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Key Points:6

• A novel approach is used to conduct perfect-model predictability experiments us-7

ing a superparameterized global model.8

• A single ensemble member model with superparameterized convection finds a po-9

tential Madden-Julian Oscillation predictability of 35-40 days.10

• Resulting predictability estimates are comparable to those from current state-of-11

the-art multiple ensemble member forecasting models.12
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Abstract13

The Madden-Julian Oscillation (MJO) is a promising target for improving sub-seasonal14

weather forecasts. Current forecast models struggle to simulate the MJO due to imper-15

fect convective parameterizations and mean state biases, degrading their forecast skill.16

Previous studies have estimated a potential MJO predictability 5-15 days higher than17

current forecast skill, but these estimates also use models with parameterized convec-18

tion. We perform a perfect-model predictability experiment using a superparameterized19

global model, in which the convective parameterization is replaced by a cloud resolving20

model. We add a second “silent” cloud resolving component to the control simulation21

that independently calculates convective-scale processes using the same large-scale forc-22

ings. The second set of convective states are used to initialize forecasts, representing un-23

certainty on the convective scale. We find a potential predictability of the MJO of 35-24

40 days in boreal winter using a single-member ensemble forecast.25

Plain Language Summary26

The Madden-Julian Oscillation is a convective signal in the tropics that has the po-27

tential to improve 10-40-day weather forecasts. Current weather forecast models strug-28

gle to simulate the MJO, leading to a lower forecast skill than many studies estimate could29

be possible. We use a model with a comparatively good representation of the MJO that30

uses a cloud permitting model to calculate convection information and modify its struc-31

ture to generate MJO forecasts of its own MJO. Results from these forecasts suggest that32

the MJO in this model could be predictable up to 35-40 days using a single-member en-33

semble forecast, which is 5-10 days longer than current state-of-the-art ensemble fore-34

casts.35

1 Introduction36

The Madden-Julian Oscillation (MJO) is a quasi-periodic signal of eastward prop-37

agating convection anomalies in the tropics with a period of 30-60 days (Madden & Ju-38

lian, 1971, 1972). Active MJO events occur on an irregular basis, though most commonly39

during October - April, and vary considerably between events by their individual prop-40

agation, amplitude, and life cycle characteristics (B. Wang et al., 2019). As the domi-41

nant form of intraseasonal variability in the tropics, the MJO strongly impacts precip-42

itation timing and amounts over the Maritime Continent, but it has also been connected43

to tropical cyclone activity (e.g., Vitart & Robertson, 2018), midlatitude weather (e.g.,44

Sardeshmukh & Hoskins, 1988; Henderson et al., 2016; Arcodia et al., 2020), and many45

other aspects of global atmospheric circulation.46

The timescale, quasiperiodic nature, and widespread impacts of the MJO make it47

a promising target for improving subseasonal weather forecasts (Waliser et al., 2003).48

Ample research and model development efforts have recently been delegated towards im-49

proving weather forecast model prediction skill of the MJO and its teleconnections (Vitart,50

2017; H. Kim et al., 2018), resulting in a prediction skill of around 30 days for some weather51

forecast models (Xiang et al., 2022; Zavadoff et al., 2023; Peng et al., 2023). However,52

models face significant challenges when trying to simulate and forecast the MJO. For one,53

the MJO is a convective signal, but most forecast models must parameterize convection54

due to their coarse resolution, leading to errors in simulating MJO propagation, initi-55

ation, and amplitude (H. Zhu et al., 2009; H. Kim et al., 2019). Simulation of the MJO56

is further degraded by mean state biases that hamper their MJO simulation, including57

biases in mean moisture gradient, SST variability, and horizontal moisture advection (H. Kim58

et al., 2019; Kang et al., 2020; Lim et al., 2018). All of these issues interact in complex59

ways to limit MJO forecast skill.60
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Poor model representation of the MJO prompts the question of how predictable61

the MJO could be, if models were improved. Previous studies address this question us-62

ing perfect-model predictability experiments, exemplified in Waliser et al. (2003). In these63

experiments, instead of computing skill using model forecast errors from observations,64

the observations are replaced by another simulation from the same model as the fore-65

casts. These experiments can be considered a “best case scenario” for prediction skill66

if the forecast model had a perfect mean state and near-perfect initial conditions (H. Kim67

et al., 2018). Previous perfect-model predictability experiments found a potential MJO68

predictability of up to 35-45 days when using state-of-the-art ensemble forecast models69

