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Abstract13

Geology differentiation converts physical property models derived from geophysical data14

to a 3D quasi-geology model. It represents a step change in quantitative interpretation15

of geophysical data. However, quantifying the uncertainties of the differentiated geolog-16

ical units in a 3D quasi-geology model has been largely unexplored. We have developed17

an empirical method to construct 3D probabilistic quasi-geology models in the determin-18

istic inversion framework. We used mixed Lp norm joint inversion to recover a large se-19

quence of physical property models based on multiple airborne geophysical data sets. Prior20

petrophysical measurements were used to determine the acceptance and rejection of these21

models. We then performed geology differentiation for all these accepted models and ob-22

tained a set of 3D quasi-geology models, based on which we constructed probabilistic 3D23

quasi-geology models. Our work has broad implications for 3D geological model build-24

ing based on multiple geophysical and/or petrophysical measurements.25

Plain Language Summary26

Measuring and interpreting geophysical data has been the primary means of mak-27

ing inferences about subsurface structures and compositions. This practice typically pro-28

duce physical parameter models (e.g., a density model of the subsurface Earth) as the29

outcome. Geology differentiation takes the physical property models derived from geo-30

physics and output a 3D quasi-geology model that shows the 3D distribution of various31

geological units. It helps extract meaningful and useful geological information from geo-32

physics and takes geophysics one step further into the realm of characterizing geology.33

However, assessing the uncertainties of a 3D quasi-geology model is lacking. This is crit-34

ical as this answers the question as to how much confidence we can trust the 3D quasi-35

geology model. Our work fills such a gap. The fundamental idea of our work is to gen-36

erate a large sequence of physical parameter models using an inversion method. Prior37

physical property measurements on rock samples are then used to accept only those mod-38

els that fall within the range of measured values.39

1 Introduction40

Geophysical measurements contain important, sometimes the only information about41

the Earth’s interior. Inversion is arguably amongst the most popular and effective in-42

terpretation methods that geophysicists have developed over the past few decades. The43

output of inversion is typically physical property models. Recently, Y. Li et al. (2019)44

discuss an approach, hereafter referred to as geology differentiation, that integrates geo-45

physical inversion and geological classification into one unified framework. Geology dif-46

ferentiation takes multiple geophysical data sets as input and outputs a 3D quasi-geology47

model instead of physical property models. A quasi-geology model shows the 3D spa-48

tial distribution of various geological units. These geological units are defined by unique49

ranges of physical property values. A 3D quasi-geology model is a more useful and in-50

formative representation of the subsurface geology than physical property models. This51

approach has been applied to a multitude of geoscientific problems with promising re-52

sults (e.g., Linde et al., 2006, 2008; Bedrosian et al., 2007; Doetsch et al., 2010; Infante53

et al., 2010; Martinez & Li, 2015; Devriese et al., 2017; Fournier et al., 2017; Kang et54

al., 2017; Melo et al., 2017; Kim et al., 2020; Giraud et al., 2020; Sun et al., 2020; As-55

tic et al., 2021; K. Li et al., 2021).56

However, uncertainty analysis of differentiated geological units in a 3D quasi-geology57

model is underexplored. The published works on uncertainty analysis have focused on58

quantifying the uncertainties of 1D and 2D physical property models in the Bayesian frame-59

work. Bayesian inferences for 3D inverse problems are rare and currently limited to sev-60

eral thousand (Zhang et al., 2018) model parameters. Latest work by (Manassero et al.,61

2020) reports 32,000 model parameters. Nevertheless, when it comes to 3D inverse prob-62
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lems that involve hundreds of thousands to tens of millions of model parameters, deter-63

ministic inversions still dominate and will dominate for years to come. A critical need64

exists to assess the uncertainties of 3D quasi-geology models constructed from geophys-65

ical measurements.66

The objective of our work is to fill such a need by developing a deterministic ap-67

proach to quantifying uncertainties of the differentiated geological units in a 3D quasi-68

geology model. To the best of our knowledge, our work is the first attempt to quantify69

uncertainties of 3D quasi-geology models derived from multiple geophysical data sets and70

prior petrophysical measurements. Our approach is based on established deterministic71

inversion theory (Fournier & Oldenburg, 2019) and an open-source framework SimPEG72

