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I. MOBILE-IMMOBILE BIOLAYER (MIM-B) MODEL

A. Vertical Average

In order to upscale the reactive transport problem, we employ a dual porosity approach and separate the transport
equation (1) in the main manuscript into an equation that describes advection-dispersion in the river,

∂tCs + v∂xCs −D(z)∇2Cs = 0, (S1a)

and an equation for diffusion-reaction in the hyporheic zone

∂tCh −Dh∂z(∂zCh) = −k(z)Ch. (S1b)

The concentrations in the river and hyporheic zone are denoted by Cs and Ch, respectively. Both domains are coupled
through concentration and flux continuity at the interface located at z = 0,

Ch(x, z = 0, t) = Cs(x, 0, t) (S2)

D∂zCs|z=0 = Dh∂zCh|z=0 (S3)

We define now the vertical average over the stream as

Cs =
1

d

h∫
0

dzCs. (S4)

Thus, vertical averaging of Eq. (S1a) gives

∂t

(
Cs +

1

d
Mh

)
+ v∂xCs −D∗∂2xCs = −1

d

∫ 0

−h
dzk(z)Ch, (S5)
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where we defined the total mass in the hyporheic zone as

Mh =

0∫
−h

dzCh. (S6)

The term on the right side of (S5) represents a sink term for the stream domain due to reactions in the hyporheic
zone. The derivation of the vertical average in the stream gives rise to the shear dispersion coefficient, which quantifies
the impact of velocity variability with depth on longitudinal dispersion [1].

B. Closure

In order to close Eq. (S5), we need to express the right side in terms of Cs. As a first step, we approximate the
interface condition (S2) by

Ch(x, z = 0, t) = Cs(x, t), (S7)

which assumes that concentration in the stream is uniform in the vertical. Furthermore, we note that the solution of
Eq. (S1b) can be written as

Ch =

t∫
0

dt′dzg(z, t− t′)Cs(x, t′), (S8)

where the Green function g(z, t) satisfies

∂tg −Dh∂z(∂zg) = −k(z)g. (S9)

for the boundary condition g(z = 0, t) = δ(t). Thus, we can write (S6) as

Mh =

t∫
0

dt′ϕh(t− t′)Cs(x, t′), (S10)

where the memory function

ϕh(t) =

0∫
−h

dzg(z, t), (S11)

denotes the mass in the hyporheic zone in response to an instanteous solute pulse at the interface between stream
and streambed.

C. Biolayer

We now consider the reaction profile k(z) = kbI(−b < z < 0). Thus, Eq. (S5) can be written as

∂t

(
Cs +

1

d
Mh

)
+ v∂xCs −D∗∂2xCs = −kb

d
Mb, (S12)

where

Mb =

0∫
−b

dzCh. (S13)

In order to close the problem, we solve Eq. (S1b) for the concentration in the hyporheic zone. For convenience, we
define a local coordinate system such that the interface between the biolayer and the sublayer is located at z′ = 0,
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and the interface between stream and streambed is located a z′ = b, and the lower boundary of the hyporheic zone is
located at z′ = b− h ≡ −`. In the following we omit the primes for compactness of notation.

We separate Eq. (S9) for the hyporheic zone into two coupled equations, one for the biolayer and one for the
sublayer. The equation for the Green function gb in the biolayer is

∂gb
∂t
−Dh

∂2gb
∂z2

= −kbgb(z, t) (S14a)

for the initial condition gb(z, t = 0) = 0 and the boundary condition gb(z = b, t) = δ(t). The equation for the
concentration g0 in the sublayer is

∂g0
∂t
−Dh

∂2g0
∂z2

= 0. (S14b)

At the interface at z = 0, we have concentration and flux continuity, meaning gb = g0 and ∂gb/∂z = ∂g0/∂z. The
boundary condition for g0 at z = −` is ∂g0/∂z = 0.

In order to solve for the Green functions, we consider the system (S14) in Laplace space,

λg∗b −Dh
∂2g∗b
∂z2

= −kbg∗b (z, t) (S15a)

for the boundary condition g∗b (z = b, λ) = 1. The equation for the concentration g0 in the sublayer is

∂g∗0
∂t
−Dh

∂2g∗0
∂z2

= 0. (S15b)

At the interface at z = 0, we have

g∗b = g∗0 ,
∂gb
∂z

=
∂g∗0
∂z

. (S16)

Thus, the Laplace transform of g0(z, t) in the sublayer can be expressed in terms of the concentration g∗b (z = 0, t) as

g∗0(z, t) = G∗(z, λ)g∗b (z = 0, λ) (S17)

where the Green function G∗(z, λ) satisfies (S15b) for the boundary condition G = 1 at z = 0. It is given by

G∗(z, λ) =
cosh(

√
λτ0(1 + z/`))

cosh(
√
λτ0)