(Neena et al., 2014; Xiang et al., 2022; S. Wang et al., 2019; Wu et al., 2016).70

Most predictability estimates use coarse resolution models that parameterize con-71

vection. J. Zhu et al. (2020) showed that the potential predictability of the MJO is strongly72

dependent on convective parameterization scheme, with a more realistic (though still im-73

perfect) scheme being more predictable by up to 15 days. The impressive 35-40-day MJO74

predictability in ECMWF ensemble forecasts (S. Wang et al., 2019) has been attributed75

to improvements in convective paramterization and model physics (Vitart, 2014), though76

the ECMWF still uses a parameterization for convection. Further, the literature varies77

substantially in how they generate initial conditions for the forecasts runs, which clouds78

the interpretability of potential predictability estimates from multi-model forecasts (Vitart,79

2017).80

An alternative to using a convective parameterization is to simulate the MJO in81

fine resolution, global cloud-permitting models (Miyakawa et al., 2014; Zavadoff et al.,82

2023). The MJO in these models is more realistic and yields prediction skill of nearly83

30 days with a single ensemble forecast (comparable to an 11-member ensemble ECMWF84

forecast). However, these models are extremely computationally expensive and can only85

feasibly simulate comparatively few MJO events (< 100 in the above studies), restrict-86

ing their ability to assess the potentially significant differences in predictability for dif-87

ferent MJO characteristics and background states (Wu et al., 2023). A more computa-88

tionally practical alternative is to use a multiscale modeling framework that couples a89

coarse resolution global model to a fine resolution cloud resolving model (Randall et al.,90

2016; Hannah et al., 2015). These multiscale models are much more efficient than global91

cloud permitting models, and the multiscale framework naturally permits separating con-92

vective vs. large scale influence on predictability. As yet, no studies have used a mul-93

tiscale model to extensively estimate MJO potential predictability.94

In this manuscript, we perform a perfect-model predictability experiment using a95

superparameterized version of CAM (SPCAM), a multiscale model that replaces the con-96

vective parameterization in CAM with a cloud resolving component. We utilize the mul-97

tiscale structure of superparameterization to generate initial conditions for the forecast98

runs by imposing a perturbation on the convective scale. Section 2 describes the model99

and initial condition generation procedure, then defines the analyses used for estimat-100

ing predictability. Section 3 shows the results of the predictability experiments, and Sec-101

tion 4 discusses the results in context of previous work and their limitations.102

2 Methods103

2.1 Model and initial conditions104

We assess the potential predictability of the MJO using a superparameterized ver-105

sion of the Community Atmospheric Model (SPCAM) (M. F. Khairoutdinov & Randall,106

2001; M. Khairoutdinov et al., 2005). The global climate model (GCM) component of107

SPCAM is CAM4 with 1.9◦latitude x 2.5◦longitude resolution, 26 vertical levels, and a108

timestep of 30 minutes. Sea surface temperatures are prescribed using monthly clima-109

tology. Each larger GCM-scale grid box has a 2-D cloud resolving model (CRM) embed-110
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ded within it. The CRM calculates the cloud-scale processes explicitly, replacing the con-111

vective parameterization. Each CRM has 32 horizontal gridboxes aligned east to west112

in each larger GCM gridbox, with 4000m horizontal resolution and 24 vertical levels that113

align with the lower levels of the GCM. The CRM timestep is 20 seconds. The CRMs114

use a one-moment SAM microphysics parameterization scheme based on M. F. Khairout-115

dinov and Randall (2003). The CRMs are running simultaneously with the GCM but116

at a shorter timestep; large-scale tendencies from the GCM and convective-scale tenden-117

cies from the CRMs are passed between the models at each GCM timestep.118

SPCAM has been shown to simulate a propagating MJO relatively well. Benedict119

and Randall (2009) and M. Khairoutdinov et al. (2008) describe some of the main im-120

provements and lingering biases of SPCAM, which we summarize here. SPCAM reason-121

ably simulates the observed wavenumber-frequency spectrum of subseasonal tropical waves,122

including the MJO. The general structural evolution and geographic span of the MJO123

is well represented in SPCAM. The main bias of SPCAM is that it overestimates the strength124

and variability of the MJO, especially over the Western Pacific, in opposition to most125

