
 1 

New features and enhancements in Community Land Model (CLM5) snow albedo modeling: 1 

description, sensitivity, and evaluation 2 

 3 

Cenlin He1, Mark Flanner2, David M. Lawrence1, Yu Gu3 4 

 5 

1. National Center for Atmospheric Research (NCAR), Boulder, CO, USA 6 

2. University of Michigan Ann Arbor, MI, USA 7 

3. University of California Los Angeles (UCLA), Los Angeles, CA, USA 8 

 9 

Correspondence to: Cenlin He (cenlinhe@ucar.edu) 10 

 11 

 12 

Key points 13 

• We enhance CLM5 snow albedo modeling by including more realistic and physical 14 

representations of snow-aerosol-radiation interactions 15 

• The new adding-doubling solver, nonspherical snow grains, and aerosol-snow internal mixing 16 

show stronger impacts than other new features 17 

• The enhanced snow albedo representation improves the CLM simulated global snowpack 18 

evolution and land surface conditions 19 

 20 

Abstract 21 

 We enhance the Community Land Model (CLM) snow albedo modeling by implementing 22 

several new features with more realistic and physical representations of snow-aerosol-radiation 23 

interactions. Specifically, we incorporate the following model enhancements: (1) updating ice and 24 

aerosol optical properties with more realistic and accurate datasets, (2) adding multiple dust types, 25 

(3) adding multiple surface downward solar spectra to account for different atmospheric conditions, 26 

(4) incorporating a more accurate adding-doubling radiative transfer solver, (5) adding 27 

nonspherical snow grain representation, (6) adding black carbon-snow and dust-snow internal 28 

mixing representations, and (7) adding a hyperspectral (480-band versus the default 5-band) 29 

modeling capability. These model features/enhancements are included as new CLM 30 

physics/namelist options, which allows for quantification of model sensitivity to snow albedo 31 
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processes and for multi-physics model ensemble analyses for uncertainty assessment. The model 32 

updates will be included in the next CLM version release. Sensitivity analyses reveal stronger 33 

impacts of using the new adding-doubling solver, nonspherical snow grains, and aerosol-snow 34 

internal mixing than the other new features/enhancements. These enhanced snow albedo 35 

representations improve the CLM simulated global snowpack evolution and land surface 36 

conditions, with reduced biases in simulated snow surface albedo, snow cover, snow water 37 

equivalent, snow depth, and surface temperature, particularly over northern mid-latitude 38 

mountainous regions and polar regions.  39 

 40 

Plain Language Summary 41 

 Snow albedo plays a critical role in the Earth system, affecting land surface energy and 42 

water balance and related hydrological processes and also serving as an important land process 43 

that feeds back to the atmosphere. Several recent studies have identified new or improved physical 44 

representations of snow-aerosol-radiation interactions that show promise to improve snow albedo 45 

modeling. In this study, we leverage those recent advances in snow albedo modeling to implement 46 

a number of relevant new features into the widely-used Community Land Model (CLM), which is 47 

the land component of the Community Earth System Model (CESM). Specifically, we improve the 48 

ice and aerosol optical properties, the treatment of dust types and downward solar spectra, the 49 

albedo computation algorithm, the representation of snow grain shape and aerosol-snow mixing 50 

state, and the spectral calculation capability. These model updates will be included in the next 51 

CLM version release. Overall, the enhanced snow albedo representations improve the simulated 52 

global snowpack evolution and related land surface conditions. 53 

 54 

 55 

1. Introduction 56 

Snow albedo plays a key role in altering surface energy and water balance in the Earth 57 

system. It affects not only the evolution of snowpack states (e.g., snow depth, snow water 58 

equivalent (SWE), and snow cover) and hydrology (e.g., runoff/streamflow, reservoir storage, and 59 

flooding/drought) but also the atmosphere (e.g., surface temperature, humidity, local/regional 60 

boundary layer height, and clouds) through positive snow albedo feedback and land-atmosphere 61 

interactions (Bales et al., 2006; Painter et al., 2010; Flanner et al., 2011; Qian et al., 2015; Lee et 62 
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al., 2017; Skiles et al., 2018; Gleason et al., 2019; Yi et al., 2019; Dumont et al., 2020; Gul et al., 63 

2021; Huang et al., 2022). Snow albedo represents an important source of uncertainty in regional 64 

and global weather, climate, and hydrological modeling (Essery et al. 2009; Chen et al., 2014; 65 

Oaida et al., 2015; Thackeray and Fletcher, 2016; Räisänen et al., 2017; He et al., 2019a, 2021). 66 

Snow albedo is affected by many factors, including snow grain size and shape, snow depth, snow 67 

density, snow microstructure, light-absorbing particles (LAPs) present in the snowpack, the solar 68 

zenith angle, and the downward solar spectrum (Wiscombe and Warren, 1980; Kokhanovsky and 69 

Zege, 2004; Flanner et al., 2007, 2021; He et al., 2014, 2017a; Liou et al. 2014; Dang et al., 2015; 70 

Gelman Constantin et al., 2020; He and Flanner, 2020; Picard et al., 2020; Dumont et al., 2021). 71 

Accurate simulation of snow albedo requires realistic characterization and physical representation 72 

of those key factors in land, weather, and climate models. 73 

 In the past decades, many empirical or semi-physical parameterizations have been 74 

developed to statistically link snow albedo with snowpack properties and environment conditions 75 

for application in weather and climate models (Verseghy, 1991; Yang et al., 1997; Roeckner et al., 76 

2003; Gardner and Sharp, 2010; Vionnet et al., 2012; Abolafia-Rosenzweig et al., 2022), which 77 

however have their own limitations and uncertainties (He and Flanner, 2020). To achieve higher 78 

accuracy of snow albedo, several physics-based snowpack radiative transfer models have been 79 

developed, such as those based on the two-stream radiative transfer (Flanner et al., 2007; Libois et 80 

al., 2013; Tuzet et al. 2017), the Discrete-Ordinate-Method Radiative Transfer (DISORT) 81 

(Stamnes et al., 1988), the adding-doubling radiative transfer (Briegleb and Light, 2007; Dang et 82 

al., 2019), the Approximate Asymptotic Radiative Transfer (AART) Theory (Kokhanovsky and 83 

Zege, 2004; Libois et al., 2013), and the Monte Carlo Photon Tracing method (Kaempfer et al., 84 

2007). Among them, the Snow, Ice, and Aerosol Radiative (SNICAR) model (Flanner et al, 2007, 85 

2021) stands as one of the most widely used snowpack radiative transfer models, which has been 86 

implemented in several land and climate models including the Community Earth System Model 87 

(CESM)/Community Land Model (CLM; Lawrence et al., 2019) and the DOE’s Energy Exascale 88 

Earth System Model (E3SM) Land Model (ELM; Golaz et al., 2019). 89 

 In previous snow radiative transfer models, it was a common practice to treat snow grains 90 

as spheres, externally mixed with LAPs such as black carbon (BC) and dust (Warren and 91 

Wiscombe, 1980; Flanner et al., 2007; Dang et al., 2015; Tuzet et al. 2017). However, in reality, 92 

snow grains are predominantly nonspherical, particularly for fresh snow (Erbe et al., 2003; Dominé 93 
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et al., 2003). Additionally, BC and dust can be mixed within snow grains (i.e., internal mixing) 94 

rather than the common assumption that BC and dust only exist outside snow grains (i.e., external 95 

mixing) (Flanner et al., 2012; He et al., 2019b). To accurately compute snow albedo with more 96 

realistic representations of snow grain shape and its interaction with LAPs, physics-based 97 

parameterizations have been developed that account for snow nonsphericity and snow-LAP 98 

internal mixing for applications in weather and climate models (e.g., Dang et al., 2016; Räisänen 99 

et al., 2017; He et al., 2017b, 2019b; Saito et al., 2019), revealing important impacts of these two 100 

factors (He, 2022). In addition, the size, shape, and composition of LAPs play a nontrivial role in 101 

snow-LAP-radiation interactions (Liou et al., 2014; He et al., 2018b, 2019b; Flanner et al., 2021; 102 

