Appendix A
Supercritical-Channel-Flow Hydraulic Theory Uncertainty Estimation
The uncertainties in the calculations presented in section 3.3 and Table
2 are estimated as follows. The total uncertainty, \(\text{δq},\ \)of a
function \(q\left(x,\ \ldots,\ z\right)\) for which the uncertainties
in \(x,\ \ldots,\ z\) are \(\delta x,\ \ldots,\ \delta z\),
respectively, is estimated via Taylor (1997) as
\begin{equation}
\delta q=\sqrt{\left(\frac{\partial q}{\partial x}\text{δx}\right)^{2}+\ldots+\left(\frac{\partial q}{\partial z}\text{δz}\right)^{2}}\nonumber \\
\end{equation}In the supercritical-channel-flow cases analyzed in Section 3, upstream
wind speed and PBL height, lower-troposphere static stability, and the
angular change in the flow direction due to the bending boundary (Figs.
6, 8, 10, and 12) are obtained from visual inspection of the respective
fields and determine Fr and dθ, along with their
corresponding uncertainties. For instance, using Eq. (A1), the total
uncertainty in the Froude Number (\(\delta Fr)\) upstream of the Guiana
Highland expansion fan is given by
\begin{equation}
\delta Fr=\sqrt{\left(\frac{\partial Fr}{\partial U}\text{δU}\right)^{2}+\left(\frac{\partial Fr}{\partial g^{\prime}}\delta g^{\prime}\right)^{2}+\left(\frac{\partial Fr}{\partial h}\text{δh}\right)^{2}}\nonumber \\
\end{equation}\(\delta Fr=0.22\)
so that \(Fr=1.32\pm 0.22\).
The measured values and uncertainties of Fr and dθpropagate through the subsequent calculations in Eqs. (4)–(7). The
total uncertainty for every new variable is obtained using Eq. (A1),
with the exception of δβ in Eq. (4), where \(\beta\) is a
function of Fr only, for which a simpler formula can be
used:
\begin{equation}
\delta\beta=\left|\frac{\text{dβ}}{\text{dFr}}\right|\text{δFr}\nonumber \\
\end{equation}Table 2 summarizes the predicted final wind speeds, PBL heights, and the
corresponding uncertainties for each expansion fan.
References
Amador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and
future research. Annals of the New York Academy of Sciences ,1146 (1), 153–188. https://doi.org/10.1196/annals.1446.012
Balmez, M., & Ştefan, S. (2014). On the formation mechanism of
low-level jet over Bucharest’s airports. Atmosphere Physics ,59 (Figure 1), 792–807.
Blackadar, A. K. (1957). Boundary layer wind maxima and their
significance for the growth of nocturnal inversions. Bulletin of
the American Meteorological Society , 38 , 283–290.
Bonner, W. D. (1963). Thunderstorms and the low-level jets, 19–33.
Bonner, W. D. (1968). Climatology of the Low Level Jet. Monthly
Weather Review , 96 (12), 833–850.
https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2
Bonner, W. D., & Paegle, J. (1970). Diurnal variations in boundary
layer winds over the south-central united states in summer.Monthly Weather Review , 98 (10), 735–744.
https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2
Chen, G. T.-J., & Hsu, Y.-S. (1997). Composite structure of a Low-Level
Jet over Southern China observed during the TAMEX period. Journal
of the Meteorological Society of Japan , 75 (6), 1003–1018.
Chen, R., & Tomassini, L. (2015). The Role of Moisture in Summertime
Low-Level Jet Formation and Associated Rainfall over the East Asian
Monsoon Region. Journal of the Atmospheric Sciences ,72 (10), 3871–3890. https://doi.org/10.1175/JAS-D-15-0064.1
Clarke, R. H., Smith, R. K., & Reid, D. G. (1981). The Morning Glory of
the Gulf of Carpentaria: An Atmospheric Undular Bore. Monthly
Weather Review , 109 (8), 1726–1750.
https://doi.org/10.1175/1520-0493(1981)109<1726:TMGOTG>2.0.CO;2
Coleman, T. A., Knupp, K. R., & Herzmann, D. E. (2010). An undular bore
and gravity waves illustrated by dramatic time-lapse photography.Journal of Atmospheric and Oceanic Technology , 1355–1361.