(e.g., Cockett et al., 2015; Heagy et al., 2017). We, therefore, believe that our work has73

broad and immediate impact on other researchers working in different regions or prob-74

lems where multiple geophysical and petrophysical measurements exist. One such ex-75

ample is the use of gravity and magnetic data for volcano studies (e.g., Trevino et al.,76

2021; Miller et al., 2020). Another example is in mineral exploration where multiple air-77

borne geophysical data sets are typically collected.78

2 Methodology79

Our method consists of two components: joint inversion and geology differentia-80

tion.81

2.1 Mixed Lp norm joint inversion82

Joint inversion aims to simultaneously invert multiple geophysical data sets in a83

unified mathematical framework. A commonly adopted objective function for joint in-84

version of two geophysical data sets is:85

Φ(m1,m2) = Φd1(m1) + Φd2(m2) + β1Φm1(m1) + β2Φm2(m2) + λΦc(m1,m2). (1)

where m1 and m2 represent two different physical property models of interest. Φd1(m1)86

and Φd2(m2) are the two data misfit terms. Φm1(m1) and Φm2(m2) indicate the two87

regularization terms, and β1 and β2 are regularization parameters. Φc(m1,m2) is a cou-88

pling term allowing exchange of information between the two physical prorpety models.89

We adopted the cross-gradients coupling method (Gallardo & Meju, 2003) in our work.90

Our joint inversions were implemented using an open-source package SimPEG (e.g., Cock-91

ett et al., 2015; Heagy et al., 2017).92

For the regularization terms Φm1(m1) and Φm2(m2), we used the mixed Lp norm93

regularization (Fournier & Oldenburg, 2019). It differs from the standard L2 norm or94

L1 norm regularization in that it allows different p norm values to be imposed on the95

different components of a regularization term, as shown below.96

Φm1 = αs1 ∥Ws1m1∥pp +
∑

i=x,y,z

αi1 ∥Wi1m1∥qq . (2)

where p and q indicate the norm values imposed on the smallness and smoothness com-97

ponents, respectively. Ws1 and Wi1 (i = x,y,z) are the standard spatial weighting ma-98

trices for the smallness and the smoothness components. Scalars αi (i = s, x, y, z) con-99

trol the contribution of each component in the regularization term. When different p and100

q norm values are imposed, the resulting physical property models would show distinct101

features. For example, when p = 1 and q = 2, the resulting models would be both com-102

pact and smooth. The weights αi (i = s, x, y, z) also affect the inverted models. More103

details on how different p, q and αi (i = s, x, y, z) values affect the inverted models can104

be found in Wei and Sun (2021). Following Wei and Sun (2021), we fixed q = 2 and105

αx = αy = αz = 1.0 in our work.106
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2.2 Geology differentiation107

When a pair of jointly inverted physical property models are obtained from the pre-108

vious step, we perform geology differentiation. Specifically, we first summarize the jointly109

inverted physical property values (e.g., density contrast and susceptibility values) into110

a scatterplot. We then classify the inverted values into different units. Each unit should111

be characterized by a distinct range of physical property values. The classification is driven112

by several guiding principles. First, we look for well defined grouping patterns (e.g., clus-113

ters, linear trends) in a scatterplot. Each grouping feature is associated with a distinct114

range of physical property values, and therefore, can be considered as a unique unit. Sec-115

ondly, the classified geological units, when visualized in 3D spatial domain, should match116

well-resolved inverted features obtained from joint (or, separate) inversions. Last but not117

the least, the classified units should be consistent with all available prior geological in-118

formation, if any exists. Once the classification is completed, the final classified units can119

be visualized in 3D to produce a 3D quasi-geology model.120

2.3 Probabilistic geology differentiation121

The first step toward probabilistic geology differentiation is to generate a large se-122

quence of 3D physical property models that all fit the observed geophysical data but ex-123

hibit a diverse range of features. To achieve that, we take advantage of the user-specified124

parameters in equation (2). Specifically, we randomly sample p and αs multiple times.125