Pu et al., 2021; Shi et al. 2022). Moreover, in addition to the traditionally modeled LAPs, such as 103 

BC and dust, there is increasing attention on other types of LAPs including brown carbon (Yan et 104 

al., 2019; Liu et al., 2020; Li et al., 2021), snow algae (Cook et al., 2017; Williamson et al., 2020), 105 

and volcanic ash (Young et al., 2014; Flanner et al., 2014; Gelman Constantin et al., 2020). 106 

 The standalone version of SNICAR has been updated to include these more realistic and 107 

physical treatments of snow-LAP-radiation interactions (updated version is SNICAR-ADv3; 108 

Flanner et al., 2021), including updated ice and aerosol optics as well as downward solar spectra, 109 

incorporation of multiple dust types and nonspherical snow grains, and the use of a more accurate 110 

adding-doubling (AD) two-stream radiative transfer solver. The standalone SNICAR-ADv3 model 111 

does not include BC/dust-snow internal mixing but uses a coated BC particle treatment instead, 112 

which shows similar effects as with explicit BC-snow internal mixing (Flanner et al., 2021). 113 

Leveraging the SNICAR-ADv3 updates and other aforementioned new LAP-snow 114 

parameterizations, the E3SM/ELM model with SNICAR as its embedded snow albedo scheme has 115 

been updated to include snow nonsphericity, BC/dust-snow internal mixing, and the adding-116 

doubling radiative transfer solver, which leads to improved simulations of snow surface energy 117 

and water balances (Hao et al., 2023). 118 

 In view of the scientific and modeling advances, it is imperative to enhance the 119 

CESM/CLM-SNICAR snow albedo modeling with more realistic and physical representations of 120 

snow-LAP-radiation interactions, considering the broad use of CESM/CLM (Lawrence et al., 121 

2019). The default CLM uses the original SNICAR model developed 16 years ago (Flanner et al., 122 

2007), which assumes spherical snow grains externally mixed with LAPs via a less accurate two-123 

stream solver and outdated input databases for ice and aerosol optics and downward solar spectra. 124 
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These inadequate snow albedo treatments in CLM-SNICAR have been identified as a contributing 125 

factor to model biases in simulating surface albedo and snowpack evolution (e.g., Chen et al., 2014; 126 

Toure et al., 2018; Thackeray et al., 2019). Therefore, this study aims to improve the CLM-127 

SNICAR snow albedo scheme by incorporating more realistic and physically-based 128 

representations of snow-LAP-radiation interactions.  129 

 This paper is organized as follows. Section 2 provides descriptions of model enhancements 130 

and simulations as well as observational datasets used for model evaluation. Section 3 investigates 131 

model sensitivities to each of the new features and enhancements implemented in this study. 132 

Section 4 presents evaluations of the updated model for key snow and surface fields. Section 5 133 

concludes the study. 134 

 135 

2. Model and data 136 

2.1 CLM5 snow albedo scheme 137 

 We use the CLM version 5.0 (CLM5) in this study, which is the land component of CESM2. 138 

CLM5 represents a full suite of terrestrial biogeophysical and biogeochemical processes, including 139 

carbon and nitrogen cycles, vegetation dynamics for ecosystems, and land surface and subsurface 140 

energy and water processes. More details about CLM5 are provided in Lawrence et al. (2019). 141 

Since this study specifically focuses on snow albedo, we briefly summarize the key elements of 142 

the CLM5 snow albedo scheme below.  143 

CLM5 includes the SNICAR model (Flanner et al., 2007) to compute snow albedo for the 144 

multi-layer (up to 12 layers) snowpack. It accounts for the effects of snow grain size (and hence 145 

snow aging) and LAP contamination on snow albedo. The original version of SNICAR leverages 146 

a multi-layer two-stream radiative transfer scheme based on Wiscombe and Warren (1980) and 147 

Toon et al. (1989). The required input variables for SNICAR include direct/diffuse radiation, 148 

surface downward solar spectrum, solar zenith angle (under direct radiation), ground albedo 149 

underlying snowpack, vertical distributions of snow grain size, snow layer thickness, snow density, 150 

and aerosol concentration, and optical properties of ice and aerosols. The ice and aerosol optical 151 

properties (single-scattering albedo, mass extinction cross-section, and asymmetry factor) are 152 

computed offline by Mie theory using particle refractive indices and size distributions, and are 153 

archived as look-up tables. The CLM5-SNICAR assumes snow spheres externally mixed with 154 

aerosols. The surface downward solar spectrum used in CLM5-SNICAR represents clear- or 155 
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cloudy-sky atmospheric conditions typical of mid-latitude winter. The CLM5-SNICAR computes 156 

snow albedo at 5 spectral bands (300-700 nm, 700-1000 nm, 1000-1200 nm, 1200-1500 nm, and 157 

1500-5000 nm), which are then averaged to values at two broadbands (visible: 300-700 nm; near-158 

infrared (NIR): 700-5000 nm) weighted by the downward solar spectrum. More detailed 159 

descriptions of CLM-SNICAR can be found in Flanner et al. (2007). Figure 1 summarizes the 160 

general workflow for the key elements in CLM5-SNICAR snow albedo calculations. 161 

 162 

 163 
Figure 1. Workflow for key elements in CLM5-SNICAR snow albedo modeling. Blue boxes 164 

indicate the default model processes/capabilities. Orange boxes indicate the new model 165 

capabilities/enhancements implemented in this study. 𝑄!"# is the mass extinction cross section, 𝑔 166 

is the asymmetry factor, and 𝜔 is the single-scattering albedo. 167 

 168 

2.2 New features and enhancements in CLM5 snow albedo scheme 169 

The standalone version of SNICAR has been recently updated to SNICAR-ADv3 by 170 

Flanner et al. (2021) with several new features as mentioned in Section 1. In addition, new 171 

parameterizations that account for BC-snow and dust-snow internal mixing have been recently 172 

developed. Thus, we combine all these recent updates that more physically and realistically 173 

represent snowpack characteristics in snow albedo computation, and implement them into CLM5-174 

SNICAR (Table 1 and Figure 1). Particularly, we include these new features/enhancements as 175 

additional CLM5-SNICAR physics/namelist options, which offers an effective way to quantify 176 

model sensitivity to snow albedo processes and allows for relevant multi-physics model ensemble 177 

analyses for uncertainty evaluation.  178 

 179 
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Table 1. List of new features and enhancements in CLM-SNICAR snow albedo scheme 180 

implemented in this study 181 

Features/enhancements New schemes & namelist options 
(* for new baseline) Original scheme 

Ice optical properties:  
updates from Flanner et al. (2021), with 
multiple options for ice refractive indices 

snicar_snw_optics = 
1 (Warren, 1984) 

2 (Warren and Brandt, 2008) 
3* (Picard et al., 2016) 

Warren (1984) 

BC and OC optical properties:  
updates from Flanner et al. (2021) Flanner et al. (2021) Flanner et al. (2007) 

Dust optical properties:  
updates from Flanner et al. (2021) with 
multiple dust types 

snicar_dust_optics = 
1* (Saharan dust) 
2 (Colorado dust) 
3 (Greenland dust) 

Saharan dust  
(Flanner et al., 2007) 

Downward solar spectra:  
updates from Flanner et al. (2021) for 
multiple atmospheric conditions 

snicar_solarspec = 
1* (mid-latitude winter) 
2 (mid-latitude summer) 

3 (sub-Arctic winter) 
4 (sub-Arctic summer) 
5 (Summit, Greenland) 

6 (high mountain) 

mid-latitude winter 
(Flanner et al., 2007) 

Radiative transfer solver:  
new adding-doubling solver from Dang 
et al. (2019) 

snicar_rt_solver = 
1 (Toon et al. 1989) 

2* (Adding-Doubling) 
Toon et al. (1989) 

Snow grain shape:  
nonspherical snow grains from He et al. 
(2017b) 

snicar_snw_shape = 
1 (sphere) 

