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SI-I. FLOW AND MIXING PROFILES

We employ the following velocity profile

v(z) = v + v0/κ[1 + ln(z/d)] (S1)

where v is the average velocity over the full vertical cross section between the sediment-water interface (SWI) at z = 0
and the air-water interface at z = d. We introduce the length z0, which represents a porous layer on the SWI, and we
set v(z) = 0 for z < z0. This implies that v(z0) > 0 represents the slip velocity at the SWI. In this sense, we rewrite
expression (S1) as follows

v(z) = v(z0) + v + v0κ
−1 [1 + ln[(z/d)]− (v + v0/κ[1 + ln(z0/d)]) (S2)

Setting v(z0) ≡ vs, we write

v(z) = vs + v0κ
−1 ln[(z/z0)]. (S3)

Vertical mixing is represented by the dispersion coefficient [1]

D(z) = v20(1− z/d)
1

dv (z)/dz
= v0zκ(1− z/d) (S4)

for z > z0. At z < z0, we set D(z) = Dh.

∗ E-mail: kevinroche@boisestate.edu

mailto:kevinroche@boisestate.edu


2

SI-II. MOBILE-IMMOBILE BIOLAYER (MIM-B) MODEL

A. Vertical Average

In order to upscale the reactive transport problem, we employ a dual porosity approach and separate the transport
equation (1) in the main manuscript into an equation that describes advection-dispersion in the river,

∂Cs
∂t

+ v(z)
∂Cs
∂x
−∇ · [D(z)∇Cs] = 0, (S5a)

and an equation for diffusion-reaction in the hyporheic zone

θh
∂Ch
∂t
−Dhθh

∂Ch
∂z2

= −k(z)θhCh, (S5b)

where the concentrations in the river and hyporheic zone (HZ) are denoted by Cs and Ch, respectively, θh is the
porosity in the hyporheic zone (assumed constant), and D(z) is the effective vertical diffusion coefficient. Note that
diffusion in direction of the stream is disregarded here because it is considered very small compared to the effects
of shear dispersion. Both domains are coupled through concentration and flux continuity at the interface located at
z = 0,

Ch(x, z = 0, t) = Cs(x, 0, t) (S6)

D(z)
∂Cs
∂z

∣∣∣∣
z=0

= Dhθh∂zCh|z=0 (S7)

We define now the vertical average over the stream as

Cs =
1

d

d∫
0

dz Cs. (S8)

Vertical averaging of Eq. (S5) gives

∂Cs
∂t

+ v
∂Cs
∂x
−D∗ ∂

2Cs
∂x2

= − θhDh
∂Ch
∂z

∣∣∣∣
z=0

, (S9)

where we use flux-continuity at the interface expressed by Eq. (S7), and D∗ is the shear dispersion coefficient defined
in the main text. The diffusive flux on the right side can be expressed in terms of the accumulation and reaction
terms in the hyporheic zone by integrating Eq. (S5a) over z. This gives

θhDh
∂Ch
∂z

∣∣∣∣
z=0

= θh
∂

∂t
Mh +

0∫
−h

dz k(z)θhCh, (S10)

where we defined the vertically integrated concentration Mh in the hyporheic zone as

Mh =

0∫
−h

dz Ch. (S11)

Thus, we can write the following evolution equation for the average concentration Cs in the stream,

∂

∂t

(
Cs +

θh
d
Mh

)
+ v

∂Cs
∂x
−D∗ ∂

2Cs
∂x2

= −1

d

0∫
−h

dz k(z)θhCh, (S12)

The term on the right side of (S12) represents a sink term for the stream domain due to reactions in the hyporheic
zone. The derivation of the vertical average in the stream gives rise to the shear dispersion coefficient, which quantifies
the impact of velocity variability with depth on longitudinal dispersion [1].
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B. Closure

In order to close Eq. (S12), we need to express Mh and the right side in terms of Cs. As a first step, we approximate
the interface condition (S6) by

Ch(x, z = 0, t) = Cs(x, t), (S13)

which assumes that concentration in the stream is uniform in the vertical. Furthermore, invoking the Duhamel’s
theorem [2], we note that the solution of Eq. (S5b) can be written as

Ch =

t∫
0

dt′ g(z, t− t′)Cs(x, t′), (S14)

where the Green function g(z, t) satisfies

∂g

∂t
−Dh

∂2g

∂z2
= −k(z)g. (S15)

for the boundary condition g(z = 0, t) = δ(t). Thus, we can write (S11) as

Mh =

t∫
0

dt′ ϕh(t− t′)Cs(x, t′), (S16)

where the memory function

ϕh(t) =

0∫
−h

dz g(z, t), (S17)

denotes the mass in the hyporheic zone in response to an instantaneous solute pulse at the SWI. The reaction term
on the right side of Eq. (S12) is given by