https://doi.org/10.1175/2010JTECHA1472.1
Cook, K. H., & Vizy, E. K. (2010). Hydrodynamics of the Caribbean
low-level jet and its relationship to precipitation. Journal of
Climate , 23 (6), 1477–1494.
https://doi.org/10.1175/2009JCLI3210.1
Douglas, M., Murillo, J., & Mejia, J. (2005). Conducting short duration
field programs to evaluate sounding site representativeness and
potential climate monitoring biases. Examining the low-level jet over
the Venezuelan llanos during the 2005 dry season. In 15th
Conference on Applied Climatology . Savannah, GA. Retrieved from
http://www.nssl.noaa.gov/projects/pacs
Doyle, J. D., & Warner, T. T. (1993). A three-dimensional numerical
investigation of a Carolina Coastal Low-Level Jet during GALE IOP 2.Monthly Weather Review , 121 (4), 1030–1047.
https://doi.org/10.1175/1520-0493(1993)121<1030:ATDNIO>2.0.CO;2
Du, Y., & Rotunno, R. (2014). A Simple Analytical Model of the
Nocturnal Low-Level Jet over the Great Plains of the United States.Journal of the Atmospheric Sciences , 71 (10), 3674–3683.
https://doi.org/10.1175/JAS-D-14-0060.1
Du, Y., Zhang, Q., Chen, Y. L., Zhao, Y., & Wang, X. (2014). Numerical
simulations of spatial distributions and diurnal variations of low-level
jets in China during early summer. Journal of Climate ,27 (15), 5747–5767. https://doi.org/10.1175/JCLI-D-13-00571.1
Du, Y., Rotunno, R., & Zhang, Q. (2015). Analysis of WRF-Simulated
Diurnal Boundary Layer Winds in Eastern China Using a Simple 1D Model.Journal of the Atmospheric Sciences , 72 (2), 714–727.
https://doi.org/10.1175/JAS-D-14-0186.1
Du, Y., Chen, Y.-L., & Zhang, Q. (2015). Numerical Simulations of the
Boundary Layer Jet off the Southeastern Coast of China. Monthly
Weather Review , 143 (4), 1212–1231.
https://doi.org/10.1175/MWR-D-14-00348.1
Fedorovich, E., Gibbs, J. A., & Shapiro, A. (2017). Numerical Study of
Nocturnal Low-Level Jets over Gently Sloping Terrain. Journal of
the Atmospheric Sciences , 74 (9), 2813–2834.
https://doi.org/10.1175/JAS-D-17-0013.1
Findlater, J. (1969). A major low level air current near the Indian
Ocean during the northern summer. Quarterly Journal of the Royal
Meteorological Society , 95 , 362–380.
Foghin-Pillin, S. (2016). Evidencias de la penetración de brisas de mar
en la depresión del río Unare y Llanos de Anzoátegui. Revista de
Investigación , 40 (87), 39–62.
Giannakopoulou, E. M., & Toumi, R. (2012). The Persian Gulf summertime
low-level jet over sloping terrain. Quarterly Journal of the Royal
Meteorological Society , 138 (662), 145–157.
https://doi.org/10.1002/qj.901
Gilford, M. T., Bonam, R. C., Martens, D. L., Myles, G., & Vojtesak, M.
J. (1992). South America South of the Amazon River – A
Climatological Study . Scott Air Force Base, Illinois, USA: USAF
Environmental Technical Applications Center.
Goler, R. A., & Reeder, M. J. (2004). The Generation of the Morning
Glory, 1360–1376.
Haase, S. P., & Smith, R. K. (1989). The numerical simulation of
atmospheric gravity currents. Part II: Environments with stable layers.Geophys. Astrophys. Fluid Dynamics , 46 , 35–51.
Hart, J. E. (1977). On the theory of the East African Low Level Jet
Stream. Pure and Applied Geophysics PAGEOPH , 115 (5–6),
1263–1282. https://doi.org/10.1007/BF00874409
He, M.-Y., Liu, H. B., Wang, B., & Zhang, D. L. (2016). A modeling
study of a low-level jet along the Yun-Gui Plateau in South China.Journal of Applied Meteorology and Climatology , 55 (1),
41–60. https://doi.org/10.1175/JAMC-D-15-0067.1
Hidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., & Alfaro, E. J.
