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Contents of this File 
 Here we cover the exact experimental design, including the sample and Laser Heated Diamond 
Anvil Cell preparation, the specifics of the diffraction setup, and the computational methods of 
determining beam temperature. We also include here the mathematical derivation of our model.  

Introduction 
 Section 1 covers the experimental design and Section 2 covers the derivation of our model; 
Section 3 derives the thermodynamic thermal pressure.  

  



1 Experimental Design 

1.1 Sample preparation  
Experiments were performed on commercially available silver iodide, AgI (SIGMA-ALDRICH), and 

gem-quality San Carlos olivine, (Mg0.9
2+ , Fe0.1

2+)2SiO4. See S.I. Table 1 for thermoelastic parameters.  Our 
choice of these two compounds is motivated both by each material having notably uniform and stable 
coupling with infrared laser heating, but also by the product of thermal expansion and bulk modulus 
(αK0) of the two materials being almost equivalent (S.I. Table 1), while their strengths are expected to 
markedly differ. Accordingly, these two materials provide a means for experimentally demonstrating 
whether shear strength exercises a major role on thermal pressure, or whether thermal pressure is 
largely governed by the thermodynamics of local heating of a nearly isochoric system. 

 AgI San Carlos Olivine 

Bulk Modulus (K0) 42(2) GPa (1) 129.4(4) GPa (2) 

dK/dP (K’) 3.8(3) (1) 4.6(1) (2) 

Thermal Expansion (α) 8 x 10-5/K (3) 2.7(3) x 10-5/K (4) 

Anderson-Grüneisen Parameter (δ) 3.8(3) 4.6(1) 

αK0 3.36 x 10-3 GPa/K 3.49 x 10-3 GPa/K 

S.I. Table 1: Thermoelastic parameters of AgI and San Carlos olivine at ambient pressure and temperature. 
(1) Hull and Keen [1999](2) Liu et al. [2005], (3) The value for NaCl was used as an approximation Chauhan 
and Singh [2007], (4) Liu and Li [2006]. The Anderson-Grüneisen Parameter was set equal to dK/dP: this 
assumes that the isothermal derivative with respect to volume of αKT is negligible, and represents a good 
approximation for both halides and olivine [Anderson, 1997]. 

The samples were powdered using a mortar and pestle, and x-ray powder diffraction of the 
samples at modest pressures (2 – 4 GPa) and room temperature confirmed their chemical purity. High 
pressures were generated using a BX90 diamond anvil cell [Kantor et al., 2012], with type 2a CVD 
diamonds (400μm culets). Steel was used as the gasket material, which was pre-indented to a thickness 
of 100μm, and laser drilled to yield sample chambers of 160μm in diameter. Before loading, parallel 
tungsten blocks were used to compact the powdered samples. To further reduce sample porosity, the 
gasket was loaded with the compacted sample, modestly pressurized (< 3 GPa), and then loaded with 
more sample. Initial cold pressures were determined to be 3-4 GPa for the AgI, and 2-3 GPa for the San 
Carlos olivine using R-line fluorescence on a cluster of ruby chips placed close to the center of the 
sample chamber [Mao et al., 1986]. The samples were loaded without a pressure medium or thermal 
insulation material in order to keep artifacts due to insufficient geometric control of a multi-component 
sample assembly at a minimum. The lack of inclusion of a thermal insulation layer is justified in samples 
(like AgI and olivine) where the low thermal conductivity allows the sample in the center of the chamber 
to be robustly heated by the IR laser without draining its temperature through the diamond heat sinks. 
In essence, the sample layer in contact with the diamonds acts as the insulation layer for the bulk 
sample, and the sample itself therefore serves as its own thermal insulation layer. As shown by Manga 



and Jeanloz [1996], the axial temperature gradients expected in a dielectric material have a negligible 
effect on the temperature deduced from the observed thermal radiation spectrum. Furthermore, the 
lack of any observable peak broadening or splitting within the hot powder diffraction patterns indicates 
that the axial thermal gradients are very steep, and therefore the cold insulation layer is too thin to 
affect the diffraction patterns and thus bias the deduced thermal pressures. 

