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Abstract  26 

This study compares the performance of four data assimilation (DA) systems: Ensemble 27 

Adjustment Kalman Filter (EAKF), Variational (3DVAR/4DVAR), and Hybrid ensemble-28 

3DVAR (HYBRID) in the Weather Research and Forecast (WRF) model. A heavy rainfall event 29 

that produced notorious floods in the Uttarakhand over the Himalayan region is considered. 30 

Observations are assimilated at every 6 h interval and all the conventional observations including 31 

cloud tracked-wind from the satellite are used. The forecast initialized from the analysis of four 32 

DA systems at different lead times is evaluated. A non-cycled nested assimilation strategy that 33 

provides advantages of increased resolution in the DA system is tested. The results indicate that 34 

4DVAR experiments produce more skillful forecasts for wind while both 4DVAR and EAKF 35 

experiments show improvement for upper tropospheric temperature forecasts as compared to the 36 

other experiments. The evaluation of rainfall forecast depicts that the 4DVAR DA system has 37 

outperformed the other DA systems when the effect of high-resolution assimilation is mimicked 38 

in the system using the nested assimilation strategy.  Further analysis of the event indicates that 39 

an early merging of the southward protruding trough with the westward-moving monsoon 40 

depression has resulted in stronger southeastward flow in EAKF and HYBRID experiments, 41 

which is suggested as a potential reason for enhanced precipitation over the Uttarakhand in both 42 

the experiments. 43 

Keywords: Data Assimilation, Heavy Rainfall Event, WRF 44 

 45 
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1. Introduction   48 

Data Assimilation (DA) methods are employed to improve the accuracy of initial conditions 49 

in a numerical weather prediction (NWP) model. Operational NWP models use variational 50 

(e.g, Parrish and Derber 1992, Kleist et al. 2009; Lorenc et al. 2000) and ensemble-based 51 

(e.g, Houtekamer and Mitchell 2005) DA algorithms to initialize the model forecasts. Three 52 

dimensional variational (3DVAR) approach estimates the minimum variance through 53 

iterative minimization of the cost function (Barker et al. 2004), while four-dimensional 54 

variational (4DVAR) scheme adds a time dimension in the variational framework through a 55 

linearized model and its adjoint (e.g., Rabier et al. 2000).  One of the crucial factors that can 56 

influence the performance of a DA system is the prescription of background error covariance 57 

(BEC) matrix. The 3DVAR uses a time-invariant, climatological BEC, while the 4DVAR 58 

incorporates the time evolving flow-dependent information in the DA system, implicitly. On 59 

the other hand, the ensemble Kalman filter (EnKF) DA system follows probabilistic 60 

approach for assimilating observations with the model forecast that uses anisotropic, 61 

inhomogeneous flow-dependent BEC (Evensen 1994; Houtekamer and Mitchell 2001).  The 62 

BEC in an EnKF DA system is estimated from the ensemble of nonlinear model forecasts, 63 

which carries the information about the “errors of the day”.  The strategy of incorporating the 64 

ensemble estimated flow-dependent BEC in the variational framework is popularly known as 65 

Hybrid ensemble – variational DA system (“HYBRID”) (e.g; Hamill and Snyder 2000; 66 

Wang et al. 2008; Campbell et al. 2010). Compared to standalone ensemble-based DA 67 

system, HYBRID is computationally less expensive as it improves the state of the system 68 

with relatively smaller ensemble size.  The effectiveness of HYBRID in improving the NWP 69 
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forecasts are well documented (e.g., Buehner 2005; Kleist and Ide 2015; Kutty and Wang 70 

2015; Kutty et al. 2018; Gogoi et al. 2020  ). 71 

 Previous studies have performed systematic intercomparison of the performance of DA 72 

systems in various NWP models. For instance, Whitaker et al. (2008) has shown that the 73 

analysis and forecast from EnKF are superior to that of 3DVAR in the operational global 74 

models of National Center for Environmental Prediction (NCEP) and Environmental Canada 75 