(2015). The caribbean low-level jet, the inter-tropical convergence zone
and precipitation patterns in the intra-Americas Sea: A proposed
dynamical mechanism. Geografiska Annaler, Series A: Physical
Geography , 97 (1), 41–59. https://doi.org/10.1111/geoa.12085
Holton, J. R. (1967). The diurnal boundary layer wind oscillation above
sloping terrain. Tellus , 19 (2), 199–205.
https://doi.org/10.3402/tellusa.v19i2.9766
Jiménez-Sánchez, G., Markowski, P., Jewtoukoff, V., Young, G., &
Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of
Its Characteristics and Evolution Using the WRF Model. Journal of
Geophysical Research: Atmospheres , 124 (20), 10696–10711.
https://doi.org/10.1029/2019JD030934
Juliano, T. W., Parish, T. R., Rahn, D. A., & Leon, D. C. (2017). An
atmospheric hydraulic jump in the Santa Barbara Channel. Journal
of Applied Meteorology and Climatology , 2981–2999.
https://doi.org/10.1175/JAMC-D-16-0396.1
Koch, S. E., & Clark, W. L. (1999). A Nonclassical Cold Front Observed
during COPS-91: Frontal Structure and the Process of Severe Storm
Initiation. Journal of the Atmospheric Sciences , 56 (16),
2862–2890.
https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2
Koch, S. E., Pagowski, M., Wilson, J. W., Fabry, F., Flamant, C., Feltz,
W., et al. (2005). The Structure and Dynamics of Atmospheric Bores and
Solitons and Modeling Experiments during IHOP. In 11th Conference
on Mesoscale Processes and the 32nd Conference on Radar Meteorology (p.
14).
Krishnamurthy, L., Vecchi, G. A., Msadek, R., Wittenberg, A., Delworth,
T. L., & Zeng, F. (2015). The seasonality of the great plains low-level
Jet and ENSO relationship. Journal of Climate , 28 (11),
4525–4544. https://doi.org/10.1175/JCLI-D-14-00590.1
Labar, R. J., Douglas, M., Murillo, J., & Mejia, J. F. (2005). The
Llanos low-level jet and its association with Venezuelan convective
precipitation. Weather , 98926 (August), 1–21.
Liu, M., Westphal, D. L., Holt, T. R., & Xu, Q. (2000). Numerical
Simulation of a Low-Level Jet over Complex Terrain in Southern Iran.Monthly Weather Review , 128 (5), 1309–1327.
https://doi.org/10.1175/1520-0493(2000)128<1309:NSOALL>2.0.CO;2
Maldonado, T., Rutgersson, A., Amador, J., Alfaro, E., & Claremar, B.
(2016). Variability of the Caribbean low-level jet during boreal winter:
Large-scale forcings. International Journal of Climatology ,36 (4), 1954–1969. https://doi.org/10.1002/joc.4472
Maldonado, T., Rutgersson, A., Caballero, R., Pausata, F. S. R., Alfaro,
E., & Amador, J. (2017). The role of the meridional sea surface
temperature gradient in controlling the Caribbean low-level jet.Journal of Geophysical Research: Atmospheres , 122 (11),
5903–5916. https://doi.org/10.1002/2016JD026025
Marengo, J. A., Soares, W. R., Saulo, C., & Nicolini, M. (2004).
Climatology of the low-level jet east of the Andes as derived from the
NCEP-NCAR reanalyses: Characteristics and temporal variability.Journal of Climate , 17 (12), 2261–2280.
https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2
Moisseeva, N., & Steyn, D. G. (2014). Dynamical analysis of sea-breeze
hodograph rotation in Sardinia. Atmospheric Chemistry and
Physics , 14 (24), 13471–13481.
https://doi.org/10.5194/acp-14-13471-2014;
10.5194/acp-14-13471-2014-supplement.
