
JAMES

Supporting Information for ”A dimensionless

parameter for predicting convective self-aggregation

onset in a stochastic reaction-diffusion model of

tropical radiative-convective equilibrium”

Giovanni Biagioli1,2and Adrian Mark Tompkins2

1University of Trieste, Trieste, Italy

2Abdus Salam International Center for Theoretical Physics (ICTP), Trieste, Italy

Contents of this file

1. Figures S1 to S7

Introduction This file contains an overview of the numerical procedure designed to solve

the diffusion-reaction prognostic equation for R, eqn. (3) in the paper. A full description

of idealized tests is also included and the corresponding results are shown in Figs. S1-S3.

An example of time evolution of diagnostics for the two metrics dmax,clr and dmax,nn

introduced in the main manuscript, calculated directly from the numerical routine, is

then reported in Fig. S4 for the same set of simulations presented in Fig. 3. In particular,

the theoretical model (12), which is used in the definition of the dimensionless parameter

(15), is seen to exactly match the maximum inter-convective nearest neighbour distance

to be expected when randomly throwing points onto a bounded region of the plane (Fig.

S5).
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Additional figures (Figs. S6-S7) are finally to be compared with Fig. 10 and motivate

the reliability of the quantity γ, defined in the main manuscript (eqn. 14), in capturing

the transition between aggregated and non-aggregated states in the (τsub, K) space inde-

pendent of the domain size (Fig. S6) or the horizontal grid spacing (Fig. S7). In these

cases the ad-dependency is not considered, as ad is kept at its default value, ad = 14.72,

but apparently the critical isopleth of Kτsub(Ld̄)−1 that fits the transition regime is the

same across these ensembles of simulations.

1. Numerics

The numerical solution of the governing equation (3) uses second-order finite differences

in space and a Strang-type operator splitting scheme in time (Strang, 1968).

Splitting techniques are commonly advocated in meteorological applications with mul-

tiple time scales (e.g., Beljaars et al., 2018) and, in general, when a differential problem

involves many physical processes. Commonly, it is not possibly or numerically efficient to

attempt the integration of the equations by means of a single solver method. A computa-

tionally sustainable alternative is thus offered by decomposing the system into sub-groups

of processes and using different suitable and advantageous methods for each group (e.g.,

Hundsdorfer & Verwer, 2007), with tendencies from each treated sequentially in time. In

detail, given a generic, scalar partial differential equation

∂u

∂t
= f(u),

where f can be regarded as a spatial partial differential operator, a two-term decomposi-

tion of the RHS is considered:

f(u) = f1(u) + f2(u).
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The Strang splitting approach is to perform half a time step with the operator f2,

followed by a full time step with f1 and another half step with f2 (or vice versa), with the

tendency from the previous process added to provide the initial value of the subsequent

process(es). In formulae,

∂

∂t
u∗ = f2(u

∗), tn < t ≤ tn+ 1
2
, u∗(tn) = un,

∂

∂t
u∗∗ = f1(u

∗∗), tn < t ≤ tn+1, u∗∗(tn) = u∗
(
tn+ 1

2

)
,

∂

∂t
u∗∗∗ = f2(u

∗∗∗), tn+ 1
2
< t ≤ tn+1, u

∗∗∗
(
tn+ 1

2

)
= u∗∗(tn+1),

the subscript n refers to the temporal discretization, and the overall solution is given

by un+1 = u∗∗∗(tn+1). This sequential procedure normally introduces an error at each

integration step. The Strang splitting is second-order accurate for sufficiently smooth

solutions (e.g., LeVeque, 2007), provided that each subproblem is treated with a method

of such accuracy at least.