For each realization of (p, αs) values, we perform one joint inversion by minimizing the126

objective function in equation 1.127

In the second step, we use prior petrophysical information to determine the accep-128

tance and rejection of the inverted models. The reason is that some of the models fall129

outside of the ranges of the physical property values measured on the drill core samples.130

Only these models that are consistent with both geophysical and petrophysical measure-131

ments proceed to the next step. In the third step, we perform geology differentiation fol-132

lowing the guiding principles described in the previous section and construct a 3D quasi-133

geology model for each of the accepted model pairs, based on which we calculate the prob-134

ability of the spatial distribution for each unit as well as the probability of geological units135

at each location. Fig. 1 summarizes our workflow of constructing probabilistic quasi-geology136

models.137

3 Geophysical and petrophysical measurements138

Our study area, located in the border of northeast Iowa and southeast Minnesota,139

is characterized by a thick sedimentary layer underlain by Precambrian rocks according140

to published work (e.g., Drenth et al., 2015; Sun et al., 2020) and drillhole sample mea-141

surements (Fig. 2a). The magenta and blue curves in Fig. 2a represent the measured142

density and susceptibility values based on rock samples from drillhole BO-1. The light143

yellow area represents sedimentary rocks and weathered basement, where we can observe144

relatively low density and susceptibility values. The gray area in Fig. 2a is associated145

with Precambrian basement rocks with higher density and susceptibility values. The lower146

and upper bounds of density values for Precambrian basement rocks are 0.43 and 1.11147

g/cm3, respectively, and the bounds of susceptibility values are 0.115 and 0.495 SI. These148

two ranges, [0.43 g/cm3, 1.11 g/cm3] and [0.115 SI, 0.495 SI] were later used to help us149

determine which models to accept and reject. Fig. 2b and c display the measured air-150

borne gravity gradient and magnetic TMI data, respectively.151

4 Deterministic geology differentiation152

The data sets shown in Fig. 2b and c were used to perform 162 joint inversions.153

We now use one such inversion with p=0.25 and αs=0.03 to explain how geology differ-154
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Figure 1. Our workflow of constructing probabilistic quasi-geology models based on multiple

airborne geophysical data sets. Mixed Lp norm joint inversion is used to recover density and sus-

ceptibility models. Petrophysical measurements on drill core samples are used to determine the

acceptance and rejections of the jointly inverted models.

entiation was performed. The jointly recovered density (Fig. 3a) and susceptibility (Fig.155

3b) values were summarized into a scatter plot, and classified into 9 geological units marked156

as 9 different colors in Fig. 3c. We visualized the classification results in 3D spatial do-157

main and obtained a 3D quasi-geology model. A depth slice at 2,000 m and a vertical158

cross-section at 4820000 m extracted from the 3D quasi-geology model are shown in Fig.159

3d. For ease of explanation, we overlaid the boundaries of the differentiated units (as solid160

and dashed lines) on the jointly recovered density (Fig. 3e-1 to e-4) and susceptibility161

(Fig. 3f-1 to f-4) models. The boundary of Unit 1 is not shown because Unit 1 is inter-162

preted as the background. A 3D visualization of the remaining 8 units can be found in163

the Supplemental Materials (Figures S1-S8).164

4.1 Unit 2165

Unit 2 is defined by intermediate negative susceptibility values and near-zero den-166

sity contrast values (Fig. 3c). When visualized in 3D spatial domain, Unit 2 appears as167

one NE-SW trending feature and several isolated small anomalous bodies, as delineated168

by the solid black lines in Fig. 3e-1 and f-1. The NE-SW trending feature is likely to be169

associated with granitic plutons which usually produce large magnetic but weak grav-170

ity anomalies. According to Drenth et al. (2015), these granitic plutons are part of a large171

swath of anorogenic magmatism extending from the southwestern United States north-172

east to the Nain Plutonic Suite in Labrador (e.g., Anderson, 1983; Ashwal, 2010, 2013).173

