detailed overview of every link that is found in observations and is simu-588

lated by each of the analysed models during DJF. Analogous to Fig. 5, the summary causal589

graphs for OND and JFM is shown in the supporting information Fig. S2 and Fig. S3590

respectively.591

–16–



manuscript submitted to JGR: Atmospheres

(a)                                                                   

(b)                    (c)                                                                    
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Figure 4. Summary causal graphs based based on 19 CMIP6 historical simulations for the

period 1979-2019 during (a) winter (DJF), (b) early winter (OND), and (c) late winter (JFM).

Similar to Fig. 3, αpc=0.01 and τmax = 5. The line width represents the fraction of the models

that simulate the particular connection. The dashed line indicates those connections, that were

not found in the models. The number in the hexagon above each link indicates how many out of

19 models simulate a (contemporaneous or causal) link identical by sign and type in comparison

to observations. Here only those links are shown, which were detected in observations.

Based on Fig. 5 we detect that during DJF the only one model that reproduces592

the causal positive observational link from PV to flux is CMCC-ESM2. The contempo-593

raneous link between TAS and Sib-SLP is simulated by less than half of the analysed mod-594

els (8/19), namely BCC-CSM2-MR, CAMS-CSM1-0, EC-Earth-Veg, GFDL-CM4, GFDL-595

ESM4, INM-CM4-8, MPI-ESM1-2-HR, MRI-ESM2-0. While the analysed historical CMIP6596

models do not simulate the causal negative connection from NAO to BK-SIC in DJF,597

which was found in observations, we find 4/19 models (CanESM5, INM-CM4-8, MPI-598

ESM1-2-LR, and MRI-ESM2-0) that show a contemporaneous negative link between these599

actors. In the North Pacific, the causal negative link with one month delay from Aleut-600

SLP to Ok-SIC is simulated by two models: BCC-CSM2-MR and MPI-ESM1-2-LR. We601

found that there are three other models (GFDL-CM4, GFDL-ESM4, and IPSL-CM6A-602

LR) that simulate contemporaneous negative link between Aleut-SLP and Ok-SIC. The603

negative contemporaneous link between vflux and Aleut-SLP is simulated by most of the604
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Figure 5. Summary of causal and contemporaneous links detected in observations (OBS) and

19 CMIP6 historical simulations during winters (DJF) for the period 1979-2019. Node color rep-

resents the strength of the link. The number within the node represents the time lag in months

in causal links, zero represents contemporaneous links.
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analysed models (12/19): ACCESS-CM2, ACCESS-ESM1-5, CAMS-CSM1-0, CanESM5,605

CMCC-CM2-SR5, CMCC-ESM2, EC-Earth-Veg-LR, GFDL-ESM4, INM-CM4-8, IPSL-606

CM6A-LR, MIROC6, MPI-ESM1-2-HR.607

In the following we also discuss the connections that were not found in observa-608

tions, but were simulated by models. For example, as discussed in Fig. 4a, during DJF609

the observations do not exhibit a link between TAS and BK-SIC, however based on Fig.610

5 we found that most of the analysed models (12/19) simulate this connection (see the611

lowermost row of Fig. 5). These models are: ACCESS-ESM1-5, CanESM5, CMCC-CM2-612

SR5, CMCC-ESM2, EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, IPSL-CM6A-LR, MIROC6,613

MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0. Since most of analysed models agree614

on the connection between TAS and BK-SIC during DJF, the absence of this link in the615

observational causal graph (Fig. 3a) could occur if the algorithm defines it as false neg-616

ative (also discussed in Sect. 4.1). We also find that during DJF the link between NAO617

and BK-SIC is simulated as the negative contemporaneous link (not lagged as in obser-618

vations) by four models: CanESM5, INM-CM4-8, MPI-ESM1-2-LR, and MRI-ESM2-619

0. This is the reason why Fig. 4a shows no matches for negative lagged link from NAO620

to BK-SIC. We also find that during OND most on analysed models (14/19) simulate621

negative causal link from vflux to PV (see supporting information Fig. S2), which was622

not detected in observational causal graph on Fig. 4b.623

To estimate the general performance of the 19 analysed CMIP6 historical simula-624

tions (only first ensemble member r1i1p1f1), we calculate the F1-score on the pair-wise625

comparison of causal graphs, which are based on monthly mean data of the ten analysed626

actors. Figure 6 shows the matrix of average F1-scores during DJF (a), OND (b), and627