In the stochastic model presented here, we separate the diffusion and subsidence com-

ponents of eqn. (3) from the convective source term, i.e.,

f1(R) = K
(
δ2x + δ2y

)
R− R

τsub
, f2(R) =

(Rc −R)

τc
H(pc(R)−X),

as this will not produce any splitting error in the non-convective grid points, where the

second operator vanishes. The difference operator δ2· is the second-order centered differ-

ence approximation of the second derivative. For the problem involving f2, the analytical

solution is derived, in order to reduce as much as possible any integration error, related to

the application of numerical methods, which can be incurred in addition to the splitting

error.
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The diffusion-reaction semidiscrete problem

∂R

∂t
= K

(
δ2x + δ2y

)
R− R

τsub
(1)

is solved by means of a properly modified version of the classical Peaceman-Rachford Al-

ternating Direction Implicit (ADI) method (Peaceman & Rachford, 1955). The scheme

consists of splitting 2D problems into two separate steps, treating implicitly only one spa-

tial operator at a time and therefore performing line-by-line solution of smaller, generally

structured, independent sets of equations. It can be regarded as a perturbed formulation

of the Crank-Nicholson scheme, whose application to eqn. (1) would yield

(
1− βδ2x − βδ2y + ω

)
Rn+1

j,k =
(
1 + βδ2x + βδ2y − ω

)
Rn

j,k, (2)

where the superscript n indicates discrete time steps, the subscripts j, k refer to the

horizontal square grid, β = K
∆t

2∆x2
, ω =

∆t

2τsub
, ∆t denoting the time step and ∆x the

horizontal spacing. Eqn. (2) can be factorized and rearranged as

(
1− βδ2x + ω

) (
1− βδ2y

)
Rn+1

j,k =
(
1 + βδ2x − ω

) (
1 + βδ2y

)
Rn

j,k+
(
β2δ2xδ

2
y − ωβδ2y

) (
Rn+1

j,k −R
n
j,k

)
,

where the last term on the RHS can be proved to be O(∆t3) and is therefore negligible

for small ∆t. Thus, the application of the ADI method implies the sequential solution of

the systems

(
1− βδ2x + ω

)
R

n+ 1
2

j,k =
(
1 + βδ2y

)
Rn

j,k, (3)(
1− βδ2y

)
Rn+1

j,k =
(
1 + βδ2x − ω

)
R

n+ 1
2

j,k , (4)

and the two-step scheme (3)-(4) can be shown to be unconditionally stable and second

order in both space and time, hence convergent.

If periodic boundary conditions are assigned, the linear systems resulting from the dis-

cretizations turn out to be circulant tridiagonal and can be easily solved by using Fast
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Fourier Transform algorithms (e.g., Cooley & Tukey, 1965). Note that, if the splitting

procedure had not been adopted, the matrices would not have been circulant or con-

stant with time owing to the triggering of convective events, whose corresponding terms

contribute to the entries of the main diagonal.

The convergence properties of the new ADI solver are assessed against the assumption

of initial top hat or Gaussian profiles. The results of convergence tests under time step

and grid refinements are shown in Figs. S1 and S2, respectively. In the first case (Fig.

S1), the problem in eqn. (1) is considered, with K = 104 m2s−1, τsub = 10 days, over a

domain with size L = 300 km and spacing ∆x = 2 km, and initial condition given by

R0(x) = R(x, 0) =

{
1 for x ∈ [x1, x2]× [y1, y2]

0.8 elsewhere
, (5)

where x1, y1 = 140 km and x2, y2 = 160 km. The top-hat configuration is a good test

bench due to presence of very sharp discontinuities. It is well known that, if implicit

discretization is adopted, there is no stability constraint on the time step, as it is for

explicit numerical solver, e.g., explicit Euler, for which the following relationship (diffusive

stability criterion) is to be satisfied to ensure stability:

∆t ≤ ∆x2

4K
. (6)

Nevertheless, for implicit schemes, a limit of the type (6) still serves as a measure of

accuracy (e.g., Ferziger et al., 2002), hence, labelling ξ = 4K
∆t

∆x2
, we impose several time

steps corresponding to a range of values of ξ. Convergence is apparent in the time slices of

Fig. S1 (dashed and dash-dotted lines), even though the approximation for ξ = 6 exhibits

a spurious oscillation at beginning, which is then damped and rapidly disappears.
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Spatial convergence properties are examined, as also demanded by a resolution sensi-

tivity study mentioned in the paper. The results of a grid refinement analysis performed

on the problem eqn. (1) with K = 5 × 103 m2s−1, τsub = 10 days and Gaussian initial

distribution with µ = 150 km and σ = 5 km are shown in Fig. S2. The horizontal spacing

is successively halved ranging from ∆x = 2 km to 250 m, and the time step ∆t is such that

ξ = 0.25 in all cases. At t = 600 s (dashed lines), the profiles are almost insensitive to the

resolution, then any error is eventually smoothed down and, at t = 3600 s (dash-dotted),

the curves are nearly indistinguishable.