(Houtekamer and Mitchell 2005). Buehner et al. (2010) and Miyoshi et al. (2010) have 76 

shown that the performance of EnKF is comparable to that of 4DVAR in the operational 77 

models of Canadian and Japan Meteorological Agency (JMA). Wang et al. (2013) compared 78 

the performance of 3DVAR, EnKF and HYBRID DA system in the NCEP GFS and found 79 

that HYBRID produced more skillful forecast than EnKF and 3DVAR DA system.  Zhang et 80 

al. (2011) has found similar results in the limited area regional models when the compared 81 

the performance of 3DVAR, 4DVAR and EnKF DA systems. Schwartz et al. (2013) 82 

suggested that the precipitation forecast initialized from HYBRID is better than from the 83 

standalone EnKF and 3DVAR.  Chu et al. (2013) found that the performance of 4DVAR 84 

experiments is comparable to that of high-resolution 3DVAR experiments, which indicates 85 

that high resolution model forecasts are as important as the DA system for the precipitation 86 

forecasts. Despite the aforementioned studies, a comprehensive understanding of the 87 

performance of DA systems in the heavy rainfall events that involves multiscale dynamical 88 

interactions is elusive.  89 

Extreme precipitation and flood episodes are quite frequent over Himalayan region and such 90 

high impact weather events are observed and studied extensively (e.g., Priya et al. 2015; 91 

Singh and Kumar 1997; Joshi and Kumar 2006; Joseph et al. 2015; Ranalkar et al. 2016; 92 
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Krishnamurti et al. 2017). Studies such as Rasmussen and Houze (2012) has shown that the 93 

extreme precipitation episodes over the Western Himalayas are multiscale in nature.  During 94 

June 14 -17 of the year 2013, the Indian state, Uttarakhand experienced heavy rainfall and 95 

disastrous flooding thereafter. The event caused thousands of fatalities and extensive 96 

damages to the life and properties of the adjoining villages. In a study conducted by Vellore 97 

et al. (2016), it is found that extreme precipitation events over the Western Himalayas are 98 

often associated with southward penetrating large-scale westerly flow. Houze et al. (2017) 99 

suggested that the storm event is multiscale in nature and the presence of southward extended 100 

midlevel trough has provided a conducive environment for the development of the storm. 101 

Studies performed on the Uttarakhand heavy rainfall event using National Center for 102 

Medium Range Weather Forecasting (NCMRWF) Unified Model (NCUM) indicate 103 

improved performance in precipitation forecast when 4DVAR DA system is employed (Dube 104 

et al. 2014).  105 

This study evaluates the performance of 3DVAR, 4DVAR, EAKF and HYBRID DA systems 106 

in Weather Research and Forecast (WRF) model for the extreme rainfall event over the 107 

Uttarakhand during 14 to 18 June 2013. Though the assimilation is performed on a coarser 108 

resolution domain, a non-cycled nested assimilation strategy is adopted to provide 109 

advantages of increased resolution in a computationally efficient manner (e.g., Cavallo et al. 110 

2013; Torn 2010). This paper is organized as follows. Section 2 provides the experimental 111 

design. Section 3 describes major results and Section 4 and 5 provide discussion and 112 

conclusion of the paper, respectively.   113 

2. Experimental design  114 
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The Advanced Weather Research and Forecast (ARW-WRF) of version 3.8.1 is used to 115 

investigate the performance of the DA systems. The WRF is a non-hydrostatic, fully 116 

compressible model with advanced parameterization schemes. This study employs Unified 117 

Noah Land Surface Model for surface parameterization, Rapid Radiative Transfer Model for 118 

longwave radiation calculation, Dudhia scheme for shortwave radiation calculation, WRF 119 

single-moment five-class for microphysics scheme, and Yonsei State University (YSU) 120 

scheme for planetary boundary layer parameterization.  Simulations are performed in 27 km, 121 

9 km, and 3 km resolution using two-way interactive nest with the assimilations performed 122 

on the outer domain. There are 36 non-uniformly spaced vertical levels with the model top at 123 

50 hPa. The initial and lateral boundary conditions are generated from National Center for 124 

Environmental Prediction (NCEP) Global Forecast System (GFS) data available at 0.5
0 

x 0.5
0 

125 

resolution. Observations available from the Global Telecommunication System (GTS) are 126 

assimilated in ± 3h interval assuming that all the observations are valid at the analysis time. 127 

The observations from various platforms are ingested including surface synoptic observation 128 