2 (spheroid) 
3* (hexagonal) 
4 (snowflake) 

sphere 

BC-snow mixing:  
internal mixing from He et al. (2017b) 

snicar_snobc_intmix =  
true (internal mixing) 

false* (external mixing) 
external mixing 

Dust-snow mixing: 
internal mixing from He et al. (2019b) 

snicar_snodst_intmix =  
true (internal mixing) 

false* (external mixing) 
external mixing 

Wavelength band: 
new hyperspectral (480-band, 10-nm 
spectral resolution) capability from 
Flanner et al. (2021) 

snicar_numrad_snw =  
5* (5-band) 

480 (480-band) 
5-band 

New namelist controls for aerosol & OC snicar_use_aerosol = true*, false 
DO_SNO_OC = true, false* 

No namelist controls 
on using aerosol and 

OC (hard-coded) 



 8 

 182 

2.2.1 Updated ice optical properties 183 

The original CLM5-SNICAR uses the Warren (1984) compilation of ice refractive indices 184 

(RI) across the solar spectrum. Later, Warren and Brandt (2008) further updated the ice refractive 185 

indices data with much weaker absorption at wavelengths below 600 nm. However, more recent 186 

measurements by Picard et al. (2016) showed a larger ice absorption (i.e., the imaginary part of 187 

refractive indices) at 320-600 nm wavelengths than the Warren and Brandt (2008) data but smaller 188 

than the Warren (1984) data. This is consistent with the systematic snow albedo overestimate at 189 

wavelengths below 500 nm in SNICAR simulations using the Warren and Brandt (2008) data (He 190 

et al., 2018c). Thus, Flanner et al. (2021) updated the imaginary part of ice refractive indices by 191 

replacing the Warren and Brandt (2008) data with the Picard et al. (2016) data at wavelengths 192 

shorter than 600 nm. Flanner et al. (2021) also compiled another dataset for the imaginary part of 193 

ice refractive indices by merging the Warren (1984) and Perovich and Govoni (1991) datasets. 194 

These three datasets use the same Warren and Brandt (2008) compilation of the real part of 195 

refractive indices, and only differ in the imaginary part at wavelengths less than 600 nm, which is 196 

extremely challenging to measure accurately. Including all these three datasets in CLM5-SNICAR 197 

(i.e., ice optics namelist option “snicar_snw_optics” in Table 1) will allow uncertainty 198 

quantification. Following Flanner et al. (2021), we use the merged Picard et al. (2016) dataset as 199 

the new baseline model option in the updated CLM5-SNICAR. 200 

Using the ice refractive indices, ice optical properties (i.e., single-scattering albedo, mass 201 

extinction cross-section, and asymmetry factor) are then computed by Mie theory based on various 202 

ice grain effective radii ranging from 30 to 1500 µm with lognormal size distributions (Flanner et 203 

al., 2021), and are archived as an input look-up table. The look-up table of ice optical properties 204 

created by Flanner et al. (2021) is for 480-band at 10-nm spectral (i.e., hyperspectral) resolution 205 

across the solar spectrum (200-5000 nm). To work with the 5 spectral bands in CLM5-SNICAR, 206 

we further use the spectral weighted averaging technique to convert the hyperspectral ice optical 207 

properties to the 5-band values following Flanner et al. (2007). For the new hyperspectral 208 

computation option added to CLM5-SNICAR (see Section 2.2.9), we directly use the 480-band 209 

ice optics dataset produced by Flanner et al. (2021). 210 

 211 

2.2.2 Updated aerosol optical properties 212 
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 The original CLM5-SNICAR accounts for three types of LAPs, including BC, OC (i.e., 213 

brown carbon), and dust (Saharan type), using the aerosol optics dataset developed by Flanner et 214 

al. (2007). Flanner et al. (2021) updated the optical properties for all three aerosol types using 215 

updated particle density, size distribution, and refractive indices via Mie theory calculations. 216 

Overall, the updated aerosol optical properties lead to a stronger light absorption for OC and 217 

Saharan dust but a weaker light absorption for BC. We implement the Flanner et al. (2021) dataset 218 

into CLM5-SNICAR and conduct the spectral weighted averaging to convert the hyperspectral 219 

(480-band) aerosol optical properties to the 5-band values following Flanner et al. (2007). For the 220 

new hyperspectral computation option (see Section 2.2.9), we directly use the 480-band aerosol 221 

optics dataset (Flanner et al., 2021). Given the substantial uncertainty in OC modeling due to a 222 

lack of observational constraints (Liu et al., 2020), we turn off the OC effect on snow albedo 223 

(namelist option “DO_SNO_OC” in Table 1) in our proposed new baseline model configuration, 224 

but we activate it in sensitivity simulations to test its impact (Section 3).  225 

 226 

2.2.3 Updated dust types 227 

 The original CLM5-SNICAR only accounts for one dust type (i.e., Saharan dust; Flanner 228 

et al., 2007), while previous studies showed substantial differences in dust optical properties due 229 

to different particle size and composition for dust that originates from different regions (Scanza et 230 

al., 2015; Polashenski et al., 2015; Skiles et al., 2017). Thus, in addition to the Saharan dust 231 

(Scanza et al., 2015), Flanner et al. (2021) included two more dust types, Colorado dust (Skiles et 232 

al., 2017) and Greenland dust (Polashenski et al., 2015), which are added to the updated CLM5-233 

SNICAR in this study. Overall, Greenland dust shows the strongest light absorbing ability, 234 

followed by Saharan dust, while Colorado dust has the weakest light absorbing capacity among 235 

the three (Flanner et al., 2021). Including different dust types in CLM5-SNICAR (i.e., dust optics 236 

namelist option “snicar_dust_optics” in Table 1) offers a way for uncertainty analysis. Following 237 

Flanner et al. (2021), we use the Saharan dust as the new baseline model option in the updated 238 

CLM5-SNICAR. We note that the updated model does not have the capability of simultaneously 239 

using multiple dust types over different regions in one single simulation. Ideally, the CLM5-240 

SNICAR should be able to take the spatiotemporally varying aerosol optical properties (dust, BC, 241 

and OC) directly from the coupled atmospheric model component for consistent simulations, 242 

which will be improved in the future. 243 
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 244 

2.2.4 Updated surface downward solar spectra 245 

 The original CLM5-SNICAR uses the surface downward solar spectrum for clear-sky or 246 

cloudy-sky atmospheric conditions typical of mid-latitude winter (Flanner et al., 2007). In the 247 

model, the downward solar spectrum is used uniformly across the simulation domain to compute 248 

the spectrally-integrated broadband snow albedo from the spectral albedo derived from the 249 

radiative transfer solver. However, atmospheric conditions significantly affect the downward solar 250 

spectrum at the surface and therefore using only one downward solar spectrum may lead to 251 

nontrivial errors in simulated broadband snow albedo. Thus, Flanner et al. (2021) developed 5 252 

additional downward solar spectra to represent clear-sky and cloudy-sky atmospheric conditions 253 

typical of mid-latitude summer, sub-Arctic winter, sub-Arctic summer, Summit Greenland, and 254 

high mountain environments. We implement these new downward solar spectra (i.e., solar 255 

spectrum namelist option “snicar_solarspec” in Table 1) into CLM5-SNICAR to offer more 256 

accurate albedo calculations for applications in those specific regions. Following Flanner et al. 257 

(2021), we use the mid-latitude winter spectrum as the new baseline model option in the updated 258 

CLM5-SNICAR. We note that the updated model does not have the capability of simultaneously 259 

using multiple solar spectra over different regions in one single simulation. Ideally, the CLM5-260 

SNICAR should be able to take the spatiotemporally varying downward solar spectrum directly 261 

from the coupled atmospheric model component for consistent simulations. This is an important 262 

opportunity for further future improvement. 263 

 264 

2.2.5 Updated radiative transfer solver 265 

The original CLM5-SNICAR adopts the tri-diagonal matrix two-stream solver (Toon et al., 266 