GCMs that have a weak MJO.126

To generate initial conditions for the forecast runs, we add a second CRM to each127

GCM gridbox in SPCAM, following the idea of “multiple-instance superparameteriza-128

tion” in Subramanian and Palmer (2017); Jones et al. (2019). During the control sim-129

ulation, we modify the radiative and convective components of SPCAM to run a second130

“silent” CRM in parallel to the standard CRM in each gridbox. See Figure 1 as a visual131

guide. At each timestep, the GCM passes the same large-scale information to both CRMs.132

Each CRM independently calculates convective tendencies as in regular SPCAM, but133

only the first CRM passes information back to the GCM. The second “silent” CRM sim-134

ply outputs its state to a file. Each CRM uses CRM-scale information from its own pre-135

vious timestep and thus stays spun up throughout the simulation. The GCM only re-136

ceives information from one continuous CRM, so the control run output is essentially a137

standard SPCAM simulation. Each CRM is initialized by a random temperature per-138

turbation near the surface on the first timestep; afterwards, they run continuously and139

independently.140

The second silent CRM information is used as the initial perturbation for the fore-141

cast runs. The GCM-scale information used in the forecast restarts is the same as from142

the control run, so the only initial perturbation of the forecast is from the convective scale.143

This allows for scale separation of the initial perturbation and can be thought of as sim-144

ulating a situation where we have perfect information of the GCM-scale conditions with145

uncertainty in the convective scale. Subramanian and Palmer (2017); Jones et al. (2019)146

examined how running multiple CRM components affects ensemble spread and found the147

stochastic-like nature of the CRMs better represents observed variance of deep convec-148

tion in the tropics than convective parameterizations.149

For this project, we use a 20-year control simulation. 60-day single ensemble mem-150

ber forecasts are restarted using the silent CRM information in a regular version of SP-151

CAM every 5 days during boreal winter (October - April), resulting in 798 forecasts.152

2.2 Analyzing predictability153

To isolate the MJO signal from our forecast runs, we use a version of the OLR-based154

MJO index (OMI), first developed in Kiladis et al. (2014) and modified in Weidman et155

al. (2022). The OMI is an EOF-based index that uses the two leading principal compo-156

nents (PCs) of 30-96-day filtered daily tropical OLR to track the strength and propa-157

gation of the MJO through time. For forecasting purposes, we use a real-time version158

of the OMI (ROMI) as described in Kiladis et al. (2014); S. Wang et al. (2019). In brief,159

the ROMI is calculated by removing the mean OLR anomaly of the previous 40 days from160

the raw OLR anomaly and then taking a 9-day running average of the result, tapered161
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Figure 1. Schematic of silent CRM during control simulation. Large boxes (a) represent the

GCM grid. The two columns of green boxes (b) represent the grids of the two CRMs. Each CRM

has an east-west dimension of 32 per GCM gridbox in the simulation. The GCM passes large-

scale information to both CRMs, but only the left CRM passes information back to the GCM,

represented by black arrows (c). Orange arrows (d) denote the GCM and the silent CRM saving

information for restarting the forecast runs.

to 7-, 5-, 3-, and 1-day running averages at the end of the forecast. This is to remove high162

and low frequency signals beyond that of the MJO. The filtered/smoothed OLR is then163

projected onto a set of seasonally-varying OLR-based EOFs calculated from an indepen-164

dent 40-year SPCAM run, following the EOF rotation procedure in Weidman et al. (2022).165