, (S18)

where we defined τ0 = `2/Dh.
The fundamental solution for g∗b (z, λ) is

g∗b (z, λ) = A exp(−zB) + C exp(zB), B =
√

(λ+ kb)/Dh. (S19)

where the constants A and C are determined from the Dirichlet boundary condition at z = 0 and the Neumann
boundary condition at z = b. Note that concentration continuity at z = 0 is automatically fulfilled by (S17). Thus,
we obtain the solution

g∗b (z, λ) =
cosh(

√
(λ+ kb)τb z/bb) +

√
λ

λ+kb
tanh(

√
λτ0) sinh(

√
(λ+ kb)τb z/w)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

. (S20)

The total mass ϕb in the biolayer in response to an instantaneous unit pulse at the interface at z = b is given by its
Laplace transform as

ϕ∗b(λ) =

b∫
0

dzg∗b (z, λ) =

√
Dh

λ+ kb

sinh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0)

[
cosh(

√
(λ+ kb)τb)− 1

]
cosh(

√
(λ+ kb)τb) +

√
λ

λ+kb
tanh(

√
λτ0) sinh(

√
(λ+ kb)τb)

(S21)
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Furthermore, we obtain for the concentration g∗0(z, λ) in the sublayer,

g∗0(z, λ) =
G∗(z, λ)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

(S22)

Thus we obtain for the mass ϕ0 in the sublayer in terms of its Laplace transform

ϕ∗0(λ) =

0∫
−`

dzg∗0(z, λ) =

√
Dh

λ

tanh(
√
λτ0)

cosh(
√

(λ+ kb)τb) +
√

λ
λ+kb

tanh(
√
λτ0) sinh(

√
(λ+ kb)τb)

(S23)

The Laplace transform ϕ∗h(λ) of the memory function ϕh, which denotes the total mass in the hyporheic zone in
response to Delta pulse at the stream-streambed interface, is thus given by

ϕ∗h(λ) = ϕ∗b(λ) + ϕ∗0(λ). (S24)

D. Mass balance

We integrate now over the reactive biolayer, which gives for the mass ϕb the conservation equation

dϕb
dt

= −Dh
∂gb(z = 0)

∂z
+Dh

∂gb(z = b)

∂z
− kbϕb. (S25)

The first and second terms denote mass transfer across the interfaces with the sublayer and the stream, the third
term is a sink term due to reaction. Using flux continuity over the interface at z = 0, we can express the right side
in terms of the total mass m0 in the sublayer as

dϕb
dt

= −dϕ0

dt
−Dh

∂gb(z = b)

∂z
− kbϕb, (S26)

The total reacted mass mR is obtained from

dmR(t)

dt
= kbϕb(t) (S27)

and therefore

m∞R = kbϕ
∗
b(λ = 0). (S28)

From the explicit expression (S21), we obtain

m∞R =
√
kbDh tanh(

√
kbτb). (S29)

For times t� τb, we can approximate the mass balance equation (S26) as

dϕb
dt

= −dϕ0

dt
+
Dh

b2
ϕb − kbϕb, (S30)

where we set ∂gb/∂z ≈ −ϕb/b2. We can furthermore write

1 +Da

τb

dϕb
dt

= − τb
1 +Da

dϕ0

dt
+ ϕb, (S31)

For t� τb, we obtain in leading order

ϕb =
τb

1 +Da

dϕ0

dt
. (S32)

This means, the mass in the biolayer scales as the time-derivative of the mass in the sublayer.
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E. Stream concentration

We solve Equation (S12) for the boundary condition Cs(x = 0, t) = δ(t). To this end, we transform (S12) to Laplace
space,

λC
∗
s + d−1[λϕ∗h(λ) + kbϕ

∗
b(λ)]C

∗
S(x, λ) + v∂xC

∗
S(λ)−D∗∂2xC

∗
s(λ) = 0. (S33)

The boundary condition reads as

Cs(x = 0, λ) = 1. (S34)

The solution is

C
∗
s(x, λ) = exp

[
− xvs

2D∗

(√
1 + 4

(λ+ d−1[λϕ∗h(λ) + kbϕ∗b(λ)])D∗

v2s
− 1

)]
. (S35)

F. Constant reactivity in hyporheic zone

We consider the scenario that the entire hyporheic zone is characterized by a constant reactivity, which is used in
the main text to define a constant equivalent reactivity for the streambed.