(SYNOP), buoys (BUOY), ships (SHIP), Radiosonde (RAOB), aircraft routine weather 129 

report (METAR), and wind reports from satellites (GEOAMV).   Observation errors are 130 

obtained from the NCEP statistics and are assumed to be uncorrelated.   131 

 The 3DVAR, 4DVAR and HYBRID DA systems available in the WRF Data Assimilation 132 

system (WRFDA) are used in this study. The details regarding formulation and 133 

implementation of 3DVAR and 4DVAR is described in Barker et al. (2004) and Huang et al. 134 

(2009), respectively. The HYBRID DA system in WRFDA software uses extended control 135 

variable approach to incorporate ensemble covariance in 3DVAR cost function (Wang et al. 136 

2008). Here, Ensemble Adjustment Kalman Filter (EAKF) from the Data Assimilation 137 
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Research Testbed (DART; Anderson 2001) is used to update the background ensembles in 138 

HYBRID DA system and also for the standalone EnKF DA system. Covariance localization 139 

and inflation is applied to maintain sufficient ensemble spread and avoid spurious 140 

correlations in the EAKF DA system. Gaspari and Cohn (1999) localization function has 141 

been used to control the effect of observations with half-widths of approximately 950 km in 142 

EAKF system. Initial inflation of 1.02 is applied to inflate the deviations from the ensemble 143 

mean using the adaptive inflation scheme (Anderson 2009) with a standard deviation of 0.6 144 

and damping of 0.9. 145 

The initial set of ensemble members are generated by adding randomly sampled 146 

perturbations to the initial conditions on 12 UTC 14 June 2013. The perturbations are the 147 

random draws from the distribution of the default background error covariance (“cv3” 148 

option) available in WRFDA system. The ensembles are then integrated forward in time for 149 

12 hours to achieve model balance. The ensemble mean obtained at 00 UTC 15 June 2013 is 150 

used as the first guess for all the DA systems. Assimilation is then performed from 00 UTC 151 

15 to 00 UTC 16 June 2013 every 6 h interval before the initializing the 48 h free forecast 152 

from the analysis at 00 UTC 16 June 2013.  153 

2.1 Non-cycled nested assimilation   154 

As indicated in the previous section, four sets of non-cycled nested assimilation experiments 155 

(Torn 2010) are performed for all the DA systems used in this study viz. 3DVAR-N, EAKF-156 

N, HYBRID-N, and 4DVAR-N to provide advantages of increased resolution in a 157 

computationally efficient manner. The DA cycling is performed at 27 km horizontal grid 158 

spacing, which is too coarser to resolve the convective aspects of precipitation patterns of the 159 
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event. To overcome this limitation, a non-cycled nested assimilation strategy is designed as 160 

follows. After completing the first analysis cycle at 27 km resolution, it is integrated forward 161 

in time to the next assimilation step using a two-interactive nested domain at 27 km, 9km, 162 

and 3 km horizontal grid spacing. It is to be noted that the innermost 3 km domain is centered 163 

on the Uttarakhand region. Once the forecast step is completed all the higher resolution runs 164 

are discarded and the assimilation is performed on the coarser resolution parent domain. 165 

Since the nesting strategy is two-way interactive, the outer domain will get benefitted from 166 

the high resolution innermost domain.  167 

3. Results  168 

3.1 Domain-wide comparison     169 

 The analyses from 3DVAR, 4DVAR, HYBRID and EAKF experiments are validated using 170 

root mean square (RMS) fit with respect to Radiosonde observations. The results from this 171 

section need to be treated with caution since assimilated observations are used for the 172 

verification of the analyses. Therefore, the RMS fit of analysis to observations are not 173 

depicting the analysis error, rather it shows how much each DA method draws its analysis 174 

closer to the observations. Figure 1 represents domain averaged vertical profiles of RMS fit 175 

of analysis to radiosonde observations for the mass and the wind variables for 3DVAR, 176 

EAKF, HYBRID and 4DVAR experiments. The analysis from EAKF fits more closely to the 177 

wind observations than 3DVAR, 4DVAR and HYBRID analyses. Compared to 3DVAR and 178 