θh

0∫
−h

dz k(z)Ch = θh

t∫
0

dt′ ϕr(t
′)Cs(z, t− t′), (S18)

where we defined the reactive memory function ϕr(t) by

ϕr(t) =

0∫
−h

dz k(z)g(z, t). (S19)

Thus, Eq. (S12) can be written as

∂

∂t
Cs +

θh
d

∂

∂t

t∫
0

dt′ ϕh(t− t′)Cs(x, t′) + v
∂Cs
∂x
−D∗ ∂

2Cs
∂x2

= −θh
d

t∫
0

dt′ ϕr(t
′)Cs(z, t− t′). (S20)

Note that closed form expressions for the Green function g(z, t) for arbitrary reaction profiles are generally not
available. In the following, we solve this problem for the biolayer reaction scenario.

C. Biolayer

For the reaction profile k(z) = kbI(−b < z < 0), the reactive memory function (S19) can be written as

ϕr(t) = kbϕb(t). (S21)
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where we defined

ϕb(t) =

0∫
−b

dz g(z, t). (S22)

In order to determine explicit expresions for the memory function, we solve now Eq. (S15) for the Green function.
For convenience, we define a local coordinate system such that the interface between the biolayer and the sublayer is
located at z′ = 0, the interface between stream and streambed is located at z′ = b, and the lower boundary of the
hyporheic zone is located at z′ = b − h ≡ −`. In the following we omit the primes for compactness of notation. We
separate Eq. (S15) for the hyporheic zone into two coupled equations, one for the biolayer and one for the sublayer.
The equation for the Green function gb(z, t) in the biolayer is

∂gb
∂t
−Dh

∂2gb
∂z2

= −kbgb (S23a)

for the initial condition gb(z, t = 0) = 0 and the boundary condition gb(z = b, t) = δ(t). The equation for the
concentration g0(z, t) in the sublayer is

∂g0
∂t
−Dh

∂2g0
∂z2

= 0. (S23b)

At the interface between biolayer and sublayer at z = 0, we have concentration and flux continuity, that is, gb = g0
and ∂gb/∂z = ∂g0/∂z. The boundary condition for g0 at z = −` is ∂g0/∂z = 0.

In order to solve for the Green functions gb and g0, we consider the system (S23) in Laplace space. Laplace
transformed quantities in the following are marked by an asterisk, and the Laplace variable is denoted by λ (i.e.,
g∗ =

∫∞
0

dt e−λtg, [3]). Thus, we obtain for (S23a)

λg∗b −Dh
∂2g∗b
∂z2

= −kbg∗b (S24a)

and the boundary condition g∗b (z = b, λ) = 1. The Laplace transform of (S23b) is given by

λg∗0 −Dh
∂2g∗0
∂z2

= 0. (S24b)

At the interface at z = 0, we have

g∗b = g∗0 ,
∂g∗b
∂z

=
∂g∗0
∂z

. (S25)

Thus, the Laplace transform of g0(z, t) in the sublayer can be expressed in terms of the concentration g∗b (z = 0, λ) as

g∗0(z, λ) = G∗(z, λ)g∗b (z = 0, λ), (S26)

where the Green function G∗(z, λ) satisfies (S24b) for the boundary condition G = 1 at z = 0. It is given by

G∗(z, λ) =
cosh(

√
λτ0(1 + z/`))

cosh(
√
λτ0)

, (S27)

where we defined τ0 = `2/Dh.
The fundamental solution for g∗b (z, λ) is

g∗b (z, λ) = A exp(−zB) + C exp(zB), B =
√

(λ+ kb)/Dh, (S28)

where the constants A and C are determined from the Dirichlet boundary condition at z = 0 and the Neumann
boundary condition at z = b. Note that concentration continuity at z = 0 is automatically fulfilled by (S26). Thus,
we obtain the solution

g∗b (z, λ) =
cosh(

√
(λ+ kb)τb z/b) +

√
λ

λ+kb
tanh(

√
λτ0) sinh(

√
(λ+ kb)τb z/b)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

. (S29)
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The total mass ϕb in the biolayer in response to an instantaneous unit pulse at the interface at z = b is given by its
Laplace transform as

ϕ∗b(λ) =

b∫
0

dz g∗b (z, λ) =

√
Dh

λ+ kb

sinh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0)