The isolated small bodies are harder to interpret. For example, the size of the tiny174

body indicated by the black arrow in Fig. 3e-1 and f-1 is simply too small, when com-175

pared with the spatial resolution of airborne geophysical data, to be reliably recovered.176

This feature is, therefore, very likely an artefact. Likewise, the compact body indicated177

by the red arrow is characterized by near-zero density contrast and susceptibility val-178

ues, and are more likely to be part of the background (i.e. Unit 1). Indeed, if we moved179

the lower bound of Unit 1 (i.e., the bound between Units 1 and 2 in Fig. 3c) downward180

to include some of the small susceptibility values, this body would have been classified181

into Unit 1. This highlights the importance of developing an assessment of the proba-182

bility of the classified units, instead of relying on a single classification outcome.183
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Figure 2. (a) Measured density contrast (magenta dots) and susceptibility (blue dots) values

based on rock samples from drillhole BO-1. Density contrast values were obtained by subtract-

ing a background density of 2.4 g/cm3. The local minimum density and susceptibility values

at the depth of about 480 m, are determined to be outliers, and are excluded from the rest of

our work.(b) The observed airborne gravity gradient data, where the black dot represents the

drillhole location. (c) The observed airborne magnetic TMI data.
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Figure 3. Recovered density (a) and susceptibility (b) models from a mixed Lp norm joint

inversion with p=0.25, αs=0.03. The black boxes, labeled as i, j, k and l, represent the spatial

locations discussed in Section 5.3. (c) The recovered values are classified into 9 distinct units. (d)

The corresponding 3D quasi-geology model visualized as a depth slice at -2000 m (top) and cross

section at 4820000 m (bottom). From e-1 to e-4, the solid lines indicate boundaries of Unit 2, 3,

4 and 5; dashed lines represent boundaries of Unit 6, 7, 8 and 9. The boundaries shown in f-1 to

f-4 are consistent with e-1 to e-4.

4.2 Unit 4184

Unit 4 consists of intermediate negative density and around-zero susceptibility val-185

ues. When visualized in spatial domain, Unit 4 corresponds to a NE-SW trending fea-186

ture indicated by the whitish color in Fig. 3d. In Fig. 3e-2, Unit 4, whose outline is de-187

lineated as solid black lines, spatially coincides with the well-defined negative density anoma-188

lous feature trending NE-SW. Following Drenth et al. (2015), we interpret Unit 4 as a189

silicic pluton that typically produces strong negative gravity response and very weak mag-190

netic responses.191

4.3 Unit 3192

Unit 3 is characterized as intermediate negative density contrast and susceptibil-193

ity values. This unit corresponds to an isolated body whose boundary is delineated as194

the solid black line in jointly recovered density (Fig. 3e-3) and susceptibility (Fig. 3f-195

3) models. Unit 3 is located at the intersection of the two NE-SW trending features in196

Units 2 and 4, as shown in Fig. 3d. Interestingly, the geophysical characteristics of Unit197

3 also seems to be a mix of those from Units 2 (negative susceptibility) and 4 (negative198

density contrast). One possible explanation is, when Unit 2 intruded Unit 4, the mag-199

netic minerals in Unit 2 and the silica in Unit 4 interacted to form Unit 3. Considering200

the relative small volume of Unit 3, it is legitimate to ask if it is a real feature or an arte-201

fact. This again served as a motivation for our work.202
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4.4 Unit 5203

Unit 5 is dominated by intermediate to high positive susceptibility and near-zero204

density values. Therefore, we interpret Unit 5 to be associated with granitic intrusions,205

similar to Unit 2, but with normal magnetic polarities. In the recovered density (Fig.206

3e-4) and susceptibility (Fig. 3f-4) models, Unit 5, marked as solid lines, consists of sev-207

eral isolated compact bodies. Some of them might be artifacts, because they appear at208

the boundaries of some well-defined anomalies. For example, the small body indicated209

by red arrow (Fig. 3f-4) is at the boundary of a well-defined linear feature trending N-210