4DVAR, the analysis from HYBRID depicts a better fit to the wind observations. However, 179 

the analysis from the 3DVAR DA system depict a better fit to the temperature observations 180 

while for mixing ratio the EAKF analysis shows closer association to the observations. The 181 
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prescription of background and observational error covariance plays an important role in 182 

determining the fit of analysis to observation. Since the specification of the observational 183 

error and the background are the same, the differences in RMS fit are due to differences in 184 

the background error covariance. Wang et al. (2013) has shown that the analysis fits better to 185 

the observations when the correlations scales (background error variances) are smaller 186 

(larger), and therefore, RMS fit may not reflect on the accuracy of forecasts generated from 187 

the analysis.  188 

The root mean square error (RMSE) of horizontal wind components, temperature, and mixing 189 

ratio forecasts are validated with respect to radiosonde observations. The domain-averaged 190 

vertical profiles of RMSE at 24 h forecast lead time is shown in Figure 2. For wind, 4DVAR 191 

experiments produce more skillful forecasts as compared to the other experiments. The 192 

4DVAR and EAKF experiments show improvements in the upper tropospheric temperature 193 

forecasts, and EAKF shows larger error near 800 hPa as compared to other experiments. 194 

Figure 3 illustrates the domain averaged RMSE for the four DA experiments at 48 h forecast 195 

lead time. Apparently, 4DVAR shows larger improvement in the meridional wind above 196 

about 500 hPa and below 300 hPa. Unlike the results from 24 h forecast lead time, EAKF 197 

experiment depicts larger error near the tropopause as compared to the other experiments, for 198 

zonal wind. As far as mixing ratio is concerned, EAKF and HYBRID experiments produce 199 

more skillful forecasts than 3DVAR and 4DVAR experiments over lower troposphere.  200 

3.2 Rainfall  201 

The geographical distribution of 24 h accumulated precipitation from TRMM satellite for day 202 

1 and day 2 valid at 00 UTC June 17, 2013 and 00 UTC June 18, 2013, respectively, is shown 203 

in Figure 4. The TRMM satellite observation indicates that the rainfall is mostly over the 204 
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Uttarakhand state and the eastern parts of Himachal Pradesh for the first day while the 205 

precipitation bands are found to be shifted southeastward on the second day. Figure 5 shows 206 

24 h accumulated precipitation for day 1 and day 2 simulated by 3DVAR, EAKF, HYBRID, 207 

and 4DVAR experiments. The EAKF and HYBRID experiments indicate that the rainfall is 208 

widely distributed over the Uttarakhand, and the northern regions of Himachal Pradesh. More 209 

specifically, two prominent precipitation maxima can be seen in EAKF experiment for day 1; 210 

one over the Uttarakhand and another one over the Himachal Pradesh (Figure 5c). The 211 

4DVAR experiment simulated precipitation bands with a lower intensity and the precipitation 212 

maxima are located much south of the Uttarakhand state. For day 2, all the experiments 213 

except 4DVAR depict a southeastward shift of precipitation patterns as observed in TRMM 214 

satellite observations. Additionally, EAKF and HYBRID experiments overestimate the 215 

precipitation intensity, while 4DVAR run shows weak rainfall patterns as compared to the 216 

other experiments. 217 

Figure 6 indicates that the position and intensity errors have reduced in all the experiments 218 

that adopted the non-cycled nested assimilation strategy, in general, and the largest 219 

improvement in day 2 precipitation forecast is observed for 4DVAR experiments (Figure 6f). 220 

It is worth noting that for non-cycled nested assimilation experiments, the intensity errors 221 

have considerably reduced in EAKF and HYBRID experiment as compared to the 222 

experiments without nesting. In the non-cycled nested assimilation, the spatial extent of 223 

precipitation in EAKF is larger than other experiments, and HYBRID run shows enhanced 224 

precipitation to the north of Uttarakhand.   225 

To evaluate the precipitation forecasts quantitatively, verification statistics based on 226 

contingency table such as Equitable Threat Score (ETS), and Bias scores are employed. The 227 



11 
 

ETS value of 1 indicates perfect rainfall forecast by the experiments. The Bias score indicates 228 

the tendency of model to underpredict (when Bias score is less than 1) or overpredict an event 229 