JFM (c). Reference data is shown in rows and data sources that are compared to the628

references is shown in columns. Higher scores imply better agreement between causal629

graphs, i.e., that two models (or model and observations) are more similar in terms of630

their causal fingerprint; lower scores represent larger differences between reference and631

analysed causal graphs.632

Figure 6 shows that generally there is a better agreement among observations and633

analysed models during DJF (panel a) and JFM (panel c) compared to OND (panel b).634

The F1-scores during OND (panel b) are notably lower in comparison to the two other635

periods, implying that the agreement of causal graphs among analysed models and ob-636

servation is lower during OND. Below we revise, which models have the highest F1-scores637

during different seasons, thus indicating the best agreement of causal graphs among dif-638

ferent models and observations. Below in the round bracket we denote the F1-score val-639

ues. The highest F1-scores during DJF (Fig. 6a) is detected for EC-Earth3-Veg-LR model,640

when its causal graph is used as a reference in comparison to ACCESS-CM2 (0.83), ACCESS-641

ESM1-5, and CMCC-CM2-SR5 (both 0.81). Similar high F1-scores during DJF we found642

for CMCC-ESM2 and EC-Earth3-Veg-LR (0.81), when CMCC-ESM2 model is consid-643

ered as a reference. The highest F1-score during OND (see Fig. 6b) is detected between644

GFDL-CM4 (reference) and GFDL-ESM4 (0.9); and during JFM (see Fig. 6c) between645

EC-Earth3-Veg (reference) and IPSL-CM6A-LR (0.9). The latter, for example, is one646

of the highest F1-scores detected among 19 analysed models and observations during anal-647

ysed periods. Since both models IPSL-CM6A-LR (Boucher et al., 2020) and EC-Earth-648

Veg (Döscher et al., 2022) share the same ocean component, which is based on the Ver-649

sion 3.6 stable of Nucleus for European Models of the Ocean (NEMO, Madec & Team,650

2015), this could explain the high F1-score, and thus the strong similarity in causal graphs.651

Based on the summary of causal and contemporaneous links shown in Fig. S3, both mod-652

els simulate analogous links, except that EC-Earth-Veg also captures the observed causal653

positive links with one month lag from PV to TAS and from PV to vflux, and contem-654

poraneous negative link between Sib- and Aleut-SLP, which are not simulated by IPSL-655

CM6A-LR.656

In the following we also compare the highest F1-scores with observational datasets657

as a reference during different seasons. We highlight the top three-four models that have658

the highest F1-scores with observations, thus simulate Arctic-midlatitude links very sim-659
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(a)                                                                   

(b)  (c)                                                                    

Figure 6. Matrix of average F1-scores for pair-wise comparisons of causal graphs among ob-

servations and the first ensemble member (r1i1p1f1) of 19 climate models during (a) DJF, (b)

OND, and (c) JFM. Reference data is shown is rows, data that is compared to the reference

is shown in columns. Higher (lower) scores stand for better (worse) agreement between causal

graphs.
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ilar to observations. During DJF, the following models have the best agreement with the660

observational causal graphs: CAMS-CSM1-0 (0.82), INM-CM4-8 (0.81), and EC-Earth3-661

Veg-LR (0.8). During OND these models are: EC-Earth3-Veg (0.69), ACCESS-CM2, CMCC-662

