EXPRESSION OF DSRAB IN DESULFOTALEA PSYCHROPHILA
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BACKGROUND

The ability of microorganisms to survive and proliferate under extreme conditions such as
those present in today’s Mars is still unknown. Furthermore, recent discoveries of the Mar-
tian soil composition indicate the existence of areas with high concentrations of different
sulfate compounds such as calcium sulfate (CaSO,), magnesium sulfate (MgSO,), and
iron sulfates (Fe(SO,),, Fe,(SO,),)">*

In addition, the increasing interest for Astrobiological studies demands the availability of
reliable techniques that allow us to recognize bacterial activity. Therefore, simulated expe-
riments along with molecular markers offer the possibility to recreate and understand bio-
logical phenomena associated to active bacterial metabolism?®.

In this research, a combination of cultural and molecular biology techniques has been
used to identify metabolic activity of a psychrophilic sulfate-reducing bacterium named
Desulfotalea psychrophila (D. psychrophila)®. Furthermore, different types and concentra-
tions of sulfate compounds like those present in the Martian soil have been used to target
a molecular marker present in this microbe. The latter, also known as the dsrAB operon,
encodes the genes required for the biosynthesis of the dissimilatory sulfite reductase
(DSRAB enzyme) which intervenes in the production of cellular energy that occurs at the
last step of sulfate reduction #>%1°
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Figure 2. Sulfate reduction process in
bacterial cells. In red: Dissimilatory sul- """
fite reductase (DSRAB) which trans- esssesse
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Table 1. D. psychrophila culture conditions and sulfate compounds (Replacement of
terminal electron acceptor on DSMZ141 optimal medium). Final medium volume of 20
mL, and anaerobic conditions (mixture of H, and CO, as stated on DSMZ141).

N° Sulfate compound Concentration Incubation Temperature

MgSO, (Positive control) 0.345 wt %
CaSO, 0.1 wt %

MgSO, 10 wt % 10°Cand 0°C
MgSO, 18 wt % 10°Cand 0°C
Fe(SO,), 10 wt % 10°Cand 0°C
Fe(SO,), 14 wt % 10°Cand 0°C
Fe,(SO,), 10 wt % 10°Cand 0°C
Fe,(SO,), 20 wt % 10°Cand 0°C
Fe,(SO,), 30 wt % 10°Cand 0°C
Fe,(SO,), 40 wt % 10°Cand 0°C
Fe,(SO,), 48 wt % 10°Cand 0°C

10°C and 0° C
10°C and 0° C

_ 2 OO NOOOTP,WDN -~

— O

RESULTS

[ Log Seale

Figure 3. Fluorescence detection of dsrAB operon (active metabolism) from cultures of
D. psychrophila grown in different types and concentrations of sulfate compounds. Incu-
bation at 10°C. 1:MgSO, 0.345 wt %; 2:CaSO, 0.1 wt %; 3:MgSO, 10 wt %; 4:MgSO, 18
wt %; 5:FeSO, 10 wt %; 6:FeSO, 14 wt %; 7:Fe,(SO,), 10 wt %; 8:Fe2(S0O,), 20 wt %;
9:Fe(SO,), 30 wt %; 10:Fe(SO,), 40 wt %; 11:Fe (SO,), 48 wt %.

Amplification

Figure 4. Fluorescence detection of dsrAB operon (active metabolism) from cultures of
D. psychrophila grown in different types and concentrations of sulfate compounds. Incu-
bation at 0°C. 1:MgSQO, 0.345 wt %; 2:CaS0O, 0.1 wt %; 3:MgSO, 10 wt %; 4:MgSO, 18
wt %; 5:FeSO, 10 wt %; 6:FeSO, 14 wt %; 7:Fe(SO,), 10 wt %; 8:Fe2(SO,), 20 wt %;
9:Fe,(SO,), 30 wt %; 10:Fe (SO,), 40 wt %; 11:Fe,(SO,), 48 wt %.

Table 2. Quantification cycle values (Cq) for samples of D. psychrophila grown in different
types and concentrations of sulfate compounds.

N° Sulfate compound Concentration

MgSO, (Positive control) 0.345 wt %
CaSO, 0.1 wt %
MgSO, 10 wt %
MgSO, 18 wt %
Fe(SO,), 10 wt %
Fe(SO,), 14 wt %
Fe (SO,), 10 wt %
Fe (SO,), 20 wt %
Fe (SO,), 30 wt %
Fe (SO,), 40 wt %
Fe (SO,), 48 wt %
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Figure 5. Melting curve points of all samples involved in experiments at 10° C (A) and
0 °C (B).

CONCLUSIONS

« Qur experimental design is suitable for detection of bacterial active metabolism in cul-
tures subjected to different types and concentrations of sulfate compounds and tempera-
tures (See Melting points in Figure 5). Further studies are required to determine if the
same platform is suitable for experiments at low pressure.

* |t is particularly interesting that D. psychrophila metabolic activity is higher at lower
than optimal incubation temperatures (See Cq values in Table 2, Figures 3 and 4).

 D. psychrophila can metabolize at most conditions used in this study. Furthermore,
lower sulfate concentrations favor higher metabolic rates (MgSO, at 10° C). However, as
it is shown in Table 2 for MgSO, at low temperatures, higher concentrations favor higher
metabolic rates (See Cq values in Table 2, Figures 3 and 4).

* In general, CaSO, seems to slightly increase bacterial proliferation in comparison to
the positive control regardless of temperature (Table 2). Furthermore, dsrAB expression
in cultures with Fe(SO,), seem to be higher at increasing concentrations (See Table 2,
Figure 3 and 4).

* In general, there is not much difference in samples grown with Fe (SO, ), at any of the
temperatures used in the study (Table 2, Figure 3 and 4).
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