1989), which shows larger snow albedo biases (i.e., overestimates) particularly under diffuse 267 

conditions than an adding-doubling two-stream solution (Dang et al., 2019). Moreover, the adding-268 

doubling solution has a stronger computational stability under different solar zenith angles and a 269 

higher computational efficiency than the tri-diagonal matrix solution. The adding-doubling solver 270 

also allows accounting for internal Fresnel layers in snow-ice interface, providing the potential for 271 

a unified snow-ice radiative transfer treatment. Because of these advantages, the adding-doubling 272 

solution has been implemented in the standalone SNICAR-ADv3 (Flanner et al., 2021) and the 273 

E3SM/ELM model (Hao et al., 2023). Following these recent studies, we implement the adding-274 
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doubling solution into CLM5-SNICAR (i.e., radiative transfer namelist option “snicar_rt_solver” 275 

in Table 1), and use it as the new baseline model option in the updated CLM5-SNICAR, 276 

considering its higher computational accuracy, efficiency, and stability. Detailed descriptions of 277 

the adding-doubling formulation can be found in Dang et al. (2019).  278 

 279 

2.2.6 Representation of snow nonsphericity 280 

The original CLM5-SNICAR assumes spherical snow grains (Flanner et al., 2007), which 281 

however may not be a realistic representation since nonspherical snow grains are ubiquitous in 282 

reality (Erbe et al., 2003; Dominé et al., 2003). To quantify the impact of snow nonsphericity, He 283 

et al. (2017b) developed a set of snow optical parameterizations based on sophisticated geometric-284 

optics ray-tracing calculations (Liou et al., 2014) for four typical snow grain shapes representative 285 

of real-world observations, including sphere, spheroid, hexagonal plate/column, and fractal 286 

snowflake (Figure 2). Snow grain shape mainly affects the snow asymmetry factor with very 287 

limited impact on extinction cross section and single-scattering albedo (Dang et al., 2016; He and 288 

Flanner, 2020). Thus, the He et al. (2017b) parameterizations make corrections to the asymmetry 289 

factor of snow spheres to account for nonsphericity effects based on grain shape, aspect ratio, 290 

effective radius, and wavelength. The parameterizations have been implemented into the 291 

standalone SNICAR-ADv3 (Flanner et al., 2021) and the E3SM/ELM model (Hao et al., 2023), 292 

which provide detailed descriptions of the associated formulation and implementation. Following 293 

these recent studies, we implement the same parameterizations for the four grain shapes into 294 

CLM5-SNICAR (i.e., snow shape namelist option “snicar_snw_shape” in Table 1). We set the 295 

hexagonal shape (one of the most common shapes for ice crystal) as the new baseline model option 296 

in the updated CLM5-SNICAR following Flanner et al. (2021). 297 

We note that there are other parameterizations that account for nonspherical snow grains 298 

in albedo calculations, which have been used in other land/climate models (e.g., Libois et al., 2013; 299 

Räisänen et al., 2017; Saito et al., 2019). These studies all find that accounting for snow 300 

nonsphericity provides a more realistic representation of snow characteristics in albedo 301 

calculations. All of these models are limited by a lack of dynamic evolution of snow grain shapes, 302 

which is another opportunity for future model development. We note that in this study, the snow 303 

aging scheme that simulates the dynamic evolution of specific surface area (Flanner et al., 2007) 304 
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is the same as that in the default CLM-SNICAR. Thus, the snow nonsphericity effect analyzed 305 

here quantifies the impact of different grain shapes with equal specific surface area. 306 

 307 

 308 
Figure 2. Demonstration of snow grains with four different shapes as well as aerosol-snow external 309 

and internal mixing states that are implemented in this study. 310 

 311 

2.2.7 Representation of BC-snow internal mixing 312 

The original CLM5-SNICAR assumes BC-snow external mixing, whereas previous studies 313 

pointed out that BC can also be internally mixed with snow grains (Figure 2), through a number 314 

of BC-cloud-precipitation interaction processes, which strongly enhances BC-induced snow 315 

albedo reduction (Flanner et al., 2012; Liou et al., 2014; He et al., 2017b). He et al. (2017b) 316 

developed a parameterization to account for BC-snow internal mixing in snow albedo calculations, 317 

where the internal mixing mainly affects the single-scattering albedo of BC-snow mixtures with 318 

negligible impacts on snow asymmetry factor and extinction cross section. This parameterization 319 

was developed based on sophisticated geometric-optics ray-tracing calculations and computes the 320 

change of snow single-scattering albedo caused by BC-snow internal mixing as a function of BC 321 

particle effective radius and concentration in snow. This parameterization was implemented into 322 

an earlier version of SNICARv2 (He et al., 2018c), which describes the formulation and 323 

implementation in detail. Following this study, we implement the BC-snow internal mixing 324 

parameterization into CLM5-SNICAR (i.e., BC-snow mixing namelist option 325 
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“snicar_snobc_intmix” in Table 1). We note that there is a lack of observational constraints for 326 

BC-snow mixing state (internal versus external) and there is also substantial uncertainty in 327 

modeling the evolution of BC-snow mixing state, therefore we maintain the BC-snow external 328 

mixing as the new baseline model option in the updated CLM5-SNICAR, but we activate the 329 

internal mixing in sensitivity simulations to test its impact (Section 3). 330 

There are other methods developed to account for the effect of BC-snow internal mixing, 331 

such as the look-up table method developed based on a dynamic effective medium approximation 332 

in Flanner et al. (2012), which has been adopted by E3SM/ELM-SNICAR (Hao et al., 2023). He 333 

et al. (2018c) showed that the He et al. (2017b) parameterization of BC-snow internal mixing leads 334 

to consistent snow albedo reductions with the results computed from the Flanner et al. (2012) look-335 

up tables. More observations of BC-snow mixing state are needed to constrain models to achieve 336 

more accurate estimates of BC-induced snow albedo changes. 337 

 338 

2.2.8 Representation of dust-snow internal mixing 339 

 Similar to the BC-snow mixing treatment, the original CLM5-SNICAR assumes dust-snow 340 

external mixing. However, previous studies found that dust can also be mixed internally with snow 341 

grains (Figure 2) via dust-cloud-precipitation interactions, which enhances dust-induced snow 342 

albedo reduction (He et al., 2019b; Shi et al., 2021). To quantify the impact of dust-snow internal 343 

mixing, He et al. (2019b) developed a parameterization that nonlinearly connects internal mixing-344 

induced changes of snow single-scattering albedo to dust concentration in snow based on 345 

sophisticated geometric-optics ray-tracing calculations. The dust-snow internal mixing has 346 

negligible effects on the snow asymmetry factor and extinction cross section. The He et al. (2019b) 347 

parameterization was implemented into E3SM/ELM-SNICAR (Hao et al., 2023). In the present 348 

study, we implement the dust-snow internal mixing parameterization into CLM5-SNICAR (i.e., 349 

dust-snow mixing namelist option “snicar_snodst_intmix” in Table 1). Similar to BC-snow mixing, 350 

there is also a lack of observational constraints for dust-snow mixing state and large model 351 

uncertainty for the mixing state evolution. Thus, we maintain the dust-snow external mixing as the 352 

new baseline model option in the updated CLM5-SNICAR, but we activate the internal mixing in 353 

sensitivity simulations to test its impact (Section 3). We note that the He et al. (2019b) 354 

parameterization of dust-snow internal mixing was developed without the presence of internally 355 
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mixed BC, so we suggest not activating BC-snow and dust-snow internal mixing simultaneously 356 

in CLM5-SNICAR. 357 

 Recently, Shi et al. (2021) used another method (i.e., the effective medium approximation) 358 

to account for dust-snow internal mixing in snow albedo modeling, which shows generally 359 

consistent results with those derived from the He et al. (2019b) parameterization. In the future, 360 

more observations of dust-snow mixing state are needed to better constrain modeled dust impacts 361 

on snow albedo. 362 

 363 

2.2.9 New hyperspectral computation capability 364 

The original CLM5-SNICAR uses 5 spectral bands (300-700 nm, 700-1000 nm, 1000-1200 365 