ESM2, and MRI-ESM2-0 (all 0.65). The highest F1-score in comparison to observations663

during JFM show IPSL-CM6A-LR and EC-Earth3-Veg (both 0.76), and INM-CM4-8 and664

ACCESS-ESM1-5 (both 0.74). With this here we highlight two points. First, generally665

high F1-scores suggest that analysed climate models adequately represent observed mech-666

anism behind Arctic-midlatitude connections. In particular, the higher F1-scores dur-667

ing DJF and JFM suggest that climate models better capture observed links (or agree668

on connections across different models) during these seasons. Thus, second, the high F1-669

scores between models and/or observations during one season do not imply that the agree-670

ment of causal graphs between particular models and/or observations is expected to be671

good during other seasons. For example, while the F1-score between INM-CM4-8 and672

observations as reference is one of the highest during DJF (Fig. 6a; 0.81), during OND673

the similarity in causal graphs is much lower (0.43, panel b), and during JFM it is higher674

again (0.74, panel c). This shows that the agreement between observations and models675

(and among models) is highly dependent on the analysed period. Since F1-score does676

not simply indicate a similarity of individual parameters between different data sources,677

but is rather a process-based evaluation of model performance (in our case of Arctic-midlatitude678

connections), we find that these similarities of Arctic-midlatitude processes vary for dif-679

ferent analysed periods (in our case OND, DJF, or JFM) across analysed CMIP6 mod-680

els.681

4.3 Causal links in CMIP6 SSP5-8.5 future simulations682

To address future changes in Arctic-midlatitude teleconnections, Fig. 7 displays683

causal graphs similar to Fig. 4, but for the ScenarioMIP SSP5-8.5 simulations for the684

period 2059-2099. The detailed summary of causal and contemporaneous links detected685

in CMIP6 SSP5-8.5 simulations for winters 2059-2099 is provided in supporting infor-686

mation Fig. S4. The links detected in the observations and most of the CMIP6 histor-687

ical simulations are also seen in most of the SSP5-8.5 scenario simulations. Therefore,688

we first analyse the links that are expected to become more robust based on SSP5-8.5689

simulations. The most prominent future changes are found between poleward eddy heat690

flux and Aleutian Low. The historical simulations showed robustness of this link only691

during DJF (see Fig. 4a, 12/19 models), while during OND only 6/19 models and dur-692

ing JFM 9/19 models simulated this connection. During 2059-2099 it is expected that693

this connection will become more robust for all analysed periods: for DJF and JFM it694

is simulated by 16/19 models and for OND by 13/19 models(see Fig. 7a-c). This pro-695

nounced change from past to future could be associated with future intensification of ex-696

treme Aleutian low reported by Giamalaki et al. (2021), since the Aleutian low has pre-697

viously experienced a weakening trend during the past two decades (Hu et al., 2018).698

We also find that the contemporaneous connection between TAS and BK-SIC be-699

comes more robust from historical to SSP5-8.5 simulations. Figure 5 (lowermost row)700

shows that during 1979-2019 12/19 models simulate this connection in DJF, although701

it was not found in the observations. In the future this link is simulated by 15/19 mod-702

els during DJF (see supporting information Fig. S5). In historical simulations the link703

between TAS and BK-SIC is found in 13/19 models during OND and in 14/19 models704

during JFM. Future simulations show more robust link between TAS and BK-SIC, i.e.705

in 16/19 models both during OND and JFM (see Fig. 7b,c).706

Several links become less robust in the future SSP5-8.5 simulations. For example,707

during DJF the contemporaneous positive link between TAS and Sib-SLP is simulated708

by 8/19 models in historical (BCC-CSM2-MR, CAMS-CSM1-0, EC-Earth3-Veg, GFDL-709

CM4, GFDL-ESM4, INM-CM4-8, MPI-ESM1-2-HR, MRI-ESM2-0, Fig. 4a and 5) and710

by 5/19 in SSP5-8.5 simulations (CAMS-CSM1-0, CMCC-ESM2, GFDL-ESM4, MPI-711

ESM1-2-HR, MRI-ESM2-0, see Fig. 7a and S5). Note that they are not identical mod-712
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Figure 7. Same as Fig. 4 but for the ScenarioMIP SSP5-8.5 simulations for the period 2059-