[
cosh(

√
(λ+ kb)τb)− 1

]
cosh(

√
(λ+ kb)τb) +

√
λ

λ+kb
tanh(

√
λτ0) sinh(

√
(λ+ kb)τb)

(S30)

Furthermore, we obtain for the concentration g∗0(z, λ) in the sublayer,

g∗0(z, λ) =
G∗(z, λ)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

(S31)

The mass ϕ0 in the sublayer in terms of its Laplace transform is

ϕ∗0(λ) =

0∫
−`

dz g∗0(z, λ) =

√
Dh

λ

tanh(
√
λτ0)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

(S32)

The Laplace transform ϕ∗h(λ) of the memory function ϕh, which denotes the mass in the hyporheic zone in response
to Delta pulse at the stream-streambed interface, is thus given by

ϕ∗h(λ) = ϕ∗b(λ) + ϕ∗0(λ). (S33)

In conclusion, we can write the governing equation (S20) for Cs as

∂

∂t
Cs +

θh
d

∂

∂t

t∫
0

dt′ ϕh(t− t′)Cs(x, t′) + v
∂Cs
∂x
−D∗ ∂

2Cs
∂x2

= −θhkb
d

t∫
0

dt′ ϕb(t− t′)Cs(x, t′). (S34)

Note that the vertically integrated concentration Mb in the biolayer is given in terms of the biolayer memory function
ϕb(t) as

Mb =

t∫
0

dt′ ϕb(t− t′)Cs(x, t′). (S35)

D. Mass balance

The mass conservation equation for the benthic biolayer is obtained by integrating Eq. (S23a) from 0 to b. This
gives

dϕb
dt

= −Dh
∂gb(z = 0)

∂z
+Dh

∂gb(z = b)

∂z
− kbϕb. (S36)

The first and second terms on the right hand side denote mass transfer across the interfaces with the sublayer and
the stream, the third term is a sink term due to reaction. Using flux continuity over the interface at z = 0, we can
express the right side in terms of the mass ϕ0 in the sublayer as

dϕb
dt

= −dϕ0

dt
+Dh

∂gb(z = b)

∂z
− kbϕb, (S37)

The reacted mass mR is obtained from

dmR(t)

dt
= kbϕb(t) (S38)

and therefore

m∞R = kbϕ
∗
b(λ = 0). (S39)
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From the explicit expression (S30), we obtain

m∞R =

√
Dh

kb
tanh(

√
kbτb). (S40)

where τb = b2/Dh. For times t� τb, that is, for times much larger than the time for complete mixing of the biolayer,
we set gb equal to the mean concentration in the biolayer,

gb =
ϕb
b
. (S41)

Furthermore, we approximate the derivative of gb at z = b as

∂gb
∂z

= −gb
b

= −ϕb
b2
. (S42)

With this approximation, the mass balance equation (S37) can be written as

dϕb
dt

= −dϕ0

dt
− Dh

b2
ϕb − kbϕb, (S43)

We can furthermore write

dϕb
dt

= −dϕ0

dt
− 1 +Da

τb
ϕb. (S44)

The solution of this equation can be obtained by separation of variables as

ϕb(t) =
b

τb
exp(−αt)−

∞∫
t

dt′ exp[−α(t− t′)]dϕ0(t′)

dt′
, (S45)

where we defined α = (1 +Da)/τb, and used the initial condition ϕb(t = 0) = b/τb. This initial condition is obtained
from the solution of the equivalent conservative problem, that is, for kb = 0 in (S43) and using mass conservation (the
integral over all times equal to one), because at t = 0, the two solutions should coincide. Note that the approximation
made here for calculation ϕb(t) are valid at times t > τb. We know that the early time behavior is otherwise different
from the exact solution (S30).

For αt� 1, the first terms on the right side of (S45) can be disregarded, and the integral can be localized at t′ = t.
That is, as the exponential is sharply peaked about t = t′, we can set

ϕb(t) = −dϕ0(t)

dt

∞∫
t

dt′ exp[−α(t− t′)]. (S46)

Thus, we obtain

ϕb(t) = − τb
1 +Da

dϕ0(t)

dt
. (S47)

This implies, the mass in the biolayer scales as the time derivative of the mass in the sublayer.

SI-III. ANALYTICAL LAPLACE SPACE SOLUTIONS

In the following we provide explicit analytical solutionz for the breakthrough curves in the MIM-B and the S1
models.