The OLR anomaly is calculated by removing the mean and first 3 harmonics of the sea-166

sonal cycle from each gridpoint, again calculated from a 40-year SPCAM run.167

Many studies use the real-time multivariate (RMM) index (Wheeler & Hendon, 2004)168

for forecasting purposes. The RMM is based on EOFs describing the zonal structure of169

OLR and zonal wind at 200 and 850 hPa; however, Straub (2013) showed that the RMM170

underrepresents convection compared to zonal wind, causing the RMM to miss MJO-171

like convective signals and poorly predict desired forecasting variables such as precip-172

itation and surface temperature (S. Wang et al., 2019; Kumar et al., 2020; Hannah et173

al., 2015). In addition, the lack of meridional structure in the RMM confounds the MJO174

signal with equatorial Kelvin waves (Roundy et al., 2009). For these reasons, we use the175

OMI here.176

Following previous MJO predictability studies, we use three metrics for determin-177

ing MJO predictability: the bivariate anomaly correlation coefficient (ACC), root mean178

squared error (RMSE) and signal to noise, all of which are calculated using the first two179

PCs of the ROMI.180

2.2.1 ACC and RMSE181

Following e.g., Lin et al. (2008), the ACC is calculated as182
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ACC(t) =

∑N
i=1[a1i(t)b1i(t) + a2i(t)b2i(t)]√∑N

i=1[a
2
1i(t) + a22i(t)]

√∑N
i=1[b

2
1i(t) + b22i(t)]

(1)183

and root mean squared error (RMSE) as184

RMSE(t) =

√√√√ 1

N

N∑
i=1

([a1i(t)− b1i(t)]2 + [a2i(t)− b2i(t)]2]) (2)185

where a1,2(t) are the two PCs of the ROMI for the control simulation t days after186

forecast initiation, b1,2(t) are the PCs of the ROMI for the forecast, and N is the num-187

ber of forecasts. By convention, forecasts are considered skillful until ACC falls below188

0.5. The ACC is essentially the weighted similarity of the ROMI, while the RMSE in-189

cludes information about amplitude differences (Wilks, 2019).190

2.2.2 Signal to noise191

ACC and RMSE quantify the difference between the control and forecast runs on192

each day. Another assessment of predictability is to relate the strength of the MJO sig-193

nal to the day-to-day variability of the tropics (Waliser et al., 2003). As long as the MJO194

signal remains stronger than the background noise, it could be predictable. We quan-195

tify noise as the mean squared error as in previous studies. Since the MJO is a propa-196

gating signal with a period of 30-60 days, the “signal” is calculated as the average am-197

plitude of the ROMI within a sliding window that approximately captures a full MJO198

event. Previous work showed that signal is insensitive to window size, so we follow pre-199

vious studies and use a 51-day window (Waliser et al., 2003; Neena et al., 2014). Signal200

is defined as201

S2(t) =
1

N

N∑
i=1

(
1

2L+ 1

L∑
t=−L

[a21i(t) + a22i(t)]

)
(3)202

where again a1,2 are the two PCs of the control run and L is 25 for a window size203

of 51. Since the control and forecast runs are essentially separate runs of the same model,204

we expect signal to be similar if the forecast ROMI was used; we use the control for con-205

venience when calculating the sliding window.206

3 Results207

To visualize how the MJO simulation differs between the control and forecast runs,208

we plot the two components of the ROMI on a phase diagram for four example forecasts209

compared to the control run over the same period (Figure 2). A typical active MJO tra-210

jectory will propagate counterclockwise (eastward) outside of the dashed circle (repre-211

senting an amplitude greater than 1), such as in the two cases on the right in Figure 2.212