2099.
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els that detect this link by historical and future simulations. During OND there are two713

connections, that become less robust from historical to future simulations, and both are714

related to PV. The first one is the link between NAO and PV, which is simulated by 6/19715

models in historical simulations (ACCESS-CM2, CAMS-CSM1-0, CMCC-CM2-SR5, EC-716

Earth-Veg, MPI-ESM1-2-HR, and MRI-ESM2-0, see Fig. 4b and S2) and by only 2 mod-717

els in SSP5-8.5 (CMCC-ESM2, EC-Earth3-Veg-LR, see Fig. 7b and S6). The second link718

is from Ural-SLP to PV, which is simulated by 5/19 in historical (BCC-CSM2-MR, CMCC-719

CM2-SR5, CMCC-ESM2, EC-Earth3-Veg, MRI-ESM2-0) and 3/19 in SSP5-8.5 (CAMS-720

CSM1-0, CMCC-CM2-SR5, EC-Earth3). During JFM it is the causal link from PV to721

TAS, which is simulated by 3/19 models in historical (BCC-CSM2-MR, EC-Earth3-Veg,722

EC-Earth3-Veg-LR, see Fig. 4c and S3) and by 1/19 models in future simulations (EC-723

Earth3-Veg-LR, see Fig. 7 and Fig. S7).724

To summarize the difference between observed and modelled causal graphs in past725

and future simulations, Fig. 8 illustrates the F1-score for historical (circles) and SSP5-726

8.5 (triangles) simulations for DJF (panel a, blue), OND (panel b, green), and JFM (panel727

c, orange). Similar to Fig. 6, we use observational causal graphs as reference for the anal-728

ysis of CMIP6 historical simulations. To estimate the impact of a changing climate on729

Arctic-midlatitude links, we choose the historical simulation as a reference for each CMIP6730

model for the future scenarios. The lower the F1-score for SSP5-8.5 simulations, the larger731

is the difference between the causal graphs for the historical and future simulations. We732

find that the F1-scores for the future simulations are generally higher during DJF and733

JFM (see Fig. 8a, c), and lower during OND (Fig. 8b), which is similar to the findings734

for historical F1-scores shown in Fig. 6a-c. Most of SSP5-8.5 F1-scores are similar to the735

historical scores, implying that causal graphs between historical and SSP5-8.5 simula-736

tions do not differ much. This is associated with the small future changes in the context737

of Arctic-midlatitude links (or absence of drastic complex future changes) as simulated738

under the SSP5-8.5 scenario.739

Those models that have the highest F1-score for the SSP5-8.5 simulations (trian-740

gles in Fig. 8) predict only small future changes in comparison with historical simula-741

tions. During DJF (panel a) these models are CMCC-CM2-SR5 (0.83), EC-Earth3-Veg-742

LR (0.79), and IPSL-CM6A-LR (0.76); during OND (panel b) these are CanESM5 and743

MIROC6 (both 0.73), and during JFM (panel c) these are MPI-ESM1-2-LR (0.85), INM-744

CM5-0 and CanESM5 (both 0.79), and MPI-ESM1-2-HR (0.78). Therefore, these are745

the models that predict the smallest change in Arctic-midlatitude connections in com-746

parison to their historical simulations during analysed periods.747

The lowest F1-scores in SSP5-8.5 simulations, thus the largest differences between748

past and future Arctic-midlatitude teleconnections are simulated during DJF by GFDL-749

CM4 (0.41), BCC-CSM2-MR (0.47), MIROC6 and INM-CM5-0 (both 0.5). During OND750

these models are CAMS-CSM1-0 (0.41), CMCC-CM2-SR5 EC-Earth3-Veg-LR (both 0.42),751

and GFDL-CM4 (0.43). And during JFM these models are BCC-CSM2-MR (0.4), GFDL-752

CM4 (0.45), and CAMS-CSM1-0 (0.46). Thus, GFDL-CM4 is the model that simulates753

the largest future changes in comparison to historical Arctic-midlatitude links for all three754

analysed periods. For example, based on the DJF causal graphs from GFDL-CM4 his-755