nm, 1200-1500 nm, and 1500-5000 nm) in radiative transfer calculations to increase computational 366 

efficiency. Accordingly, the ice and aerosol optical properties and downward solar spectra in input 367 

datasets are all spectrally averaged into the 5 bands. However, a recent study (Wang et al., 2022) 368 

found that because of the nonlinearity of radiative transfer computation, using the 5 spectral bands 369 

in SNICAR leads to a nontrivial snow albedo bias (up to 0.05) compared to hyperspectral (10-nm 370 

spectral resolution) calculations. Thus, we implement a hyperspectral (10-nm spectral resolution 371 

with 480 bands) computation capability into CLM5-SNICAR in this study, similar to that used by 372 

the standalone SNICAR-ADv3 model. The hyperspectral modeling capability includes all the new 373 

features and enhancements mentioned in Sections 2.2.1-2.2.8. The addition of this hyperspectral 374 

capability particularly targets on local/regional process-level investigations that require higher 375 

snow albedo accuracy, because it is much more computationally expensive than the 5-band 376 

calculations (e.g., 8 times slower for global 1-deg 10-year simulations in this study using the 377 

configuration described in Section 2.3). However, as computational power increases, the use of 378 

this hyperspectral capability in global or high-resolution modeling will become more feasible. 379 

 380 

2.3 Model simulations 381 

 To assess the model sensitivities and performance with the aforementioned new features 382 

and enhancements, we conduct a series of global 1-deg land-only CLM5-SNICAR simulations 383 

driven by the atmospheric forcing from the 3-hourly 0.5° Global Soil Wetness Project Phase 3 384 

dataset (GSWP3; Dirmeyer et al., 2006), which has been widely used and evaluated by previous 385 

studies (e.g., Lawrence et al., 2019; Hao et al., 2023). All model simulations use the prescribed 386 
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monthly climatological MODIS satellite phenology mode (i.e., CLM configuration/compset: 387 

I2000Clm51Sp) (Lawrence et al., 2019), and the prescribed monthly aerosol (BC, dust, OC) wet 388 

and dry deposition flux from the CESM2-WACCM simulations participated in CMIP6 389 

experiments (Danabasoglu et al., 2020). 390 

Model experiments include a default baseline simulation using the original CLM5-391 

SNICAR (hereinafter “default baseline”), a new baseline simulation using the enhanced CLM5-392 

SNICAR (hereinafter “new baseline”) with the new baseline physics option identified above and 393 

in Table 1, and a set of twin sensitivity simulations by turning on and off each new 394 

feature/enhancement (Table 1) at a time with the same baseline setup for other snow physics 395 

options in order to quantify the impact of the targeted feature/enhancement. The aerosol-induced 396 

snow albedo radiative forcing analyzed in this study is based on the instantaneous ground net 397 

radiative flux difference through double calls of SNICAR with and without specific aerosol species. 398 

We spin up the model simulations for the years 2000-2005 and use the 2006-2010 period for 399 

analysis. For seasonal analysis, we define each season as winter (December-January-February), 400 

spring (March-April-May), summer (June-July-August), and fall (September-October-November). 401 

 402 

2.4 Data for model evaluation 403 

 To evaluate the default and new baseline model simulations of snow albedo and other 404 

snowpack properties, global spatiotemporally continuous observation-based datasets are preferred. 405 

Thus, we use the daily 0.05° MODIS data for snow cover fraction (MOD10C1 and MYD10C1) 406 

and surface albedo (MCD43C3) as well as the monthly 0.1° ERA-5 land reanalysis data for snow 407 

water equivalent (SWE), snow depth, and surface 2-m temperature. The MODIS MCD43C3 408 

product is an Aqua-Terra merged surface albedo dataset and we use the data with quality flag of 0-409 

2 (i.e., “ok”, “good”, and “best”) to achieve a balance between enough samples and data quality, 410 

following He et al. (2019a). We use the MODIS snow cover data with quality flag of 0 and 1 (i.e., 411 

“good” and “best”) and cloud fraction of <20% (more clouds lead to degraded data accuracy) to 412 

achieve a balance between enough samples and data quality, following He et al. (2019a). We 413 

further merge the Aqua (MYD10C1) and Terra (MOD10C1) MODIS snow cover data to obtain 414 

more complete global maps by replacing the data gaps in MOD10C1 with valid values (if existing) 415 

from MYD10C1 or averaging the pixel values if both MOD10C1 and MYD10C1 have valid data. 416 

To compare with model simulations at consistent spatial grids, we re-map the MODIS and ERA-417 
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5 data to the model grids by averaging the values across the MODIS 0.05° pixels and ERA-5 0.1° 418 

pixels that are within each of the model 1° grids, respectively. 419 

 420 

3. Model sensitivities to new features/enhancements 421 

3.1 Effects of updated ice optics 422 

 Figure 3 shows the all-sky annual mean effects of updated ice optical properties on global 423 

snow albedo by using the Picard et al. (2016) versus Warren and Brandt (2008) ice refractive 424 

indices. Because the two datasets mainly differ at the visible band, there are negligible impacts on 425 

the NIR albedo. For the visible snow albedo, the differences are also small (<0.003) with slightly 426 

lower albedo using the Picard et al. (2016) data mainly over two polar regions under diffuse 427 

radiation (Figures 3 and S1). This is because the Picard et al. (2016) data leads to a stronger visible 428 

ice absorption (Flanner et al., 2021). Although the impact of using the Picard et al. (2016) data is 429 

small, it appears to more accurately capture the ice absorption in the visible band (He et al., 2018c; 430 

Flanner et al., 2021) and hence is recommended to use in future studies.  431 

 432 

 433 
Figure 3. 5-year (2006-2010) all-sky annual mean effects of updated ice optical properties (i.e., 434 

differences between simulations using the Picard et al. (2016) and Warren and Brandt (2008) ice 435 

refractive indices): (a) difference for visible snow albedo, (b) difference for NIR snow albedo. 436 

 437 

3.2 Effects of updated aerosol optics 438 

 Figure 4 shows the all-sky annual mean effects of updated aerosol (BC, OC, and Saharan 439 

dust) optical properties from the Flanner et al. (2021) data versus the Flanner et al. (2007) data on 440 
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snow-covered ground albedo and corresponding aerosol-induced snow albedo radiative forcing. 441 

Compared to using the Flanner et al. (2007) aerosol optics, the total aerosol-induced snow-covered 442 

ground albedo reduction using the Flanner et al. (2021) data is enhanced by up to 0.02 mainly over 443 

northern mid-latitudes (Figure 4a). This is primarily driven by stronger dust and OC light 444 

absorption using the Flanner et al. (2021) data relative to the Flanner et al. (2007) data, which 445 

further leads to stronger induced snow albedo forcing (Figures 4c, d) by up to >2.0 W m-2 (dust 446 

and OC combined) over heavily polluted hotspots, by ~0.17 W m-2 averaged over Northern 447 

Hemisphere, and by ~0.09 W m-2 globally. We note that the largely enhanced OC albedo forcing 448 

is due to the use of relatively strong-absorbing brown carbon optics in Flanner et al. (2021), which 449 

may not be representative of all OC or brown carbon. The enhanced snow albedo forcing caused 450 

by dust and OC is partially offset by the weaker BC light absorption with the BC forcing reduced 451 

by about 0.03 W m-2 averaged over Northern Hemisphere and 0.01 W m-2 globally (Figure 4b). 452 

The differences caused by updated aerosol optics mainly occur over northern mid-latitudes during 453 

winter and spring, and northern high-latitudes during spring and summer (Figure S2). 454 

 455 

 456 
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Figure 4. 5-year (2006-2010) all-sky annual mean effects of updated aerosol optical properties 457 

(i.e., differences between simulations using the Flanner et al. (2021) and Flanner et al. (2007) data): 458 

(a) difference for snow-covered ground albedo reduction caused by all aerosols, (b) difference for 459 