Montini, T. L., Jones, C., & Carvalho, L. M. V. (2019). The South
American Low-Level Jet: A New Climatology, Variability, and Changes.Journal of Geophysical Research: Atmospheres , 124 (3).
https://doi.org/10.1029/2018JD029634
Montoya, G. J., Pelkowski, J., & Eslava, J. (2001). Sobre los alisios
del nordeste y la existencia de una corriente en el piedemonte oriental
Andino. Rev. Acad. Colomb. Cienc , 25 (96), 363–370.
https://doi.org/0370-3908
Muñoz, E., Busalacchi, A. J., Nigam, S., & Ruiz-Barradas, A. (2008).
Winter and summer structure of the Caribbean low-level jet.Journal of Climate , 21 (6), 1260–1276.
https://doi.org/10.1175/2007JCLI1855.1
Do Nascimento, M. G., Herdies, D. L., & De Souza, D. O. (2016). The
south American water balance: The influence of low-level jets.Journal of Climate , 29 (4), 1429–1449.
https://doi.org/10.1175/JCLI-D-15-0065.1
Nicholson, S. (2016). The Turkana low-level jet: Mean climatology and
association with regional aridity. International Journal of
Climatology , 36 (6), 2598–2614. https://doi.org/10.1002/joc.4515
Outten, S. D., Renfrew, I. A., & Petersen, G. N. (2009). An easterly
tip jet off Cape Farewell, Greenland. II: Simulations and dynamics.Quarterly Journal of the Royal Meteorological Society ,135 , 1934–1949. https://doi.org/10.1002/qj.531
Parish, T. R. (2017). On the Forcing of the Summertime Great Plains
Low-Level Jet. Journal of the Atmospheric Sciences ,74 (12), 3937–3953. https://doi.org/10.1175/JAS-D-17-0059.1
Patricola, C. M., & Chang, P. (2017). Structure and dynamics of the
Benguela low-level coastal jet. Climate Dynamics ,49 (7–8), 2765–2788. https://doi.org/10.1007/s00382-016-3479-7
Poveda, G., & Mesa, O. (1999). La Corriente de chorro superficial del
oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia:
Climatología y Variabilidad durante las fases del ENSO. Rev. Acad.
Colomb. Cienc , 23 (89), 517–528.
Poveda, G., & Mesa, O. J. (2000). On the Existence of Lloro (the
Rainiest Locality on Earth): Enhanced Ocean-Land-Atmosphere Interaction
by a Low- Level Jet. Geophysical Research Letters , 27 (11),
1675–1678.
Poveda, G., Jaramillo, L., & Vallejo, L. F. (2014). Seasonal
precipitation patterns along pathways of South American low-level jets
and aerial rivers. Water Resources Research , 50 (1),
98–118. https://doi.org/10.1002/2013WR014087
Prabha, T. V., Goswami, B. N., Murthy, B. S., & Kulkarni, J. R. (2011).
Nocturnal low-level jet and “atmospheric streams” over the rain shadow
region of indian western ghats. Quarterly Journal of the Royal
Meteorological Society , 137 (658), 1273–1287.
https://doi.org/10.1002/qj.818
Reeder, M. J., Smith, R. K., Taylor, J. R., Low, D. J., Arnup, S. J.,
Muir, L., & Thomsen, G. (2013). Diurnally forced convergence lines in
the australian tropics. Quarterly Journal of the Royal
Meteorological Society , 139 (674), 1283–1297.
https://doi.org/10.1002/qj.2021
Rife, D. L., Pinto, J. O., Monaghan, A. J., Davis, C. A., & Hannan, J.
R. (2010). Global distribution and characteristics of diurnally varying
low-level jets. Journal of Climate , 23 (19), 5041–5064.
https://doi.org/10.1175/2010JCLI3514.1
Rogerson, A. M. (1999). Transcritical Flows in the Coastal Marine
Atmospheric Boundary Layer*. Journal of the Atmospheric Sciences ,56 (16), 2761–2779.
https://doi.org/10.1175/1520-0469(1999)056<2761:TFITCM>2.0.CO;2
Rojas, G. M. (2008). Low level jets in the tropical americas .
Colorado State University.
Rueda, C. (2015). Caracterización de la corriente en chorro de
bajo nivel de los llanos orientales colombianos (Characterization of the
low-level jet over the Colombian Eastern llanos) . Universidad Nacional
de Colombia, Bogotá, Colombia.