S. This small body might be simply due to the smoothness regularization in equation211

2 where q is set to 2, or due to the subjectivity involved in our manual geology differ-212

entiation. Without some assessment of the uncertainties, it is difficult to tell if this fea-213

ture is real or not.214

Description of Units 6-9 can be found in Text S1 in the Supplemental Materials.215

The above analysis clearly reveals a need to quantify the uncertainties of the differen-216

tiated units.217

5 Probabilistic geology differentiation218

5.1 A sequence of 3D quasi-geology models219

We randomly generated 162 pairs of (p, αs) values with p ∈ [0, 2] and αs ∈ [0.01, 1].220

Figure S9 in the Supplemental Materials summarizes all the 162 combinations. We then221

implemented 162 mixed Lp norm joint inversion and obtained 162 pairs of jointly recov-222

ered density and susceptibility models. The prior density and susceptibility measurements223

shown in Fig. 2(a) were used to determine the acceptance and rejection of these recov-224

ered models. We rejected those models whose inverted values at the drillhole location225

are outside of the measured physical property ranges. Text S2 and Figures S10, S11 in226

the Supplemental Materials details rejection procedure. Following this criteria, only 37227

pairs of jointly inverted density and susceptibility models were accepted for subsequent228

geology differentiation and uncertainty analysis. Figure S12 shows several examples of229

accepted and rejected models. We note that the jointly inverted models based on Lp norms,230

where p is close to 2.0, are all rejected because their recovered physical property values231

are overly underestimated and lower than the acceptable ranges (see the third row in Fig-232

ure S12). The red dots in Figure S9 represent those (p, αs) values for the accepted phys-233

ical property models. For each accepted pair of density and susceptibility models, we per-234

formed geology differentiation and obtained 37 accepted quasi-geology models. Below,235

we quantify probabilities of spatial distributions for each geologic unit and calculate prob-236

abilities of geological units at any location in our study area.237

5.2 Probabilities of the spatial distribution of geological units238

Each unit in a quasi-geology model can be converted to a binary model, where 1239

and 0, respectively, represent the anomalies and background. We thus obtained a total240

of 37 binary models for each geologic unit in which the frequency of the 1s at each model241

cell indicates the probability of this geologic unit. Figure S13 and Text S3 in the Sup-242

plemental Materials explain how we obtained the probabilities of the spatial distribu-243

tion for Unit 2. The same procedure was applied to all the other units.244

Fig. 4a-h display the probabilities of each geologic unit excluding the background245

Unit 1. The warm and cold color of Fig. 4 indicate the high and low probabilities, re-246

spectively. We observe that the NE-SW trending feature in Unit 2 (Fig. 4a) has high247

probabilities, indicating that most of our recovered physical property models and quasi-248

geology models agree with each other on the spatial distribution of this feature. But, the249

two isolated bodies highlighted by the red and black arrows in Fig. 3e-1 and f-1 are as-250
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Figure 4. The probabilities of spatial distribution for geological units. Unit 2 to 9, excluding

Unit 1 which is background, are mapped on (a) to (h) accordingly, where warm and cold colors,

respectively, represent high and low probabilities. (i) - (l) display probabilities of geologic units at

different spatial locations indicated by black boxes in Fig. 3a and b.

sociated with very low probabilities, indicating that there exists a high level of variabil-251

ity, and therefore, uncertainty, among the accepted inverted models and quasi-geology252

models. Therefore, these two isolated bodies are not reliable features and should be in-253

terpreted with caution. In the probability model for Unit 4 (Fig. 4c), the NE-SW trend-254

ing feature is also characterized by high probabilities compared with the two isolated anoma-255

lous bodies located in the west. We thus are more confident in spatial extents of the trend-256

ing feature, and less confident in the existence of two western anomalous bodies. Unit257

