
Supporting Information for ”Rare event algorithm

study of extreme warm summers and heatwaves over

Europe”

Francesco Ragone1and Freddy Bouchet1

1Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Introduction In these Supporting Informations we present a more detailed description

of the theory and the implementation of the algorithm, a more detailed description of the

climate model we use and of the experiments we have performed, and some comments on

data analysis. We also show additional figures for the definition of the areas we apply the

rare event algorithm to, and for the importance sampling for subseasonal fluctuations.
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Description of the algorithm Rare event algorithms have been devised long ago (Kahn

& Harris, 1951; Del Moral, 2004) in order to lower the numerical cost of rare events. In

a dynamical context, they have been first applied for complex and bio-molecules, see for

instance (Metzner et al., 2009; Hartmann et al., 2013). More recently, in order to pro-

gressively go towards genuine geophysical applications, they have been applied to Lorenz

models (Wouters & Bouchet, 2016), partial differential equations (Rolland et al., 2016),

turbulence problems (Grafke et al., 2015; Laurie & Bouchet, 2015; Ebener et al., 2019;

Bouchet et al., 2019; Lestang et al., 2018, 2020), geophysical fluid dynamics (Bouchet et

al., 2019), and climate applications (Ragone et al., 2018; Webber et al., 2019; Ragone &

Bouchet, 2020; Plotkin et al., 2019). Some approaches through minimum action methods,

related to large deviation theory, are reviewed in (Grafke & Vanden-Eijnden, 2019).

Based on the phenomenology of the dynamics for each family of extreme events, an

appropriated type of rare event algorithm should be carefully chosen. In this paper,

in order to study long-lasting events, we use an algorithm of the family of genealogical

algorithms, very close in spirit to the initial one (Kahn & Harris, 1951), and the one

described by (Del Moral et al., 2005) and mathematically comprehensively studied in

(Del Moral, 2004). The idea is to perform an ensemble simulation, stop regularly every

resampling time, and based on a score function select some trajectories to clone them and

discard some others. The ensemble statistics is then tilted towards the events of interest.

Choosing well the score function in order to define the selection criteria is critical. For

this algorithm, we use a score function which is the time integral of an observable, as for

instance in (Giardina et al., 2011). In (Giardina et al., 2011), the algorithm was specifically

designed for studying long time large deviations. This is suited for long-lasting events. In

this letter, we use a setup similar to the one in (Giardina et al., 2011), with the difference

that our simulations, like in (Del Moral et al., 2005) are transient ones (they depend from
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the initial state and extend over finite time) rather than statistically stationary. We call

this algorithm the Del-Moral Garnier, or Giardina-Kurchan-Tailleur-Lecomte algorithm,

or simply the rare event algorithm.

We have first proposed this rare event algorithm to study heatwaves and generally long-

lasting extreme events in (Ragone et al., 2018). Briefly, the algorithm consists in running

an ensemble simulation of N ensemble members or trajectories with a climate model

starting from different initial conditions. Let us indicate with ~Xn(t) the state vector of

trajectory n at time t, and with A(t) = A({ ~X(t)}) an observable of interest function of

the state of the system, of whose time average we want to study the extremes (e.g. the

surface temperature over a region). At constant intervals of a fixed resampling time τ ,

each trajectory is assigned a weight, which determines if that trajectory is killed or if it

continues its evolution, possibly spawning copies of itself. The weight wn
i of trajectory n

at time ti = iτ is computed as

wn
i =

e
k
∫ ti
ti−1

A({ ~Xn(t)}) dt

1
N

∑N
n=1 e

k
∫ ti
ti−1

A({ ~Xn(t)}) dt
, (1)

where k is a parameter that control how stringent is the selection. At times ti the simu-

lation is stopped, the weights are computed, and each trajectory generates a number of

copies of itself proportional to the weight assigned to it. A small random perturbation

is added to each copied trajectory, so that they evolve differently from the original tra-

jectory and from each other. Trajectories with weights smaller than 1 are killed, and do

not continue their evolution. Killed trajectories are substituted in the ensemble by the

copies of the surviving trajectories. In practice this resampling is done in such a way

that the the number of trajectories in the ensemble always remains constant and equal

to N . See (Ragone et al., 2018; Ragone & Bouchet, 2020) for details about the technical

implementation.
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The weights are defined in such a way that trajectories featuring large values of the

time average of the observable are the ones that will populate more densely the ensemble.

After a total running time Ta, the probability Pk({ ~X(t)}) of observing a trajectory in the

ensemble generated by the algorithm is related to the probability P0({ ~X(t)}) of observing

the same trajectory in a normal ensemble simulation with no resampling as

Pk({ ~X(t)}) =
ek

∫ ta+Ta
ta

A(u) du

Z
P0({ ~X(t)}), (2)

where Z is a normalization term, and the equation is valid in the limit of large N with

relative errors on the computation of expectation values of the order of 1/
√
N (Del Moral,