A. Stream concentration in the MIM-B model

We solve Equation (S34) for the boundary condition Cs(x = 0, t) = δ(t). To this end, we transform (S34) to Laplace
space, which gives

λC
∗
s + θhd

−1[λϕ∗h(λ) + kbϕ
∗
b(λ)]C

∗
S(x, λ) + v∂xC

∗
S(λ)−D∗∂2xC

∗
s(λ) = 0. (S48)
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The boundary condition reads as

Cs(x = 0, λ) = 1. (S49)

The solution can be obtained by using the exponential fundamental solution. This gives the explicit expression

C
∗
s(x, λ) = exp

[
− xv

2D∗

(√
1 + 4

(λ+ θhd−1[λϕ∗h(λ) + kbϕ∗b(λ)])D∗

v2
− 1

)]
. (S50)

B. Stream concentration in surrogate model S1

We consider the scenario that the entire hyporheic zone is characterized by a constant reactivity, which is used in
the main text to define a constant equivalent reactivity for the streambed.

We set k(z) = ke = constant. In this case, the transport equation (2) simplifies to

∂t

Ce +
θh
d

t∫
0

dt′ ϕe(t− t′)Cs(t′)

+ v∂xCe −D
∗
∂2xCe = −θhke

d

t∫
0

dt′ ϕe(t− t′)Ce(t′), (S51)

where Ce is the vertically averaged water column concentration, and the reactive memory function is given by

ϕe(t) = φ(t) exp(−ket), (S52)

and in Laplace space

ϕ∗e(λ) = φ∗(λ+ ke). (S53)

The conservative memory function φ(t) is defined in Laplace space by

φ∗(λ) =

√
Dh

λ
tanh(

√
λτh). (S54)

The solution of (S51) for the boundary condition C
∗
0(x = 0, t) = δ(t) reads in Laplace space as

C
∗
e(x, λ) = exp

[
− xv

2D∗

(√
1 + 4

[λ+ θhd−1(λ+ ke)φ∗(λ+ ke)]D∗

v2
− 1

)]
. (S55)

SI-IV. EFFECTIVE REACTION RATE IN THE STREAMBED

The effective reaction rate ke in S1 is defined such that the reacted mass in response to a solute pulse is equal to
the reacted mass in the MIM-B model. The reacted mass in the HZ in response to a point injection is obtained by
integration of (S15) over the reactive region of the HZ. Thus, we obtain

MR(t) = kb

t∫
0

dt′ ϕB(t′) (S56)

for the MIM-B model and

MR(t) = ke

t∫
0

dt′ ϕe(t
′) (S57)

We set the total reacted mass equal. This implies

ke

∞∫
0

dt′ ϕe(t
′) = kb

∞∫
0

dt′ ϕb(t
′) (S58)

In Laplace space, the equation reads as

keϕ
∗
e(0) ≡ kbϕ∗b(0). (S59)

Using expressions (S30), (S32) and (S33), as well as (S53) and (S54) gives Equation (3) in the main text.
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SI-V. APPARENT RETARDATION COEFFICIENT AND REACTION RATE

Explicit expressions for the apparent retardation coefficient and reaction rate are obtained by expressing the integral
terms in Eq. (5) in terms of the Laplace transformed memory functions. This gives

Ra = 1 +
θh
d
ϕ∗h(0), ka =

θhkb
d

ϕ∗b(0) (S60)

Using that ϕh(t) = ϕb(t) + ϕ0(t) and the explicit expressions (S30) for ϕ∗b(λ) and (S32) for ϕ∗0(λ), we obtain

Ra = 1 +
θh
d

[ √
Dhτ0

cosh(
√
kbτb)

+

√
Dh

kb
tanh

(√
kbτb

)]
(S61)

ka =
θh
d

√
Dhkb tanh

(√
kbτb

)
. (S62)

SI-VI. DIRECT NUMERICAL SIMULATIONS

The direct numerical simulations are based on the time-domain random walk method (TDRW) outlined in Russian
et al. [4] for conservative solutes. In this framework, reactions in the biolayer are modeled by assigning a survival
probability to each particle in the biolayer. For each TDRW step of duration τ , the survival probability is exp(−kbτ).
A Bernoulli trial decides whether the particle survives or reacts at each step. To ensure that our results are consistent
with continuum assumptions in our analytical model, we restrict our analysis to times greater than the characteristic
residence time in a single grid cell. For all simulations, Dh = 1.042× 10−6 m2 s-1 and h = −2 m, and θh = 1. Porosity
of the subsurface only rescales d and therefore is set to 1 without loss of generality (S48).

Memory function (i.e., streambed-scale) simulations are designed to mimic a pulse injection at the SWI. We release
N0 particles in the first grid cell below the SWI, and we quantify the total number of particles remaining in the HZ.
For all simulations b = −0.05 m, and the grid resolution is set to ∆z = 5× 10−2 m. Parameter kb is varied to achieve
a range of Da.