The example forecasts here are chosen arbitrarily to represent forecasts initiated dur-213

ing active MJO periods in Phases 1/8, 2/3, 4/5, and 6/7, but are broadly representa-214

tive of forecast behavior. The exact timing and pattern differs for each forecast, but in215

general the control and forecast trajectories track together closely for about 15 days be-216

fore the amplitude or phase of the forecast run starts to drift from the control. From these217

examples, we see that the MJO signal remains strongly coherent for at least 10-15 days218

after the initial convective perturbation in the forecast run.219

We use the bivariate ACC and RMSE to quantitatively assess MJO predictabil-220

ity for each day after the forecast initiation (Figure 3). Both metrics are also recalcu-221
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Figure 2. MJO phase trajectories of the ROMI for four example forecast cases. Green dashed

lines are the control simulation and purple lines are the forecast runs. Filled circles represent the

beginning of the forecast, with squares every subsequent 5 days for a total of 50 days.
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lated using only forecasts that were initiated on an active or inactive MJO day as de-222

fined by a ROMI amplitude above 1.14, the median amplitude over the 20-year period.223

The 95% confidence interval is calculated using a Student’s t test. The initial strength224

of the MJO does not significantly affect either of the metrics in Figure 3a,b; the ACC225

of all three cases fall below 0.5 between days 37-40. The ACC shows nearly perfect cor-226

relation for 10-15 days, corroborating the high similarity between the control and fore-227

cast trajectories in Figure 2. After the first few days, the RMSE increases approximately228

linearly until reaching a saturation around days 37-40.229

Perhaps a more operationally relevant metric is to look at the predictability of the230

MJO based on target date; in other words, how far ahead could a strong or weak MJO231

event be predicted? (Xiang et al., 2015). ACC and RMSE are recalculated based on the232

strength of the MJO on the target date and shown in Figure 3c,d. A lag of -5 means the233

forecast was initiated 5 days before a strong or weak MJO target date. The correlation234

is significantly larger for strong targets compared to weak targets between days 10-30235

based on the 95% confidence interval, though they all converge at 0.5 ACC between 37-236

40 days. The RMSE is about the same for both strong and weak MJO targets until the237

error saturates after day 40. This is likely because although the correlation is stronger238

for strong targets, the MJO signal itself (the amplitude of the ROMI) is also larger, so239

the mean error evens out.240

Several studies have suggested that predictability is dependent on target phase of241

the MJO (S. Wang et al., 2019). ACC is recalculated by separating forecasts by initial242

phase and target phase using the same methodology as above. Correlations for all ini-243

tial/target phases and active MJO initial/target phases are plotted in Figure 4. There244

is little phase dependence in ACC before 20-25 days; afterwards, there is slightly higher245

predictability for initial phase 2 and target phase 5-6 for all and active MJO periods, and246

slightly decreased predictability for target phase 2. Phase 2 corresponds to enhanced pre-247

cipitation over the Indian Ocean, and phase 5-6 aligns with precipitation transitioning248

from the Maritime Continent to the Western Pacific, generally 15-20 days after phase249

2. Several other models have shown worse skill for MJO events that propagate across250

the Maritime Continent, a phenomenon known as the Maritime Continent barrier (Abhik251

et al., 2023; Du et al., 2023; S. Wang et al., 2019). SPCAM does not seem to have this252

problem and in fact finds these events (which are often strong events) more predictable.253

Signal and noise (mean squared error) is our final predictability metric (Figure 5).254

The MJO signal is interpreted as predictable as long as the signal is larger than the er-255

ror. Again, results seem to be insensitive to strength of initial MJO signal; the signal in-256

tersects with error between days 35-40 for all three cases. Since we are using a perfect-257

model experiment, signal should be nearly constant through lead time; the small increase258

(decrease) at the beginning of the period for strong (weak) events is because we are re-259

stricting our set of forecasts to initially stronger (weaker) MJO signals, and this feature260

dissipates as the error surpasses the signal. Error slowly increases until it saturates just261

after surpassing the signal. In general, the signal to noise metric aligns with the conclu-262

sions drawn from ACC and RMSE, implying a predictability of the MJO in boreal win-263

ter of 35-40 days.264

4 Summary and Discussion265

By replacing the convective parameterization with a cloud resolving component and266

using a novel technique to initialize the forecast runs using convective-scale uncertainty,267

we find the MJO predictability in SPCAM to be about 35-40 days using a single-member268

ensemble forecast. This estimate is comparable to the highest performing ensemble fore-269