Rueda, O., & Poveda, G. (2006). Variabilidad espacial y temporal del
chorro del “Chocó” y su efecto en la hidroclimatología de la región
del pacífico colombiano. Meteorol. Col , (501), 132–145.
Samelson, R. M. (1992). Supercritical Marine-Layer Flow along a Smoothly
Varying Coastline. Journal of the Atmospheric Sciences ,49 , 1571–1584.
https://doi.org/10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2
Shapiro, A., Fedorovich, E., & Rahimi, S. (2016). A Unified Theory for
the Great Plains Nocturnal Low-Level Jet. Journal of the
Atmospheric Sciences , 73 (8), 3037–3057.
https://doi.org/10.1175/JAS-D-15-0307.1
Silva, G. A. M., Ambrizzi, T., & Marengo, J. A. (2009). Observational
evidences on the modulation of the South American Low Level Jet east of
the Andes according the ENSO variability. Ann. Geophys ,27 , 645–657. https://doi.org/10.5194/angeo-27-645-2009
Simpson, J. E. (1987). Gravity currents: in the environment and
the laboratory . Chichester, West Susex, England: Ellies Horwood
Limited.
Simpson, J. E. (1994). Sea breeze and local winds . Cambridge:
Cambridge University Press.
Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic
atmospheric model for weather research and forecasting applications.Journal of Computational Physics , 227 (7), 3465–3485.
https://doi.org/10.1016/j.jcp.2007.01.037
Smith, R. K., Roff, G., & Crook, N. (1982). The Morning Glory: An
extraordinary atmospheric undular bore. Quarterly Journal of the
Royal Meteorological Society , 8 , 937–956.
https://doi.org/10.1002/qj.49710845813
Soares, P. M. M., Cardoso, R. M., Semedo, Á., Chinita, M. J., & Ranjha,
R. (2014). Climatology of the Iberia coastal low-level wind jet: Weather
research forecasting model high-resolution results. Tellus, Series
A: Dynamic Meteorology and Oceanography , 66 (1), 1–19.
https://doi.org/10.3402/tellusa.v66.22377
Söderberg, S., & Tjernström, M. (2001). Supercritical channel flow in
the coastal atmospheric boundary layer: Idealized numerical simulations.Journal of Geophysical Research: Atmospheres , 106 (D16),
17811–17829. https://doi.org/10.1029/2001JD900195
Song, J., Liao, K. E., Coulter, R. L., & Lesht, B. M. (2005).
Climatology of the Low-Level Jet at the Southern Great Plains
Atmospheric Boundary Layer Experiments Site. Journal of Applied
Meteorology , 44 (1968), 1593–1606.
https://doi.org/10.1175/JAM2294.1
Squitieri, B. J. (2014). WRF forecast skill of the Great Plains
low level jet and its correlation to forecast skill of mesoscale
convective system precipitation . Iowa State University.
Stensrud, D. J. (1996). Importance of low-level jets to climate: A
review. Journal of Climate , 9 (8), 1698–1711.
https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2
Stull, R. (2015a). Atmospheric Boundary Layer. In Practical
Meteorology: An algebra-based survey of atmospheric science (pp.
687–722). Vancouver, BC, Canada: University of British Columbia.
Stull, R. (2015b). Regional Winds. In Practical Meteorology: An
algebra-based survey of atmospheric science (pp. 645–686). Vancouver,
BC, Canada: University of British Columbia.
Taylor, J. R. (1997). An introduction to error analysis: The study
of uncertainties in physical measurements (2nd Ed.). Sausalito,
California: University Science Books.
Torrealba, E. R., & Amador, J. A. (2010). La corriente en chorro de
bajo nivel sobre los Llanos Venezolanos de Sur América. Revista de
Climatología , 10 (July), 1–10.
