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Introduction

This supporting material contains several parts. Figure S 1 is a map of Larga Cave and indicates the
location of stalagmite PR-LA-1. We also present additional information on the chronology of
speleothem PR-LA-1, i.e., the results of the linear fits for each Osmond isochron (Table S 1 and Figure S
2) as well as the activity ratios and calculated ages of stalagmite PR-LA-1 (Table S 2, uploaded as separate
file). In addition, results and discussion of the numerical simulations of the observed proxy variability
using I-STAL (Stoll et al., 2012), ISOLUTION 1.0 (Deininger & Scholz, 2019) and REDFIT (Schulz &
Mudelsee, 2002) are included. The supporting text S1 as well as Figures S3 and S4 show the results of
the proxy process simulations. Figures S5 and S6 indicate the spectral power distributions for different
intervals of the PR-LA-1 §"*C and Mg/Ca records.
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Figure S1. Map of Larga cave and location of stalagmite PR-LA-1, Puerto Rico (red symbol). The
sample was collected from the main passage. After Miller (2010).
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40  Figure S2. Measured (**°Th/%8U) vs. (**Th/*8U) activity ratios in stalagmite PR-LA-1. Different
colours correspond to the individual Osmond type | isochrons and data points (Table S1).
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Table S1. Results of the linear fits for each Osmond isochron shown in Figure S 2.

# Isochron Slope Error Pearson's r N

1 16.81 +2.08 0.99 3

2 22.22 +7.23 0.93 3

3 12.38 +6.70 0.85 5

4 7.04 +14.02 0.72 3

5 18.78 +1.42 0.99 4

6 21.35 +2.90 0.97 4

7 16.67 + 10.64 0.72 3
Overall mean: 16.46 10.58
Forr>0.9 19.79 4,93

Table 52 (uploaded separately). Activity ratios and calculated ages of stalagmite PR-LA-1. Activity
ratios corrected for initial Th assuming an detrital weight ratio *2Th/?*U = 0.154 + 0.038
(corresponding to an activity ratio of the detritus in secular equilibrium of (***Th/?*Th)gevr= 19.79
+ 4.93). Ages are calculated using the decay constants of Cheng et al. (2000). Uncertainties are
given at the 2c-level, and do not include half-life uncertainties.
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Text S1. Simulation of the observed proxy variability

Inverse modelling of elemental variations using I-STAL

In order to explore drivers of trace element variability in PR-LA-1, the inverse model I-STAL was
applied, similarly as described in Stoll et al. (2012). To evaluate changes on centennial to millennial
timescales, the records of Mg/Ca, Sr/Ca and Ba/Ca were reduced to 100-year average values. The choice
of model input parameters is closely oriented on observed variations during the cave monitoring and
in the speleothem. The recorded increase of element to calcium ratios towards 15.4 ka gives the order
of magnitude of the degree of enrichment by PCP of Mg, Sr and Ba, which is set to a factor of 5 (Mg), 2
(Sr) and 3 (Ba), respectively. Ca concentrations at drip sites in Larga Cave today are between 50 to 75
ppm. The range for drip intervals was set to 1 to 5000 s. We suggest that the strongest enrichment due
to PCP occurs for extremely low flow, so the drip interval of maximum water-rock exchange is set to
5000 s. Cave temperature was set to 20°C, accounting for the observed mean temperature difference
between the Holocene and the LGM in the region (e.g., Arienzo et al. (2015); Lea et al. (2003)).

In afirst simulation, initial Ca was set to 50 ppm, and the model was run to optimize for drip interval
and pCO:.. In the next step, unphysically low cave air pCO; values of less than atmospheric pCO, during
the Last Glacial were set to this lower limit of 180 ppm, and the model was run to optimize for drip
interval and initial Ca. This simulation was repeated for different parametrizations of e.g., baseline of
initial Ca, maximum drip interval or the degree of enrichment by PCP. However, despite small absolute
shifts in the mean values, the temporal variability of the modelled drip intervals and the degree of
supersaturation remained relatively unaffected by the choice of variables and is therefore here only
displayed for an example set of input parameters (Figure S 4). A second run first optimizing drip interval
and initial Ca, and in a second step pCO; led to similar results. The modelled drip intervals vary over 5
orders of magnitude between 1 and 10000 s, whereas highest drip intervals were reached in the last
phase of the record after 17.5 ka. In the same period, calcite supersaturation is at its lowest values.