BC-induced snow albedo forcing (W m-2), (c) difference for dust-induced snow albedo forcing (W 460 

m-2), (d) difference for OC-induced snow albedo forcing (W m-2).  461 

 462 

3.3 Effects of different dust types 463 

 Figure 5 shows the all-sky annual mean differences between simulations using Greenland 464 

dust and Colorado dust in snow-covered ground albedo reduction and snow albedo forcing caused 465 

by dust. These two types of dust show the largest difference in light absorption capabilities among 466 

all the three dust types in the model (Section 2.2.3), which demonstrates the upper limit of model 467 

sensitivity to dust types in CLM5. Overall, using Greenland dust shows stronger albedo reduction 468 

by up to 0.02 mainly over northern Eurasia during winter and spring (Figures 5a and S3), compared 469 

to using Colorado dust. The corresponding annual difference in dust-induced snow albedo forcing 470 

reaches more than 3 W m-2 over polluted hotspots, with ~0.1 W m-2 averaged over Northern 471 

Hemisphere and ~0.05 W m-2 globally. Seasonally, the differences in snow albedo forcing mainly 472 

locate in northern mid-latitudes during winter and spring, and northern high-latitudes during spring 473 

and summer (Figure S5). 474 

 475 

 476 
Figure 5. 5-year (2006-2010) all-sky annual mean effects of different dust types (i.e., differences 477 

between simulations using Greenland dust and Colorado dust): (a) difference for snow-covered 478 
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ground albedo reduction caused by dust, (b) difference for dust-induced snow albedo forcing (W 479 

m-2). 480 

 481 

3.4 Effects of updated downward solar spectra 482 

 Figure 6 shows the 5-year annual mean effects of downward solar spectra on snow albedo 483 

by using the high mountain spectrum versus the mid-latitude summer spectrum. These two spectra 484 

have the largest difference in energy distribution in the CLM5 spectral bands particularly for direct 485 

radiation (Figure S5), which demonstrates the upper limit of model sensitivity to downward solar 486 

spectra. Specifically, the snow albedo difference (by up to -0.04) between using the two spectra 487 

primarily occurs in the NIR band under direct radiation (Figure 5c), particularly over high latitudes 488 

with a mean difference of -0.02. The impact is minimal in the visible band or diffuse NIR band 489 

(Figures 5a, b, d). 490 

 491 

 492 
Figure 6. 5-year (2006-2010) annual mean effects of different downward solar spectra (i.e., 493 

differences between simulations using high mountain and mid-latitude summer spectra): (a) 494 
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difference for direct-beam visible snow albedo, (b) difference for diffuse visible snow albedo, (c) 495 

difference for direct-beam NIR snow albedo, (d) difference for diffuse NIR snow albedo. 496 

 497 

3.5 Effects of updated radiative transfer solver 498 

 Figure 7 shows the 5-year annual mean snow albedo difference between simulations using 499 

the adding-doubling and Toon et al. (1989) radiative transfer solvers. The differences are negligible 500 

for the visible band but are significant (up to 0.04) for the NIR band under both direct and diffuse 501 

radiation. Specifically, using the adding-doubling solver leads to higher snow albedo under NIR 502 

direct radiation particularly in high-latitudes with a mean difference of 0.02 (Figure 7c), whereas 503 

it leads to a lower snow albedo under NIR diffuse radiation particularly in high-latitudes with a 504 

mean difference of -0.02 (Figure 7d). These difference patterns are similar across all the seasons 505 

with relatively larger differences in winter and spring (Figure S6). These results are consistent with 506 

the findings of Dang et al. (2019), where the adding-doubling solver has a similarly high accuracy 507 

as the Toon et al. (1989) solver for the visible band but substantially reduces the albedo 508 

underestimates at solar zenith angle >75° under NIR direct radiation and the albedo overestimates 509 

under NIR diffuse radiation caused by the Toon et al. (1989) solver. Thus, using the adding-510 

doubling solver results in higher accuracy in snow albedo calculations. 511 

 512 
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 513 
Figure 7. 5-year (2006-2010) annual mean effects of updated snow radiative transfer solvers (i.e., 514 

differences between simulations using the adding-doubling and Toon et al. (1989) solvers): (a) 515 

difference for direct-beam visible snow albedo, (b) difference for diffuse visible snow albedo, (c) 516 

difference for direct-beam NIR snow albedo, (d) difference for diffuse NIR snow albedo. 517 

 518 

3.6 Effects of nonspherical snow grains 519 

 Figure 8 shows the 5-year all-sky annual mean effects of nonspherical snow grains on snow 520 

albedo and aerosol-induced snow albedo forcing by using fractal snowflakes versus snow spheres. 521 

These two grain shapes have the largest difference in snow optical properties, which demonstrates 522 

the upper limit of model sensitivity to snow nonsphericity in CLM5. Compared to using snow 523 

spheres, using fractal snowflakes leads to substantially higher snow albedo by more than 0.05 over 524 

some hotspots and ~0.015 globally, with a stronger impact over high-latitudes (Figure 8a). 525 

Seasonally, the albedo increase due to the use of fractal snowflakes are strongest in winter and 526 

spring over northern mid-latitudes and two polar regions (Figure S7). This is consistent with the 527 

conclusions from previous studies (Dang et al., 2016; Räisänen et al. 2017; He et al., 2018a), where 528 
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nonspherical snow grains have lower asymmetry factor (i.e., weaker forward scattering) and hence 529 

higher snow albedo by 0.02-0.05 on average, depending on specific grain shape, grain size, and 530 

snow density and thickness.  531 

In addition, previous studies (He et al., 2018a, 2019; Shi et al., 2022) also found that 532 

nonspherical snow grains can reduce aerosol-induced snow albedo forcing because of the reduced 533 

forward scattering and hence less aerosol absorption throughout the snowpack column. This is 534 

confirmed by the results in this study, where using fractal snowflakes shows lower snow albedo 535 

forcing for BC, dust, and OC by up to 0.3 W m-2 or more, compared to using snow spheres (Figures 536 

8b-d).  537 

 538 

 539 
Figure 8. 5-year (2006-2010) all-sky annual mean effects of nonspherical snow grain (i.e., 540 

differences between simulations using fractal snowflake and snow sphere): (a) difference for 541 

broadband snow albedo, (b) difference for BC-induced snow albedo forcing (W m-2), (c) difference 542 

for dust-induced snow albedo forcing (W m-2), (d) difference for OC-induced snow albedo forcing 543 

(W m-2). 544 
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 545 

3.7 Effects of BC-snow internal mixing  546 

 Figures 9a-b show the 5-year all-sky annual mean effects of BC-snow internal mixing on 547 

BC-induced snow albedo reduction and albedo forcing, compared to external mixing. Overall, the 548 

internal mixing significantly enhances BC-induced snow albedo reduction by up to 0.042 and 549 

albedo forcing by up to 1.0 W m-2 or more, with main effects over northern mid- and high-latitudes 550 

during winter and spring (Figure S8).  This is consistent with previous studies (Flanner et al., 2012; 551 

He, 2022), where the snow albedo reduction caused by internal mixing can be enhanced by up to 552 

0.05 or more relative to external mixing, depending on snow grain size and shape, snowpack 553 

density and thickness, BC concentration in snow, and illumination conditions. He et al. (2018a) 554 

further found that the enhanced albedo reduction due to internal mixing increases the BC-induced 555 

snow albedo forcing by up to 1 W m-2 in polluted regions like northern China snowpack, which 556 

agrees with the results in this study (Figure 9b). 557 

 558 

 559 
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Figure 9. 5-year (2006-2010) all-sky annual mean effects of aerosol-snow internal mixing (i.e., 560 

differences between simulations using internal mixing and external mixing): (a) BC-snow internal 561 

mixing impact on BC-induced snow-covered ground albedo reduction, (b) BC-snow internal 562 

mixing impact on BC-induced snow albedo forcing (W m-2), (c) dust-snow internal mixing impact 563 

on dust-induced snow-covered ground albedo reduction, (b) dust-snow internal mixing impact on 564 

dust-induced snow albedo forcing (W m-2). 565 

 566 

3.8 Effects of dust-snow internal mixing  567 

Figures 9c-d show the 5-year all-sky annual mean effects of dust-snow internal mixing on 568 

dust-induced snow albedo reduction and albedo forcing, compared to external mixing. Similar to 569 