Tripaldi, A., & Zárate, M. A. (2016). A review of Late Quaternary
inland dune systems of South America east of the Andes. Quaternary
International , 410 , 96–110.
https://doi.org/10.1016/j.quaint.2014.06.069
Tsai, V. C., Kanamori, H., & Artru, J. (2004). The morning glory wave
of southern California. J. Geophys. Res , 109 (October
2001), 1–11. https://doi.org/10.1029/2003JB002596
Vera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin,
J., et al. (2006). The South American low-level jet experiment.Bulletin of the American Meteorological Society , 87 (1),
63–77. https://doi.org/10.1175/BAMS-87-1-63
Vernekar, A. D., Kirtman, B. P., & Fennessy, M. J. (2003). Low-level
jets and their effects on the South American summer climate as simulated
by the NCEP Eta Model. Journal of Climate , 16 (2),
297–311.
https://doi.org/10.1175/1520-0442(2003)016<0297:LLJATE>2.0.CO;2
Virji, H. (1981). A Preliminary Study of Summertime Tropospheric
Circulation Patterns over South America Estimated from Cloud Winds.Mon Weather Rev , 109 (3), 599–610.
https://doi.org/10.1175/1520-0493(1981)109<0599:APSOST>2.0.CO;2
Wang, H., Fu, R., Schemm, J. K., Tang, W., & Liu, W. T. (2008).
Predictability of South American low-level jet using QuikSCAT ocean
surface wind. International Journal of Remote Sensing ,29 (21), 6117–6127. https://doi.org/10.1080/01431160802175512
Watson, C. D., & Lane, T. P. (2016). A Case of an Undular Bore and
Prefrontal Precipitation in the Australian Alps, (2008), 2623–2644.
https://doi.org/10.1175/MWR-D-15-0355.1
Weaver, S. J., & Nigam, S. (2008). Variability of the great plains
low-level jet: Large-scale circulation context and hydroclimate impacts.Journal of Climate , 21 (7), 1532–1551.
https://doi.org/10.1175/2007JCLI1586.1
Wei, W., Wu, B. G., Ye, X. X., Wang, H. X., & Zhang, H. S. (2013).
Characteristics and Mechanisms of Low-Level Jets in the Yangtze River
Delta of China. Boundary-Layer Meteorology , 149 (3),
403–424. https://doi.org/10.1007/s10546-013-9852-8
Wexler, H. (1961). A Boundary Layer Interpretation of the Low-level Jet.Tellus , 13 (3), 368–378.
https://doi.org/10.1111/j.2153-3490.1961.tb00098.x
Whiteman, C. D., Bian, X., & Zhong, S. (1997). Low-Level Jet
Climatology from Enhanced Rawinsonde Observations at a Site in the
Southern Great Plains, 1363–1376.
Whyte, F. S., Taylor, M. A., Stephenson, T. S., & Campbell, J. D.
(2008). Features of the Caribbean low level jet. International
Journal of Climatology , 28 (1), 119–128.
https://doi.org/10.1002/joc.1510
Van de Wiel, B. J. H., Moene, A. F., Steeneveld, G. J., Baas, P.,
Bosveld, F. C., & Holtslag, A. A. M. (2010). A Conceptual View on
Inertial Oscillations and Nocturnal Low-Level Jets. Journal of the
Atmospheric Sciences , 67 (8), 2679–2689.
https://doi.org/10.1175/2010JAS3289.1
Winant, C. D., Dorman, C. E., Friehe, C. A., & Beardsley, R. C. (1988).
The marine layer off Northern California: an example of supercritical
channel flow. Journal Of The Atmospheric Sciences , 45 (23),
3588–3605.
https://doi.org/10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2
Wu, Y., & Raman, S. (1993). The Great Plains Low-Level Jet ( LLJ )
During the Atmospheric Radiation Measurement ( ARM ) Intensive
Observation Period ( IOP ) -4 and Simulations of Land Use Pattern Effect
on the LLJ Simulations of Land Use Pattern Effect on the LLJ Model
Description (pp. 367–371).
Young, G., & Winstead, N. (2005). Meteorological phenomena in high
resolution SAR wind imagery. In High resolution wind monitoring
with wide swath SAR: A user’s guide (pp. 13–32). Washington DC, USA:
National Oceanic and Atmospheric Administration.
Zhao, P., Sun, J., & Zhou, X. (2003). Mechanism of formation of low
level jets in the South China Sea during spring and summer of 1998.Chinese Science Bulletin , 48 (12), 1265–1270.