torical and SSP5-8.5 simulations (see supporting information Fig. S1 and S4), in the fu-756

ture this model simulates a contemporaneous impact of Ural-SLP on TAS via BK-SIC;757

a causal negative link from BK-SIC to Ok-SIC with five months lag; a causal negative758

link from Ural-SLP to PV with one month lag. None of these links were found in his-759

torical simulations of GFDL-CM4 model.760

Additionally, the F1-score is useful to estimate how different versions of the same761

model reproduce observational physical mechanisms. For example, based on the mech-762

anisms of Arctic-midlatitude teleconnections, we find that the MPI-ESM1-2 models (HR763

and LR) during JFM have similar F1-scores with each other (see Fig. 6c, 0.84), more-764

over both models agree well with observational causal graph (Fig. 8c, around 0.72). Dur-765

ing DJF MPI-ESM1-2-HR better captures observed connections, thus MPI-ESM1-2-HR766

F1-score is higher (0.73) than MPI-ESM1-2-LR (0.6); and during OND MPI-ESM1-2-767
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Figure 8. F1-score scatter plot of individual causal network comparison with observations

taken as reference for the first ensemble member (r1i1p1f1) of 19 CMIP6 historical (circles) and

SSP5-8.5 (triangles) simulations for winter DJF (panel a, blue), early winter OND (panel b,

green), and late winter JFM (panel c, orange).

LR simulates less links, which leads to lower number of false positive and false negative768

connections, thus its F1-score is higher (0.57) than MPI-ESM1-2-HR (0.46).769

5 Conclusions770

Our study applies causal discovery to compare Arctic-midlatitude teleconnections771

across a number of CMIP6 simulations to the causal links derived from observations. Causal772

discovery is recognized as an interpretable machine learning tool that goes beyond cor-773

relation analysis to study complex systems. By analysing detrended timeseries from ob-774

servations (ERA5 and HadISST) and 19 CMIP6 models, this study shows the variety775

of causal and contemporaneous links that were identified in the Arctic-midlatitude tele-776

connections in conditions of amplified Arctic warming by CMIP6 historical and SSP5-777

8.5 simulations. To identify the differences in the mechanism of Arctic-midlatitude tele-778

connections during the NH cold season, we apply causal discovery to the following pe-779

riods: winter (DJF), early winter (OND), and late winter (JFM).780

Based on the application of causal discovery on observational data for 1979-2019,781

we detect links between Arctic and midlatitude processes that occur not only in the tro-782

posphere, but also in the stratosphere. For example, in observations OND and JFM we783

find a negative contemporaneous link between near-surface Arctic temperature and sea784

ice over Barents and Kara seas, implying that an increase (decrease) in temperature is785

connected to a decline (increase) of sea ice over Barents and Kara seas. Furthermore,786

the increase of Arctic temperature is also associated with atmospheric blocking at mid-787

latitudes, such as a strengthening of the Siberian High, which is found during DJF and788

JFM. Observational causal graphs also detect a positive connection between near-surface789

westerlies and NAO: weak (strong) westerly winds are associated with the negative (pos-790
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itive) phase of the NAO. The latter is related to the weakened stratospheric PV during791

OND and DJF. Further analysis of observations has revealed that there are several tele-792

connections that occur only during specific periods. For example, the direct link of in-793

creased Ural blocking with weakened stratospheric PV is detected only during OND; the794

causal impact of a weakened PV on the decline of Arctic near-surface temperature, which795

is associated with sudden stratospheric warming events was found only during JFM.796

The causal analysis of CMIP6 historical simulations showed good agreement with797

observations from early to late winters, since most of the analysed models simulate the798

observed links. Based on historical simulations, we found several links that were simu-799

lated by most of the models, but were not detected in the observations. For example,800

during OND most of models simulate that the increased poleward eddy heat flux induces801

weakening of the polar vortex with one month lag. During DJF most of analysed mod-802

els simulate a negative contemporaneous link between Arctic temperature and Barents-803