5 (Fig. 4d) consists of multiple small anomalous bodies. In Fig. 3e-4 and f-4, these small258

anomalous bodies, outlined by solid lines, are located at the boundaries of some promi-259

nent features. However, the probability model (Fig. 4d) indicates that these small anoma-260

lous bodies are more likely to be true geological features because of their high probabil-261

ities. Both Unit 6 (Fig. 4e) and 7 (Fig. 4f) display a wider range of probabilities, with262

the western intrusion having higher probabilities and central anomalous bodies associ-263

ated with intermediate to low probabilities. The probability models for Unit 8 (Fig. 4g)264

and 9 (Fig. 4h) show that the spatial extents of these two units are well defined. The265

probability maps in Fig. 4a-h provide empirical estimates of the uncertainties of the spa-266

tial distribution for each unit. They constitute a critical piece of information that allows267

uncertainty to be taken into account when it comes to interpretation and decision mak-268

ing (e.g., where to drill).269

5.3 Probabilities of geological units at spatial locations270

We also computed the probabilities of geological units at each spatial location (e.g.,271

at each model cell). This probability quantifies the likelihood of a model cell belonging272

to each of the 9 differentiated geological units. We achieved this by computing the unit273
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number assigned to a model cell by all the 37 quasi-geology models. Fig. S14 and Text274

S4 in the Supplemental Materials explains how this was carried out in our work.275

As an illustration, we selected two locations at the boundaries of the central anoma-276

lous body and the NE-SW trending feature. These two locations are marked as black277

boxes in Fig. 3a and labeled as i and j, respectively. The probabilities of geological units278

at these two locations are shown in Fig. 4i and j, respectively. We observe that the prob-279

ability of location i belonging to Unit 9 is 69.97%, and the probability for Unit 7 is 26.73%.280

At the location j, the geologic unit is likely to be Unit 4 with a probability of 87.09%.281

But there is also a 12.91% probability of belonging to Unit 1. We also chose another two282

locations at the core areas of two geological features, as shown by the black square boxes283

labeled as k and l in Fig. 3b. Our probabilistic geology differentiation results in Fig. 4k284

and l indicate that the location k is almost certainly associated with Unit 8 (with 99.80%285

probability), and the location l has a probability of 94.79% belonging to Unit 5. Sim-286

ilar quantitative and probabilistic interpretations can be made at any locations. Movie287

S1 displays our probabilistic geology differentiation results at multiple locations.288

6 Discussions289

Bayesian inferences are commonly used in geophysics to quantify uncertainties. De-290

spite its successful applications in many problems, it suffers from the curse of dimension-291

ality and is computationally prohibitively expensive especially when it comes to 3D in-292

verse problems. Literature search shows that Monte Carlo sampling methods can typ-293

ically handle several hundred to thousand model parameters, and the computational time294

currently ranges from several weeks to months (Piana Agostinetti & Bodin, 2018; Zhang295

et al., 2018; Manassero et al., 2020) even with parallelization. To the best of our knowl-296

edge, Monte Carlo sampling methods have not been applied to 3D joint inverse prob-297

lems yet. This is not surprising because joint inversion is typically much more time con-298

suming than separate inversion.299

Our work is based on a fundamentally different approach. We use a deterministic300

inversion method recently developed by Fournier and Oldenburg (2019) to generate a301

large sequence of equivalent models by adjusting two user-specified parameters, p and302

αs. Despite being empirical in nature, this method allows us to generate many equiv-303

alent models in a reasonable amount of time for large scale 3D problems. In our work,304

there are a total of 287,100 unknown model parameters and 8,968 observations. Inverse305

problems of this size are currently out of reach for Monte Carlo sampling methods. We306

completed 162 joint inversions within three weeks on a computer with 12 cores and 256307

Gb memory. (Our joint inversion code is not parallelized, but we ran 2-4 inversions si-308

multaneously.) We believe that our method is an effective and efficient workaround for309

3D joint inverse problems before Monte Care sampling methods can be readily applied310

to hundreds of thousands of model parameters on PCs.311

7 Conclusions312

Geology differentiation aims to identify different geological units based on geophys-313

ical inverted physical property models. However, analyzing uncertainty of these geophys-314

ically derived geological units in 3D has bee not attempted. We have developed an em-315

pirical method to construct 3D probabilistic quasi-geology models based on mixed Lp316

norm joint inversion and prior petrophysical measurements. Our method can be read-317

ily applied to many other regions and problems. Our work has broad implications for318

3D (probabilistic) geological model building based on multiple geophysical data sets.319
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