In case profiles with sharper discontinuities are prescribed, the method is still able to

provide reasonably good approximations, despite exhibiting a more pronounced sensitivity

to both the time step size and the resolution.

In the full system, the action of convection is to continuously introduce local delta func-

tion perturbations into the R distribution, with sharp gradient at between the convective

point and the surrounding grid cells. This is particularly challenging for the numerics

and could possibly amplify numerical errors. Further sets of tests are thus conducted,

aimed at quantifying the impact of the errors associated with the operator splitting. Fig.

S3 charts the results obtained for different values of K, K = 104 m2s−1 (solid lines) and

K = 2.5×104 m2s−1 (dashed lines), and ξ (colors), all else being kept fixed (τsub = 12 days,

ad = 14.72, L = 300 km, ∆x = 2 km, R0 = 0.8). Convergence to the same statistically

steady solutions is apparent, even though, in the low-diffusion case, the approximation

for ξ = 3 (∆t = 300 s) yields some differences in both the R spatial mean and standard

deviation final equilibrium state. Interestingly, both the transition to the self-aggregated

state and the following evolution do not vary monotonically with ∆t, and we attribute this
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effect to the large stochastic component present in the modelled system. The time-step

dependency almost entirely disappears for higher values of K, as they require the use of

a smaller time step (via eqn. 6), which also leads to less severe splitting errors. For the

experiments presented in the paper, in general, the time step is chosen so that ξ < 1.
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Figure S1. Computed solutions along the section y = 150 km for the problem (1) with

K = 104 m2s−1, τsub = 10 days, R0(x) as specified in (5). Shown are the initial profile (solid

lines) and the numerical approximations for different time step choices at t = 600 s (dashed) and

3600 s (dash-dotted). ξ = 1 corresponds to ∆t = 100 s.0.0
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Figure S2. Results of a grid refinement study conducted on the problem (1) with K =

5 × 103 m2s−1, τsub = 10 days and a Gaussian initialization. Shown are the solutions along the

section y = 150 km, at times t = 0 (solid lines) t = 600 s (dashed) and 3600 s (dash-dotted).
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Figure S3. Statistics of the CRH distribution for different runs of the model in terms of ∆t

in the cases K = 104 m2s−1 (solid lines), 2.5× 104 m2s−1 (dashed lines), with τsub = 12 days and

ad = 14.72. ξ = 1 corresponds to ∆t = 100 s and ∆t = 40 s, respectively.
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Figure S4. Evolution of the maximum inter-convection nearest neighbour distance (solid lines)

and the largest distance from a non-convective to the nearest convective grid cell (dashed), as

diagnosed from the numerical model, for the runs of Figure 3. A 2-day running mean has been

applied.
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Figure S5. Comparison between the results of a multi-run ensemble of experiments and the

theoretical estimate (12). Red dots illustrate the maximum nearest neighbour distances between

Nc objects thrown onto a 300 × 300 km domain with 2 km resolution, whereas the black line

represents the ensemble mean distance. Examining nearest neighbour distances implies that

there are no events within a radius r of the base point, whereas the theory in the paper involves

the void probabilities for a square box. The ratio of the area of a circle of radius r to a box of size

d is
√
π, and we see that multiplying the ensemble mean by this factor (orange line) reproduces

exactly the theoretical curve for d̄max,nn (blue line).
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Figure S6. As in Figure 10 but with larger domain, L = 400 km.
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Figure S7. As in Figure 10 but with higher resolution, ∆x = 1.5 km.
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