BC-snow internal mixing, the dust-snow internal mixing enhances snow albedo reduction by up 570 

to 0.02 and albedo forcing by up to 1.0 W m-2 or more, with major impacts over northern Eurasia 571 

during winter and spring as well as in the coasts of Greenland during summer (Figures 9c-d and 572 

S9). This is consistent with previous findings (He et al., 2019b; Shi et al., 2021, 2022), where dust-573 

snow internal mixing can result in 10-45% enhancement in dust-induced snow albedo reduction 574 

and albedo forcing relative to external mixing, depending on snow grain size and shape, snowpack 575 

density and thickness, dust content in snow, and illumination conditions. 576 

 577 

3.9 Effects of new hyperspectral capability 578 

 Figure 10 shows the 5-year annual mean difference in snow albedo between simulations 579 

using hyperspectral (480-band) and 5-band calculations. Overall, the differences in visible and 580 

NIR snow albedo under direct radiation are small (within ~0.004), while the hyperspectral 581 

calculation leads to noticeably higher visible and NIR albedo under diffuse radiation by up to >0.02 582 

over some hotspots and 0.01-0.02 over most of two polar regions, compared to the 5-band 583 

calculations. This is consistent with the analysis of Wang et al. (2022), where the hyperspectral 584 

SNICAR calculations tend to have higher snow albedo than the 5-band SNICAR calculations. In 585 

addition, the hyperspectral calculation also results in nontrivial differences in aerosol-induced 586 

snow albedo forcing (Figure 11), with higher BC forcing (by up to 0.1 W m-2 over northern China 587 

and Himalayas) and OC forcing (by up to 0.2 W m-2 over northern high-latitudes) but lower dust 588 

forcing (by up to >0.1 W m-2 over northern Eurasia hotspots) compared to the 5-band calculations. 589 

 590 
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 591 
Figure 10. 5-year (2006-2010) annual mean effects of hyperspectral calculations (i.e., differences 592 

between simulations using 480 bands and 5 bands): (a) difference for direct-beam visible snow 593 

albedo, (b) difference for diffuse visible snow albedo, (c) difference for direct-beam NIR snow 594 

albedo, (d) difference for diffuse NIR snow albedo. 595 

 596 

 597 
Figure 11. 5-year (2006-2010) all-sky annual mean effects of hyperspectral calculations (i.e., 598 

differences between simulations using 480 bands and 5 bands) on aerosol-induced snow albedo 599 

forcing (W m-2): (a) difference for BC, (b) difference for dust, (c) difference for OC. 600 
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 601 

4. Model evaluation 602 

Table 2. Summary of model evaluation statistics 603 

Land surface fields 

Model mean biases 

Northern mid-
latitudes 

(30°N-60°N) 

Northern high-
latitudes 

(60°N-90°N) 

Southern mid-
latitudes 

(30°S-60°S) 

Southern high-
latitudes 

(60°S-90°S) 

default 
baseline 

new 
baseline 

default 
baseline 

new 
baseline 

default 
baseline 

new 
baseline 

default 
baseline 

new 
baseline 

Surface albedo 
(100% snow cover) -0.022 0.004 -0.017 0.007 -0.022 0.005 0.003 0.034 

Snow cover -0.011 -0.009 -0.007 -0.004 -0.025 -0.019 -0.017 -0.012 

SWE (mm) -232.5 -178.3 -77.5 -63.4 -79.7 -64.8 -178.2 -174.0 

Snow depth (m) -2.53 -2.36 -0.67 -0.63 -1.56 -1.51 -5.12 -5.01 

2-m temperature (°C) 1.32 1.26 0.53 0.47 0.62 0.55 2.35 2.26 

 604 

4.1 Surface albedo 605 

 Figure 12 shows the comparison between MODIS observed and CLM5 simulated 5-year 606 

annual mean white-sky (diffuse) surface albedo over regions with 100% snow cover. The default 607 

baseline simulation tends to overestimate visible and NIR snow surface albedo in many parts of 608 

northern high-latitudes by about 0.1-0.2, but significantly underestimates the albedo in the northern 609 

mid-latitudes by up to 0.5 for the visible band and up to 0.3 for the NIR band, particularly over 610 

mountainous regions (Figures 12b, d). Compared to the default baseline result, the new baseline 611 

simulation with CLM5-SNICAR enhancements substantially reduces the albedo underestimate in 612 

the northern mid-latitudes by up to 0.1 for both visible and NIR bands (Figures 12c, f), primarily 613 

due to the use of nonspherical snow grains. The new baseline simulation also increases the snow 614 

surface albedo in northern and southern high-latitudes by up to 0.1 mainly at the NIR band, which 615 

however exacerbates the model bias in southern high-latitudes. These patterns are generally 616 

consistent throughout different seasons (Figures S10 and S11). The assessment for black-sky snow 617 

surface albedo shows similar results and conclusions (Figure S12). Table 2 summarizes the mean 618 

bias of the default and new baseline simulations. Overall, the new baseline simulation reduces the 619 

mean biases of fully snow-covered surface albedo over northern mid- and high-latitudes and 620 

southern mid-latitudes but increases the mean bias in southern high-latitudes. 621 
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 622 

 623 
Figure 12. Comparison between MODIS and model simulations of 5-year (2006-2010) annual 624 

mean white-sky surface albedo for 100% snow cover grids. First column (a, d): MODIS 625 

observations; second column (b, e): default baseline simulation bias; third column (c, f): difference 626 

between new and default baseline simulations. First row (a, b, c): visible band; second row (d, e, 627 

f): NIR band. 628 

 629 

4.2 Snow cover 630 

Figures 13 and S13 shows the comparison between MODIS observed and CLM5 simulated 631 

5-year seasonal mean snow cover fraction. The default baseline simulation significantly 632 

underestimates snow cover in the Tibetan Plateau and North American Rocky Mountains across 633 

all seasons by about 0.25, with patchy underestimates or overestimates in northern high-latitudes. 634 

Compared to the default baseline result, the new baseline simulation reduces the snow cover bias 635 

by up to 0.1 in the Tibetan Plateau and North American Rocky Mountains mainly during winter 636 

and spring, in many parts of northern Eurasia during spring and summer, and in the southern Andes 637 

during summer and fall. This is primarily caused by the increased snow albedo over those regions 638 

in the new baseline simulation (Section 4.1), which reduces the solar radiation absorbed by 639 

snowpack and hence increases snow cover. Overall, the new baseline simulation reduces the mean 640 
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snow cover biases (underestimates) across northern and southern mid- and high-latitudes (Table 641 

2). 642 

 643 

 644 
Figure 13. Comparison between MODIS and model simulations of 5-year (2006-2010) seasonal 645 

mean snow cover fraction. First column (a, d): MODIS observations; second column (b, e): default 646 

baseline simulation bias; third column (c, f): difference between new and default baseline 647 

simulations. First row (a, b, c): winter (December-January-February); second row (d, e, f): spring 648 

(March-April-May). See Figure S13 for results in summer (June-July-August) and fall 649 

(September-October-November) with relatively smaller effects from the new baseline simulation. 650 

 651 

4.3 Snow water equivalent 652 

Figures 14 and S14 shows the comparison between ERA-5 and CLM5 simulated 5-year 653 

seasonal mean snow water equivalent (SWE). We note that the maximum SWE allowed (i.e., SWE 654 

capping) in the CLM5 is set to 10,000 kg/m2 to prevent unlimited snow building up over glacier 655 

regions in model simulations (particularly a coupled climate run), which would cause serious 656 

model issues (e.g., incorrect land water storage and ocean salinity). Thus, when evaluating 657 

simulated SWE, we screened out the regions with model SWE capping at 10,000 kg/m2 (mainly 658 