All simulations modelled stalagmite Sr/Ca and Mg/Ca ratios well, while Ba/Ca variations are poorly
reproduced. Average simulated growth rates are in the range of values as suggested by the age model
(10 to 1000 pum/a).

Sensitivity simulation of processes influencing speleothem stable isotope composition

The range of the main parameters simulated by I-STAL was selected to evaluate the influence of
temperature, drip interval and state of supersaturation on the speleothem &0 and 3"C values using
ISOLUTION 1.0 (Deininger & Scholz, 2019) and the isotopic fractionation factor of Tremaine et al. (2011).
Unless stated otherwise, cave temperature was set to 20°C, drip water pCO, to 5000 ppm, cave air pCO;
to 300ppmvy, relative humidity (rH) to 99%, wind speed to 0 m/s and the mixing parameter ® to 1. In
agreement with the monitoring results, drip water '0 and 6"C values were set to -2.6 and -13%eo,
respectively. Figure A2 shows that, keeping all other parameters constant, speleothem 60 and §'*C
values increase with the drip interval and the degree of supersaturation of the drip water, reaching a
maximum isotope fractionation of the calcite up to +1.5%o0 (§'®0) and 1.2%o (6"°C) compared to
equilibrium conditions.

While temperature has only a small impact on carbon isotope fractionation, a decrease in cave air
temperature by 5°C may account for a +1%o increase in 6'®0 values. Evaporation effects can strongly
influence the isotopic composition of the calcite. However, at high drip rates, already a moderate
reduction of rH by 5% would lead to an increase of more than +1%o in 6'®0 and +2%o in §"C.

Combining all these effects, leads to 6'®0 values of the calcite between -1.6 and -1.1%o for a drip
interval of 10,000s, T = 17.5°C, rH = 90% and drip water pCO, values of 975 and 3000ppmv,
corresponding to initial Ca concentrations of 30 and 50 ppm, respectively. A temperature decrease of
15°C would further increase this value to -0.7%o. 8"*C values increase to a maximum of -11%eo in these
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scenarios. Under these extreme conditions, the highest measured values in the speleothem of +2%o
(6'®0) and -4%o (6'*C) can only be reproduced with drip water values of about 0%o for 6'®0 and -6%o for
100  &"C, respectively.
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Figure S3. Results of I-STAL simulations for speleothem PR-LA-1 compared to speleothem
proxies. Top panels: stable isotopes of oxygen (6'%0 in %o (red) and carbon (83C in %., black),

105 molar trace element to calcium ratios: Mg/Ca (orange), Sr/Ca (blue). Light coloured lines are the
raw speleothem data, dark coloured lines interpolated to 100 y average values. Open symbols
indicate modelled Mg/Ca and Sr/Ca ratios. Bottom panels: calculated oversaturation of the drip
(grey), drip interval (green), cave air pCO; (purple) and initial Ca concentration of the drip water
(turquoise).
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Figure S4. Simulations of the stable isotopic composition of calcite assuming initial drip water
values of 8'®0 of -2.6%o0 (VSMOW) and 8"*C of -13 %o. Unless stated otherwise in the individual
plots, cave temperature was set to 20°C, drip water pCO, to 5000ppm, cave air pCO, to 300ppmv,
relative humidity to 99%, wind speed to 0 m/s and the mixing parameter @ to 1. All simulations
calculated with ISOLUTION 1.0 (Deininger & Scholz, 2019), assuming a temperature-dependent
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Figure S5. Spectral power for different intervals of the PR-LA-1 8"*C record calculated with REDFIT
(Schulz & Mudelsee, 2002). Coloured lines indicate the calculated AR(1) false-alarm levels of 80%
(purple), 90% (violet), 95% (dark blue) and 99% (light blue). Purple rectangles indicate the multi-
decadal and centennial period bands. For all shown spectra, the AR(1) passed the REDFIT runs
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Figure S6. Spectral power for different intervals of the PR-LA-1 Mg/Ca record calculated with
REDFIT (Schulz & Mudelsee, 2002). Coloured lines indicate the calculated AR(1) false-alarm levels
of 80% (purple), 90% (violet), 95% (dark blue) and 99% (light blue). Purple rectangles indicate
the multi-decadal and centennial period bands. For all shown spectra, the AR(1) passed the

130  REDFIT runs test which checks the equality of theoretical AR(1) and data spectrum. For Mg/Ca, an
appropriate AR(1) model could be only fitted for HS2, GS5.1 and Gl 11 and 12,
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