(when Bias score is greater than 1). Figure 7 illustrates that among all the DA cycling 230 

experiments, 4DVAR-N shows the highest skill score for precipitation forecast for all the 231 

rainfall thresholds for both day 1 and day 2. For non-cycled nested assimilation experiments, 232 

rainfall forecast skill for day 1 has improved substantially in HYBRID-N experiment as 233 

compared to its corresponding non-nested assimilation experiment. The EAKF experiments 234 

have overestimated day1 and day 2 rainfall forecasts, however with a reduced intensity 235 

estimation error for day 1 precipitation in EAKF-N experiment. Barring that, using the non-236 

cycled nested assimilation strategy is found to be not very effective in EAKF experiments. On 237 

the other hand, 3DVAR-N experiment shows higher skill scores at lower thresholds as 238 

compared to 3DVAR. Overall, the results indicate that convection-permitting resolution is 239 

inevitable for the accurate precipitation forecast and the 4DVAR DA system has 240 

outperformed other DA systems when the effect of high-resolution assimilation is mimicked 241 

in the system using the nested assimilation strategy.  242 

4. Discussion   243 

The primary synoptic scale factor that is associated with the devastating rainfall over the 244 

Uttarakhand during June 2013 is the southward extending midlevel trough that eventually 245 

merged with westward migrating monsoon low. The accuracy in the precipitation placement 246 

and intensity forecast depends on the accuracy in the depiction of synoptic-scale flow pattern 247 

in the DA analysis and forecast.  Figure 8 shows the geopotential heights at 850 hPa in the 248 

analysis valid at 00 UTC of 16 June 2013 of 3DVAR, EAKF, HYBRID, and 4DVAR, which 249 

indicates that position of the trough simulated in each experiments are distinctly different. 250 
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This could be the potential reason for the observed variations in the position and intensity of 251 

precipitation forecast over the Uttarakhand.  To understand how the variations in the analysis 252 

reflected in the forecast, the evolution of geopotential height at 850 hPa level in the forecasts 253 

initialized from each of the analysis is shown in Figure 9.  While  EAKF and HYBRID 254 

experiments depicted an early merging of southward protruding trough with the westward 255 

moving monsoon depression, the forecast from 4DVAR analysis indicates that the merging 256 

weather system occurred by June 17.  The merging of weather systems and northward shift in 257 

the position of trough created a strong southwesterly flow over the Uttarakhand by 16 June 258 

2013 in the EAKF experiment, which is proposed as the reason for enhanced precipitation in 259 

EAKF run during the first 24 h model forecast (Figure 5c). The enhanced magnitude and 260 

northward shift in the position of trough in EAKF experiment during the later hours of 261 

forecast can be attributed as the reason for stronger precipitation band. Figure 10 shows the 262 

vertical cross-section plot of specific humidity overlaid with the wind vectors during 18 UTC 263 

of 16 June 2013. Vertical extension of moisture column is more pronounced in EAKF and 264 

3DVAR run as compared to 4DVAR experiment. Furthermore, EAKF indicates stronger 265 

vertical updraft along Himalayan escarpment as compared to other experiments, which could 266 

be due to the proximity of the trough over the Uttarakhand region.  267 

 268 

5. Conclusion  269 

The performance of four DA systems viz. 3DVAR, EAKF, HYBRID, and 4DVAR in 270 

Weather Research and Forecast (WRF) model during a heavy rainfall event over the 271 

Himalayas is compared. The accuracy of forecast initialized from the four DA systems at 272 

different lead times is examined. A non-cycled nested assimilation strategy that provides 273 
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advantages of increased resolution in a computationally efficient manner in a DA system is 274 

tested.   275 

Results indicate that the analysis from EAKF fits more closely to the wind observations than 276 

3DVAR, 4DVAR and HYBRID analyses. Compared to 3DVAR and 4DVAR, the analysis 277 

from HYBRID depicts a better fit to the wind observations. For 24 h wind forecasts, the 278 

