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 INTRODUCTION 

■ Ultrafine particles (UFP; <0.1 µm diameter; Fig. 1) are highly variable in space and time and 

as such can be challenging to model for use in epidemiology studies. 

■ Recent studies have shown that airports are contributors to local air pollution (Fig. 2). 

■ Research is needed to understand the impact from individual aircraft and how to incorpo-

rate flight activity into UFP exposure models. 

 

OBJECTIVE 

Our aims were to: 

1) Conduct ambient monitoring 

of UFP measured as 

particle number concentration 

(PNC; a proxy for UFP) at sites 

with varying proximity to land-

ing flight paths, and 

2) Characterize UFP transport 

from aircraft exhaust during 

landings along the 4L/R runway 

trajectory at Boston Logan  

International Airport (MA, USA) 

using machine learning. 

Fig 1 (left). Scale of particle sizes with examples. Ul-

trafine particles are those particles sized 0.1 µm (0.1 x 

10-6 m) and smaller. Image adapted from Brooks et al. 

(2008).1 

Fig 2 (right). Ultrafine particle concentration by wind 

direction as measured at stationary sites around Bos-

ton Logan International Airport. Winds from the air-

port correlate with some of the highest observed con-

centrations. Image adapted from Hudda et al. (2016).2 

 METHODOLOGY 

Fig 3. Map of monitoring sites, flight paths, and runway configurations for Boston Logan 

International Airport (Boston, MA). 

■ Particle number concentration (PNC) was measured on se-

lected weeks at Sites 1-6 (Fig. 3) from April-September 2017 

at 1-second resolution. 

■ Wind speed and direction and temperature were measured 

at each site. Regional meteorology was obtained from Logan 

Airport (KBOS); mixing height was calculated from upper-air 

data from Chatham, MA. 

■ Flight activity data were acquired from the U.S. Federal Avia-

tion Administration, which included three-dimensional posi-

tions of aircraft at ~5-sec resolution. 

■ We used machine learning regression to identify key covari-

ates and optimize prediction of PNC at Univ. of MA Boston 

(Site 2) based on a random forest approach (i.e., decision 

tree-based algorithm; Fig. 4). Each tree was grown by a 

bootstrap sample with random subsets of predictors select-

ed at each split. Final models were based on the average re-

sults of all trees and were compared to linear models. 

■ Models were built based on 1-hr ln(PNC) at different scales: 

50th, 95th, and 99th percentiles. 

 RESULTS 

■ All monitoring sites had similar 50th percentile PNC, but peak PNC (>95th percentile) were higher for those sites closest to the 

airport and with lower elevation of arriving aircraft (Table 1). 

■ Planes landing along 4L/R resulted in higher PNC than when planes were not landing on 4L/R, under similar wind conditions 

(Fig 5). Similar results were observed comparing PNC during the 5-min period before and after flights began arriving. 

■ When flights were landing on 4L/R, the 99th percentile of 1-sec PNC during winds from the east (no traffic) was 88,000 parti-

cles/cm3. Concentrations dropped >50% when flights were landing along other trajectories during these same winds. 

■ Random forest regression trees explained >55% of 1-hr PNC variance for all models tested, using 10 explanatory variables in 

each model. As hourly PNC was aggregated using higher percentiles of 1-sec PNC (i.e., 95th and 99th percentile as compared to 

50th percentile), models explained more of the PNC variance with no change in variables included. While meteorological varia-

bles were still ranked most important, they lost some importance when modeling the tails of the PNC distribution (Fig 6).  

 

CONCLUSION 

Our results suggest that aircraft can play a role in 

explaining peak ambient UFP exposures during 

landing. Downwind transport of UFP from aircraft 

exhaust needs further investigation. 

 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Sample Size 
(days) 

67 71 57 61 57 62 

Location 2nd Floor Ground 2nd Floor Ground Ground Ground 

Nearest Run-
way 

4R 4R 4R 4R 4R 4R 

Distance to 
Runway (km) 

4.0 4.9 10.8 6.7 8.2 16.6 

0.1st PCTL 800 1,100 1,600 2,500 2,000 1,800 

1st PCTL 1,000 2,900 2,500 5,100 2,900 2,500 

5th PCTL 4,300 5,800 4,300 8,200 5,700 4,300 

50th PCTL 14,100 16, 600 11,600 20,600 17,100 12,000 

95th PCTL 55,600 63,000 28,000 67,900 47,100 31,400 

99th PCTL 116,800 119,200 47,400 103,200 70,700 50,500 

99.9th PCTL 180,200 206,600 87,500 150,800 96,500 95,800 

Table 1. Summary table for Sites 1-7 (corresponding to locations in Fig. 1) highlighting the differences in 

X-percentiles for 1-second PNC. PCTL = percentile. 

Fig 4. Visual diagram of random forest regression applied to an example data set. The computer 

splits the data into a specified number of bins (user defined), tests a specified number of dependent 

variables at random for each tree branch and selects the variable resulting in the least error, and so on. 

Fig 5. Comparisons between PNC measured at Site 2 during flight activity and no flight activity (i.e., planes 

landing on either 4L or 4R runways) under different wind conditions. 
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Fig 6. Spider plot showing the importance of each variable in the random forest 

model based on the mean decrease in model accuracy (as measured by mean 

square error). As PNC is aggregated to the hour by higher percentiles, meteorologi-

cal variables lose importance while variables related to schedules or flight activity 

gain importance. Flight frequency has the largest percent gain in model im-

portance when comparing 95th and 99th percentile models to the 50th percentile. 

Linear Model 

(% Variance Explained) 
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 percentile: 16% 
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■ Explanatory variables from the RF model showed a 

similar improvement in R2 in a linear regression 

model as PNC were aggregated to the hour using 

higher percentiles of 1-sec PNC (Table 2). 

■ Linear models had increasing significance for Fre-

quency term (# planes/hr) as PNC percentiles in-

creased: p=0.98 (50th), p=0.27 (95th), p=0.03 (99th). 

Random Forest Model 

(% Variance Explained) 

50
th

 percentile: 56% 

95
th

 percentile: 60% 

99
th

 percentile: 60% 

Table 2. Comparisons between 

the variance explained by the 

same 10 variables in a random 

forest regression model vs. a 

linear regression model.  