Greenland and Antarctic ice sheets), because it is not meaningful to compare the model results 659 

with snow capping and the ERA-5 results without SWE capping in those regions.  660 
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The default baseline simulation systematically underestimates SWE by more than 50 mm 661 

in the Tibetan Plateau, North American Rocky Mountains, the coasts of Greenland, and the 662 

southern Andes across all seasons as well as part of northern Eurasia during winter and spring 663 

(Figure 14). Compared to the default baseline result, the new baseline simulation reduces the SWE 664 

bias by up to 50 mm in the coasts of Greenland across all seasons as well as over the Himalayas 665 

and part of North American Rocky Mountains during spring (Figures 14 and S14). This is because 666 

the increased snow albedo over those regions in the new baseline simulation (Section 4.1) reduces 667 

snow melting and hence increases SWE. Overall, the new baseline simulation reduces the mean 668 

SWE biases (underestimates) across mid- and high-latitudes, particularly over northern mid-669 

latitudes (Table 2). 670 

 671 

 672 
Figure 14. Comparison between ERA-5 and model simulations of 5-year (2006-2010) seasonal 673 

mean SWE (mm). First column (a, d): ERA-5 data (values >400 mm also show dark red color); 674 

second column (b, e): default baseline simulation bias; third column (c, f): difference between new 675 

and default baseline simulations. First row (a, b, c): winter (December-January-February); second 676 

row (d, e, f): spring (March-April-May). Note that most Greenland and Antarctic glacier regions 677 

with model snow capping at 10,000 kg/m2 are screened out in second and third columns. See Figure 678 

S14 for results in summer (June-July-August) and fall (September-October-November) with 679 

relatively smaller effects from the new baseline simulation. 680 
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 681 

4.4 Snow depth 682 

Figures 15 and S15 shows the comparison between ERA-5 and CLM5 simulated 5-year 683 

seasonal mean snow depth. Similar to the SWE evaluation (Sect. 4.3), we screened out the regions 684 

with model SWE capping at 10,000 kg/m2 (mainly Greenland and Antarctic ice sheets). The default 685 

baseline simulation substantially underestimates snow depth by 0.2 m or more over the coasts of 686 

Greenland, the Tibetan Plateau, and the southern Andes throughout the year, as well as in the North 687 

American Rocky Mountains and many parts of northern Eurasia during winter, spring, and fall 688 

(Figures 15 and S15). Compared to the default baseline result, the new baseline simulation reduces 689 

the snow depth bias by 0.2 m or more over the coasts of Greenland across all seasons and by up to 690 

0.1 m in the Himalayas and part of North American Rocky Mountains during spring (Figures 15 691 

and S15). This is caused by the less light absorption by snowpack over those regions in the new 692 

baseline simulation (Section 4.1), which weakens snow densification/melting and hence increases 693 

snow depth. Overall, the new baseline simulation reduces the mean snow depth biases 694 

(underestimates) across mid- and high-latitudes, particularly in northern mid-latitudes (Table 2). 695 

 696 

 697 
Figure 15. Same as Figure 14, but for snow depth (m) comparison between ERA-5 and model 698 

simulations. For ERA-5 snow depth, values >0.8 m also show dark red color in panels (a) and (d). 699 

Note that most Greenland and Antarctic glacier regions with model snow capping at 10,000 kg/m2 700 

are screened out in second and third columns. See Figure S15 for results in summer (June-July-701 
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August) and fall (September-October-November) with relatively smaller effects from the new 702 

baseline simulation. 703 

 704 

4.5 Surface temperature 705 

 Figures 16 and S16 shows the comparison between ERA-5 and CLM5 simulated 5-year 706 

annual and seasonal mean surface (2-m) temperature, respectively. The default baseline simulation 707 

generally overestimates the surface temperature by ~5°C over the majority of Greenland, Tibetan 708 

Plateau, and Antarctic throughout the year, and underestimates in part of northern Eurasia and 709 

northern Canada mainly during winter and spring. Compared to the default baseline result, the new 710 

baseline simulation reduces the surface temperature overestimates by up to 0.5°C over the 711 

Antarctic during winter and fall, Greenland during spring and summer, and part of Tibetan Plateau 712 

and North American Rocky Mountains during winter and spring (Figures 16 and S16). This is 713 

because of the increased snow albedo and hence less land surface heating by solar radiation 714 

absorption over those regions in the new baseline simulation (Section 4.1). The new baseline 715 

simulation, however, tends to slightly worsen the model temperature bias in part of northern 716 

Eurasia and northern Canada during spring. Overall, the new baseline simulation reduces the mean 717 

surface temperature biases (overestimates) across northern and southern mid- and high-latitudes 718 

(Table 2). The impact on surface temperature, which is strongly constrained by the forcing 719 

temperature in land-only simulations, is expected to be much stronger in a coupled climate 720 

simulation through positive snow albedo feedbacks. 721 

 722 

 723 
Figure 16. Comparison between ERA-5 and model simulations of 5-year (2006-2010) annual 724 

mean 2-m surface temperature (°C): (a) ERA-5 data, (b) default baseline simulation bias, and (c) 725 

difference between new and default baseline simulations. 726 

 727 
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5. Conclusions 728 

 In this study, we enhanced the CLM5-SNICAR snow albedo modeling by implementing 729 

several new features with more realistic and physical representations of snow-aerosol-radiation 730 

interactions. Specifically, we incorporated the following model enhancements: (1) updating ice 731 

and aerosol optical properties with more realistic and accurate datasets; (2) adding multiple dust 732 

types; (3) adding multiple surface downward solar spectra to account for different atmospheric 733 

conditions; (4) incorporating a more accurate adding-doubling radiative transfer solver; (5) adding 734 

nonspherical snow grain representation; (6) adding BC-snow and dust-snow internal mixing 735 

representations; (7) adding a hyperspectral (480-band versus the default 5-band) modeling 736 

capability. These model features/enhancements have been included as new CLM physics/namelist 737 

options, which allows for quantifying model sensitivities to snow albedo processes and for 738 

conducting relevant multi-physics model ensemble analyses for uncertainty assessment. The 739 

model updates will be included in the next CESM/CLM version release. Sensitivity analyses 740 

revealed stronger impacts of using the new adding-doubling solver, nonspherical snow grains, and 741 

BC/dust-snow internal mixing than the other new features/enhancements. 742 

 These enhanced snow albedo representations improve the CLM5 modeled global 743 

snowpack evolution and land surface conditions. Specifically, the enhanced CLM5-SNICAR leads 744 

to (1) a reduced snow surface albedo bias in northern mid-latitudes across all seasons; (2) a reduced 745 

snow cover bias in the Tibetan Plateau and North American Rocky Mountains during winter and 746 

spring, part of northern Eurasia during spring and summer, and the southern Andes during summer 747 

and fall; (3) a reduced SWE bias in the coasts of Greenland throughout the year and over the 748 

Tibetan Plateau and North American Rocky Mountains during spring; (4) a reduced snow depth 749 

bias in the coasts of Greenland throughout the year and in part of the Tibetan plateau and North 750 

American Rocky Mountains during spring; (5) a reduced surface temperature bias over the 751 

Antarctic during winter and fall, Greenland during spring and summer, and part of the Tibetan 752 

Plateau and North American Rocky Mountains during winter and spring. We note, however, that 753 

there are some regions without any model improvement or even with degradation by using the 754 

enhanced CLM5-SNICAR, such as the snow surface albedo in some high-latitude regions. 755 

 In future studies, coupled climate model simulations with the enhanced CLM5-SNICAR 756 

are needed to assess the full climatic impacts of the snow albedo enhancements added in this study, 757 

which are expected to be stronger than those shown here due to positive snow albedo feedback. 758 
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The enhanced CLM5-SNICAR (CTSM Development Team, 2022) code is at: 771 
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MODIS surface albedo data (MCD43C3; Schaaf and Wang, 2021) is available at: 773 
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ERA-5 land data (SWE, snow depth, surface temperature; Muñoz Sabater, 2019) is available at: 777 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-778 

means?tab=overview  779 

The model data generated in this study (He et al., 2023) is at: 780 

https://doi.org/10.5281/zenodo.7986830  781 
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