4DVAR experiments are found to be more skillful as compared to the other experiments 279 

while for upper tropospheric temperature forecasts, both 4DVAR and EAKF experiments 280 

outperforms other experiments. For 48 h forecasts, 4DVAR shows larger improvements in 281 

the meridional wind and unlike the results from 24 h forecast lead time, EAKF experiment 282 

depicts larger error near the tropopause as compared to the other experiments. The forecasts 283 

initialized from EAKF and HYBRID DA systems produce more skillful forecasts for mixing 284 

ratio than that from 3DVAR and 4DVAR over lower troposphere. The EAKF experiments 285 

overestimates rainfall intensity, while the 4DVAR experiments underestimates the 286 

precipitation in both forecast days. The spatial patterns of precipitation and quantitative skill 287 

scores indicate that the non-cycled nested assimilation strategy has significantly improved 288 

the forecast skill scores, especially for 4DVAR experiments. Further analysis indicates that 289 

an early merging of southward protruding trough with the westward moving monsoon 290 

depression has resulted in stronger southeastward flow in EAKF and HYBRID experiments, 291 

which is suggested as a potential reason for enhanced precipitation over the Uttarakhand in 292 

both the experiments.  293 

The present study is an initial effort to broaden our understanding on the performance of data 294 

assimilation system during an extreme rainfall event that occurred over Himalayas.  The data 295 

assimilation cycling is performed in relatively coarser resolution. The skill of data 296 



14 
 

assimilations systems will improve significantly, when high-resolution background and 297 

observations such as that from radar are used. More systematic comparisons during such 298 

weather events are required for understanding the fundamental differences that are significant 299 

for the performance of data assimilation systems. Future studies in this direction are 300 

warranted.  301 
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Figures: 416 

 417 

Figure 1: Domain averaged profiles of Root Mean Square (RMS) fit of analysis to Radiosonde 418 

observations for (a) Zonal wind (b) Meridional wind (c) Temperature, (d) Mixing ratio. Red, 419 

green, blue and black are for 3DVAR, EAKF, HYBRID, and 4DVAR experiments, respectively  420 

 421 
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 422 

 423 

Figure 2: Vertical profiles of RMSE with respect to Radiosonde observations for 24 h forecasts 424 

for (a) Zonal wind (b) Meridional wind (c) Temperature, (d) Mixing ratio. Red, green, blue and 425 

black are for 3DVAR, EAKF, HYBRID, and 4DVAR experiments, respectively  426 



19 
 

 427 

Figure 3: Same as in Figure 2, but for 48 h forecast 428 

 429 

 430 
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 431 

Figure 4: Geographical distribution of 24 h accumulated precipitation from TRMM satellite 432 

observations valid at (a) 00 UTC June 17, 2013 and (b) 00 UTC June 18, 2013. 433 

 434 

 435 

Figure 5: Geographical distribution of 24 h accumulated precipitation valid at (top panel: a-d) 00 436 

UTC June 17, 2013 and (bottom panel: e-h) 00 UTC June 18, 2013, respectively, for (a,e) 437 

3DVAR (b,f) 4DVAR (c,g) EAKF (d,h) HYBRID experiments.  438 
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 439 

Figure 6: Same as in Figure 5, but for non-cycled nested assimilation experiments  440 
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 447 

Figure 7: The ETS and Bias Scores for rainfall forecasts valid at (top panel: a, b) 00 UTC June 448 

17, 2013 and (bottom panel: c, d) 00 UTC June 18, 2013. Red, green, blue, black, orange, light 449 

green, cyan, and grey are for 3DVAR, 4DVAR, EAKF, HYBRID, 3DVAR-N, 4DVAR-N, 450 

EAKF-N, HYBRID-N experiments, respectively 451 
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 453 

 454 

Figure 8: Spatial distribution of geopotential height at 850 hPa from the analysis of  (a) 3DVAR 455 

(b) EAKF (c) HYBRID (d) 4DVAR valid at 00 UTC of 16 June 2013 456 
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 458 

 459 

Figure 9: Time evolution of geopotential height at 850 hPa forecasts for (first row: a-d) 3DVAR 460 

(second row: e-h) EAKF (third row: i-l) HYBRID (fourth row: m-p) 4DVAR experiments at 0 h, 461 

6h, 12h, and 18 h forecast.  462 

 463 

 464 



25 
 

 465 

 466 

Figure 10: Vertical cross section of mixing ratio (shaded) overlaid with the wind vectors for (a) 467 

3DVAR (b) EAKF (c) HYBRID (d) 4DVAR experiments valid at 18 UTC of 16 June 2013.  468 
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