We set k(z) = ke = constant. In this case, the transport equation (2) simplifies to

∂t

Ce +
1

d

t∫
0

ϕe(t− t′)Cs(t′)

+ v∂xCe −D
∗
∂2xCe = −ke

d

t∫
0

dt′ϕe(t− t′)Ce(t′), (S36)

where the reactive memory function is given by

ϕe(t) = φ(t) exp(−ket), (S37)

and in Laplace space

ϕ∗e(λ) = φ∗(λ+ ke). (S38)

The conservative memory function φ(t) is defined in Laplace space by

φ∗(λ) =

√
D

λ
tanh(

√
λτh). (S39)

The solution of (S36) for the boundary condtion C
∗
0(x = 0, t) = δ(t) reads in Laplace space as

C
∗
e(x, λ) = exp

[
− xv

2D∗

(√
1 + 4

[λ+H−1(λ+ ke)φ∗(λ+ ke)]D∗

v2
− 1

)]
. (S40)

G. Effective reaction rate in the streambed

The effective reaction rate ke is obtained from expression (5) in the main text. In Laplace space,

keϕ
∗
e(0) ≡ kbϕ∗h(0). (S41)

Using expressions (S21), (S23) and (S24), as well as (S38) and (S39) gives Equation (6) in the main text.

H. Effective reaction rate at the reach scale

The effective reach scale reaction rate is defined by expression (8) in the main text, which reads in Laplace space as

kr

x∫
0

dx′C
∗
0(x′, 0) ≡ kb

x∫
0

dx′C
∗
s(x
′, λ). (S42)

Using the explicit expressions (S35) and (S40) gives Equation (9) in the main text.
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II. LITERATURE COMPARISON

We compared simulated and modeled Da to values of Da estimated from field experiments, to understand the
expected range of Da in natural streams. We limited the comparison to studies that met the following criteria:

• profiles of first-order solute reactions were reported as a function of depth in the hyporheic zone,

• no production of mass was inferred (i.e., all values of k(z) were non-zero),

• k(z) decreased to a nominal value by the deepest measurement location, indicating the presence of a benthic
biolayer and an inert sublayer.

For each solute, we determined whether the reported k(z) was best approximated by a strip or by an exponential
profile. Profiles that showed a sharp transition to values near k(z) = 0 were considered to be a slab with z = −b equal
to the transition depth, and kb equal to the arithmetic average of k(z) for all depths above z = −b. For profiles that
showed a gradual decrease to near-zero values by the lowest measurement location, we determined kb and b by fitting
an exponential profile to k(z). If dispersion coefficients and retardation coefficients R were reported as a function of
depth, we approximated Dh as a constant value equal to the harmonic mean of Dh(z) measured at all depths above
z = −b [2]. Similarly, we approximated a constant R as the arithmetic average of all R above z = −b. For consistency
with our model assumptions, advective velocities reported in the biolayer were set to zero, meaning Da estimates
are biased slightly higher than in conditions reported in Knapp et al. [3] and Schaper et al. [4] since downwelling
conditions in each study suggest a shorter residence time in the biolayer. We calculated Da as

Da =
kbb

2

RDh

All literature values are reported in Table I and plotted in Figure 3 in the main text.

Table I: Literature values of Da

Chemical Source
DH

(×10−6 m2 s−1)
R profile shape

k0 (×10−4

s−1)
B (×10−2

m)
Da

metoprolol Schaper et al., 2019 1.0 4.5 exp 16.1 8.6 5.5×10+01

gabapentin Schaper et al., 2019 1.0 1.4 exp 6.8 11.6 1.3×10+01

gabapentin-lactam Schaper et al., 2019 1.0 1.3 slab 0.8 5.0 2.8×10−01

valsartan Schaper et al., 2019 1.0 1.9 slab 1.7 5.0 8.1×10−01

sotalol Schaper et al., 2019 1.0 1.9 exp 3.7 10.5 8.0×10+00

metformin Schaper et al., 2019 1.0 15.3 exp 1.9 38.5 4.3×10+02

guanylurea Schaper et al., 2019 1.0 2.6 exp 4.0 18.5 3.6×10+01

benzotriazole Schaper et al., 2019 1.0 4.0 exp 2.8 14.5 2.4×10+01

4-formylaminoantipyrine Schaper et al., 2019 1.0 2.4 slab 1.5 5.0 9.3×10−01

methylbenzotriazole Schaper et al., 2019 1.0 3.3 exp 1.5 17.0 1.5×10+01

candesartan Schaper et al., 2019 1.0 1.7 slab 1.7 5.0 7.2×10−01

olmesartan Schaper et al., 2019 1.0 1.4 slab 1.3 5.0 4.6×10−01

tramadol Schaper et al., 2019 1.0 2.2 slab 0.5 5.0 3.0×10−01

carbamazepine Schaper et al., 2019 1.0 3.6 slab 0.2 5.0 1.8×10−01

dihydroxy-carbamazepine Schaper et al., 2019 1.0 2.2 exp 0.9 10.5 2.3×10+00

diatrizoic acid Schaper et al., 2019 1.0 1.1 slab 0.3 5.0 8.6×10−02

dissolved organic carbon Schaper et al., 2019 1.0 1.0 exp 1.1 16.4 3.1×10+00

raz → rru (Site C) Knapp et al., 2017 0.4 2.2 exp 11.3 3.5 7.6×10+00

nitrate Li et al., 2017 0.1 1.0 exp 0.1 3.6 1.1×10−01
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