casting models (W. Wang et al., 2014; Xiang et al., 2022; Wu et al., 2016), though these270

estimates are closer to 20-30 days when using a single-member ensemble forecast as in271

this study (Neena et al., 2014; H.-M. Kim et al., 2014; Lim et al., 2018). We would ex-272
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Figure 3. Bivariate anomaly correlation coefficient (left) and RMSE (right) between control

and forecast runs by time after forecast initiation. (Top) Using the ROMI principal components

at each day, calculated for all forecasts (green), strong MJO initial days (orange) and weak MJO

initial days (purple). Shading represents a 95% confidence interval. (Bottom) Same, but using

strong and weak target dates. The dashed lines are at 0.5 (left) and
√
2 (right).
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Figure 4. Bivariate ACC by day after forecast initiation, separated by initial (top) and target

(bottom) phase of forecast. All forecasts (left) and only strong initial (target) MJO states (right).

Figure 5. Signal (dashed) to mean squared error (solid) of forecast pairs for all forecasts

(green), strong initial days (orange), and weak initial days (purple). Shading represents a 95%

confidence interval.
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pect an ensemble forecast in SPCAM generated from a set of multiple silent CRMs to273

increase the estimate of MJO predictability.274

MJO predictability in SPCAM is not strongly dependent on initial phase or am-275

plitude, but has slightly higher predictability for strong target dates in phases 5-6. The276

stronger predictability of MJO events passing over the Maritime Continent is in oppo-277

sition to most other models whose MJOs tend to dissipate too frequently over the Mar-278

itime Continent (S. Wang et al., 2019). Abhik et al. (2023) suggested that this deficiency279

arises from issues with MJO simulation due to model physics, rather than an inherent280

predictability barrier. Our results corroborate this hypothesis, since SPCAM more read-281

ily simulates MJO propagation across the Maritime Continent and is also biased towards282

a more active MJO in the Western Pacific.283

The potential predictability limits found by SPCAM may not be possible to reach284

in the real world because the MJO and mean state in SPCAM differ from observations.285

Since MJO events in SPCAM are in general too vigorous and propagate too easily across286

the Maritime Continent, our findings may be an overestimation of MJO predictability.287

Most forecast models have the opposite problem of a weaker and slower MJO than ob-288

served, especially over the Western Pacific, all of which would likely result in an under-289

estimation of predictability. The inherent predictability of the real atmosphere may not290

be properly represented by either approach. In addition, we use prescribed sea surface291

temperatures, which simplifies the interpretation of the results and reduces computational292

expense, but restricts our understanding of how MJO predictability is influenced by in-293

teractions with different ENSO background states (Mengist & Seo, 2022). Adding an in-294

teractive ocean would additionally increase complexity and potential for influences of model295

bias, but previous studies have shown how including a coupled ocean component can in-296

crease predictability of precipitation and OLR after 10 days (Pegion & Kirtman, 2008).297

Although it is conventional to use an MJO index to quantify MJO predictability,298

bivariate indices only capture a condensed slice of actual MJO behavior. The goal of im-299

proving MJO forecasts requires an understanding of the phenomenon and the modeling300

components that are most important for improving those forecasts. This study is a first301

step in utilizing scale separation in a multiscale model for assessing MJO predictability.302

With this framework, future work should include a thorough analysis of which physical303

aspects of the MJO lead to its predictability, or conversely, which aspects of biased MJO304

simulation in models lead to decreased forecast skill (see potential examples: Du et al.305

(2023); Liu et al. (2017)). The scale separation in SPCAM also naturally leads to fun-306

damental questions regarding error growth across space and time scales, which would307

help broaden our understanding of the tropical atmosphere.308

5 Open Research309

SPCAM is part of the Community Earth System Model project, which is supported310
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can be found at https://wiki.ucar.edu/pages/viewpage.action?pageId=205489281.312

The ROMI data and analysis code can be found at https://doi.org/10.5281/zenodo313

.8190698. The EOFs for the ROMI were calculated using the mjoindices Python pack-314

age published in Hoffmann et al. (2021).315
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