Reach-scale simulations are designed to mimic a pulse tracer injection commonly performed in field experiments.
We release N0 particles uniformly in the mobile zone at x = 0 m and t = 0 s. Breakthrough curves (BTCs) are
given by the distribution of particle arrival times at a downstream distance x. We vary 0.02 ≤ |b| ≤ 0.5 m across
simulations while holding other parameters constant. For all experiments, d = 0.05 m, v0 = 0.005 m s-1, v = 0.05 m s-1,
D∗ = 0.0015 m2s-1, and kb = 2.0× 10−4 s-1. The grid resolution is set to ∆z = 2× 10−2 m.

SI-VII. FIELD COMPARISON

We compared simulated and modeled Da to values of Da estimated from Schaper et al. [5], to understand the
expected range of Da for trace contaminants in natural streams. We limited the comparison to results that met the
following criteria:

• profiles of first-order solute reactions were reported as a function of depth in the hyporheic zone,

• no production of mass was inferred (i.e., all values of k(z) were greater than zero),

• k(z) decreased to a nominal value by the deepest measurement location, indicating the presence of a benthic
biolayer and an inert sublayer.

For each solute, we determined whether the reported k(z) was best approximated by a slab (i.e., constant rate) or
by an exponential profile. Profiles that showed a sharp transition to values near k(z) = 0 were considered to be a slab
with z = −b equal to the transition depth, and kb equal to the arithmetic average of k(z) for all depths above z = −b.
For profiles that showed a gradual decrease to near-zero values by the lowest measurement location, we determined kb
and b by fitting an exponential profile to k(z). If dispersion coefficients and retardation coefficients R were reported
as a function of depth, we approximated Dh as a constant value equal to the harmonic mean of Dh(z) measured at all
depths above z = −b [6]. Similarly, we approximated a constant R as the arithmetic average of all R above z = −b.
For consistency with our model assumptions, advective velocities reported in the biolayer were set to zero, meaning
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Da estimates are biased slightly higher than in conditions reported since downwelling conditions in this study suggest
a shorter residence time in the biolayer. We calculated Da as

Da =
kbb

2

RDh

All values are reported in Table I. These values span a wide range of effective streambed reactivities, as shown in
Figure S1.

Table I: Literature values of Da

Chemical Source
Dh

(×10−6 m2 s−1)
R profile shape

kb (×10−4

s−1)
b (×10−2

m)
Da

metoprolol Schaper et al., 2019 1.0 4.5 exp 16.1 8.6 5.5×10+01

gabapentin Schaper et al., 2019 1.0 1.4 exp 6.8 11.6 1.3×10+01

gabapentin-lactam Schaper et al., 2019 1.0 1.3 slab 0.8 5.0 2.8×10−01

valsartan Schaper et al., 2019 1.0 1.9 slab 1.7 5.0 8.1×10−01

sotalol Schaper et al., 2019 1.0 1.9 exp 3.7 10.5 8.0×10+00

metformin Schaper et al., 2019 1.0 15.3 exp 1.9 38.5 4.3×10+02

guanylurea Schaper et al., 2019 1.0 2.6 exp 4.0 18.5 3.6×10+01

benzotriazole Schaper et al., 2019 1.0 4.0 exp 2.8 14.5 2.4×10+01

4-formylaminoantipyrine Schaper et al., 2019 1.0 2.4 slab 1.5 5.0 9.3×10−01

methylbenzotriazole Schaper et al., 2019 1.0 3.3 exp 1.5 17.0 1.5×10+01

candesartan Schaper et al., 2019 1.0 1.7 slab 1.7 5.0 7.2×10−01

olmesartan Schaper et al., 2019 1.0 1.4 slab 1.3 5.0 4.6×10−01

tramadol Schaper et al., 2019 1.0 2.2 slab 0.5 5.0 3.0×10−01

carbamazepine Schaper et al., 2019 1.0 3.6 slab 0.2 5.0 1.8×10−01

dihydroxy-carbamazepine Schaper et al., 2019 1.0 2.2 exp 0.9 10.5 2.3×10+00

diatrizoic acid Schaper et al., 2019 1.0 1.1 slab 0.3 5.0 8.6×10−02

dissolved organic carbon Schaper et al., 2019 1.0 1.0 exp 1.1 16.4 3.1×10+00

Da1/2 from Schaper et al. (2019)
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Figure S1: Measured and modeled reactivity across simulations and scales. Results closely match the approximation
ke/kb = tanh (

√
Da)2, as described in the main text.
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