2004). In ensemble simulations performed with the rare event algorithm, trajectories fea-

turing a large value of the time average of the control observable over the entire simulation

period are thus much more likely to be observed than in a normal simulation, and vicev-

ersa. The value of k determines how strong is the tilt of the probability distribution. This

is called importance sampling. More details on the theory behind the method and the

reconstruction of the effective ensemble of trajectories, as well as on the choice of N , k

and τ , can be found in (Ragone et al., 2018; Ragone & Bouchet, 2020).
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Description of the climate model and of the control run The simulations are

performed with the Community Earth System Model (CESM) version 1.2.2 (Hurrell et

al., 2013). We use an atmosphere and land only setup, whose active components are

the Community Atmospheric Model version 4 (CAM4) and the Community Land Model

version 2 (CLM2). CAM4 is a widely used model of the Earth’s atmosphere. The dynam-

ical core is a finite volume discretisation of the Navier-Stokes equations for a planetary

fluid envelope in hydrostatic approximation. The physics suite consists of parameterisa-

tions of moist precipitation processes, clouds and radiation, turbulent mixing, and surface

fluxes. CLM2 is a model of the Earth’s land surface. It represents several aspects of

the land surface, including surface heterogeneity, and consists of components related to

land biogeophysics, hydrologic cycle, biogeochemistry, human dimensions, and ecosystem

dynamics. The horizontal resolution is 0.9 and 1.25 degrees in latitude and longitude

respectively, and we use 26 vertical layers in hybrid pressure coordinates. The output

is sampled every 3 hours. The model is run at statistically stationary state, with sea

surface temperatures (SST), sea ice cover, and the concentration of atmospheric CO2 and

other greenhouse gases fixed at values representative of present day climate (year 2000).

Contrary to our previous proof of concept (Ragone et al., 2018), the model features daily

and seasonal cycles. We have performed a control run of 1000 years, as a set of K=10

independent 100 years long simulations. The control run is used as a benchmark for the

statistics, in order to evaluate the performances of the algorithm.
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Description of the experiments with the rare event algorithm We perform two

sets of simulations, setting D as the area over France and Scandinavia. For both cases we

perform K=10 ensemble simulations, each with N=100 trajectories, biasing parameter

set to k=30, and running for Ta=90 days from June 1st to August 29th. The resampling

time τ in general should be of the order of magnitude of the decorrelation time of the

dynamics (see the discussion in (Ragone et al., 2018; Ragone & Bouchet, 2020)). In

this case the dominant dynamics relevant for heatwaves acts at synoptic timescale, thus

we set τ=5 days. In order to allow copies of the same trajectory to evolve differently,

we add a small perturbation to each trajectory after the resampling. The perturbation is

added multiplying at each vertical level the amplitudes of the spherical harmonics of order

(m,n) of the potential temperature field by γ = 1 + εrm,n, where ε = 10−4 and the rm,n

are uniform random numbers extracted between -1 and 1. The initial conditions for the

1000 trajectories are taken from the 1st of June of the 1000 years of the control run. For

a choice of D each ensemble starts therefore from a set of 100 different initial conditions.
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Computation of error bars In order to compute error bars for a quantity f , except

otherwise stated, we perform a set of K independent experiments and compute an em-

pirical standard deviation, denoted σ(f), based on these K samples. For instance, from

the control run, we divide the 1000-year data in K = 10 samples of 100-years. For the

rare event algorithm, we have K = 10 independent realizations. We plot composite maps

which are the averages of a quantity f , conditional on a heat wave to occur (f will be

either surface temperature or geopotential height). We estimate the statistical significance

of the average of a quantity f by computing its t value: t =
√
KE(f)/σ(f), where E(f)

is the empirical average. t is a test of the null hypothesis that E(f) 6= 0. For instance if

t > 2, our interpretation of the test is that the probability that E(f) 6= 0 and positive is

larger or equal to 97%.

Plateau on return time plots. The plateau observed on return time plots for return

times larger than 106 years are due to undersampling by the algorithm. Such a plateau

is caused by the increasing multiplicity of trajectories with the same ancestor, as the

amplitude a increases. Indeed, because of the selection procedure involved in the rare

event algorithm, a subset of trajectories can share the same ancestor. Henceforth, they

are likely to differ only by a small time-interval at the end of their whole duration. As

a consequence, this subset of trajectories will contribute the same value to the set of

observable maxima from which return times are computed, leading to a plateau. This

feature is further discussed in (Lestang et al., 2018).

Lack of independence. As said, a consequence of the cloning mechanics is that the

trajectories tend to have common ancestors in the first part of the simulation. This is

visible in figure 4 of the main text. From a statistical point of view, the efficiency of the

algorithm comes from a trade-off between the reduction of the independence among the

trajectories and the shift of the distribution. In this example all the trajectories come
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from a common ancestor, and differentiation starts after the first 20 days. All the 10 sets

of experiments show a similar behaviour, with the number of original ancestors varying

between 1 and 3. Since the 10 sets of experiments start from pools of independent initial

conditions, this means that even at the beginning of the simulation we always have at

least 10-20 independent trajectories when we take composite averages.
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Lestang, T., Bouchet, F., & Lévêque, E. (2020). Numerical study of extreme mechanical

force exerted by a turbulent flow on a bluff body by direct and rare-event sampling

techniques. Journal of Fluid Mechanics , 895 .

Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C., & Bouchet, F. (2018). Computing

return times or return periods with rare event algorithms. Journal of Statistical Me-

chanics: Theory and Experiment , 2018 (4), 043213. doi: 10.1088/1742-5468/aab856
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a) b)

Figure S1. Domain D used to define the area integral in the selection function of the

algorithm, for France (a) and Scandinavia (b).
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a) b)

Figure S2. Distribution of 5 days running mean temperatures anomalies averaged over

France (a) and Scandinavia (b) from a control run of 1000 years (black) and a set of 10

experiments with the algorithm with target domain the corresponsing region, with k=30,

trajectories N=100, resampling time 5 days, and running time 90 days starting from June

1st (red).
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