Kara sea ice. However these links were not detected in the observations. However, the804

observational causal graph could be estimated with errors, thus the observational link805

between these actors might be detected as false negative. We also found a link that was806

detected in the observations, but was not simulated by any of analysed models, namely807

during DJF the negative lagged connection from NAO to the sea ice over Barents and808

Kara seas. During OND models do not simulate observed contemporaneous link between809

NAO and sea ice changes over Barents and Kara seas, the causal positive connection from810

Ural blocking to the sea ice over the Sea of Okhotsk, and the causal positive link from811

the Aleutian Low to the poleward eddy heat flux. And during JFM analysed models do812

not simulate the causal negative link from the near-surface westerly winds to the Barents-813

Kara sea ice cover.814

The analysis of CMIP6 SSP5-8.5 simulations during 2059-2099 does not show dras-815

tic changes in future Arctic-midlatitude teleconnections, since most of the analysed mod-816

els reproduce the detected links. Additionally, the analysis based on the F1-score sup-817

ports the conclusion that the expected future changes will be small, since the differences818

between the historical and SSP5-8.5 F1-scores are not large.819

However, we find several connections that are clearly expected to become more ro-820

bust in the future. For example, observational datasets detected a negative link between821

near-surface Arctic temperature and sea ice over the Barents and Kara seas during OND822

and JFM, and most of the analysed historical models simulated this connection during823

all considered periods. Furthermore, future simulations suggest that this connection be-824

comes more robust during 2059-2099: 15 out of 19 analysed models show this connec-825

tion in the future simulations during DJF, and 16 out of 19 models during OND and JFM.826

While in the historical simulations the link between Arctic temperature and sea ice over827

the Barents and Kara seas was simulated by 12 out 19 models during DJF, 13 out of 19828

models during OND, and 14 out of 19 during JFM.829

We also find a pronounced change between past and future simulations associated830

with a robust detection of a link between the Aleutian Low and poleward eddy heat flux831

at 100 hPa, which is detected in most of the historical simulations only during DJF. Most832

of the analysed models simulate this connection in the future: 13 out of 19 models dur-833

ing OND, and 16 out of 19 during DJF and JFM. This change could be associated with834

predicted future intensification of the Aleutian Low (Giamalaki et al., 2021).835

Overall, this study shows that causal model evaluation of Arctic-midlatitude tele-836

connections provides not only a powerful tool to assess the physical mechanisms and their837

interconnections in climate models, but also yields robust information for the research838

of observed atmospheric processes and their changes.839
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6 Open Research840

6.1 Availability statement841

The CMIP6 model data is publicly available upon registration via the Earth Sys-842

tem Grid Federation (ESGF, https://esgf.llnl.gov, last access: 05.10.2022, Williams843

et al., 2009). ERA5 data is available via Climate Data Store (CDS, https://cds.climate844

.copernicus.eu/, last access: 05.10.2022.845

ESMValTool v2.0 is released under the Apache License, VERSION 2.0 (Eyring et846

al., 2020; Lauer et al., 2020; Righi et al., 2020). The latest release of ESMValTool v2 is847

publicly available on Zenodo at https://doi.org/10.5281/zenodo.3401363 (Andela848

et al., 2022b). The source code of ESMValCore package, which is installed as a depen-849

dency of ESMValTool v2, is also publicly available on Zenodo at https://doi.org/10850

.5281/zenodo.3387139 (Andela et al., 2022a). Both ESMValTool and ESMValCore are851

developed on the GitHub repositories available at https://github.com/ESMValGroup,852

last access: 05.10.2022. At the time of publication of this paper, we will implement a new853

recipe to ESMValTool that can be used to reproduce the calculations of potential actors854

provided in this study.855

The causal discovery algorithm is freely available via https://github.com/jakobrunge/856

tigramite, last access: 05.10.2022. The code used to reproduce summary of causal and857

contemporaneous links and F1-scores and to produce figures of this manuscript will be858

accessible at the time of publication of the manuscript in the following Github reposi-859

tory: https://github.com/EyringMLClimateGroup/galytska22jgr CME arctic-midlat860

teleconnections.861
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