 

1.2 Synchrotron X-ray diffraction 
Angle-dispersive in situ X-ray powder diffraction patterns at high pressure and high temperature 

were collected at beamline 12.2.2 at the Advanced Light Source at the Lawrence Berkeley National -
Laboratory using an X-ray wavelength of  𝜆𝜆 = 0.5166Å (24 keV) and 𝜆𝜆 = 0.4969Å (25 keV) for the silver 
iodide and San Carlos olivine experiments, respectively. The X-ray energy for the AgI was lowered to 24 
keV to be at a safe distance from the Ag-K-α-absorption edge. At each spatial position, X-ray diffraction 
patterns were taken both before and during the IR laser heating to yield ambient and heated diffraction 
patterns. The X-ray beam size was 10 µm. Patterns were collected with exposure times of 30 sec on a 
MAR3450 image plate. The detector distance and orientation were calibrated using a CeO2 standard at 
the sample position.  

1.3 Laser heating and temperature measurement 
Laser heating of the LHDAC was conducted using a 1090 nm IR fiber laser system [Kunz et al., 2018], with 
a beam size of 30μm FWHM in diameter. The silver iodide sample was heated with 0.9− 1.0W in both 
the upstream and downstream directions. The San Carlos olivine sample was heated with powers of 
2.5 − 3.2W upstream and 4.5− 5.7W downstream. To probe the sample across the hot spot, the 
sample had to be moved relative to the stationary X-ray beam, and with it, the laser hot spot which in 
turn was kept centered on the gasket hole (see  S.I. Figure 1). 



 

S.I. Figure 1: x-y cross section of the LHDAC as seen along the X-ray path. (A) X-ray beam positions (blue) across the diameter 
of the sample chamber. Note that the laser beam (red) is constantly centered at the origin of the sample space. (B) 
powdered sample 

The center of the gasket hole served as the reference for positioning the laser hot spot. As a result, this 
procedure created an individual hot spot for every diffraction measurement. The laser heating set-up on 
beamline 12.2.2 [Kunz et al., 2018] allows for quasi real-time temperature mapping of the sample 
chamber during a heating event. Temperatures were measured using the double sided 
spectroradiometric pyrometry set up on beamline 12.2.2, which employs a modified peak scaling 
approach [Rainey and Kavner, 2014]. This approach avoids the notorious chromatic aberration artifacts 
and also produces full absolute temperature maps in real time, thus enabling the spatial mapping of the 
thermal pressure effects presented here.  

The pyrometry setup produces upstream and downstream 74µm x 74µm square temperature 
maps centered at the peak of the laser hotspot. As a result, radial temperature readings from the center 
of the sample exist from 0 to 37µm for the full azimuthal range, but disregarding radial completeness, 
temperature data exist from 0 to 52.3µm from the center. We plotted the upstream and downstream 
temperatures against radial distance by averaging the temperatures of pixels with the same Euclidian 
distance (within floating point error) from the center of the 74µm x 74µm temperature maps. The 
upstream and downstream graphs were averaged to produce an average temperature vs. radial distance 
plot.  

Due to the large thermal conductivity of the diamond anvils, it has been shown that at the 
diamond/sample interface, the sample has a temperature close to room temperature [Kiefer and Duffy, 
2005]. To construct the temperatures between 52.3µm and 80µm (the sample edge), we use a simple 
linear decrease between the points at (44.5um, avg([𝑇𝑇37𝑢𝑢𝑢𝑢,𝑇𝑇52.3𝑢𝑢𝑢𝑢])) and (80um, 298𝐾𝐾). To 
construct the first point of the linear decrease, we considered the temperature points between 37µm 
and 52.3µm because 360-degree azimuthal averaging is only possible between 0 and 37µm. The average 



distance and temperature of the points between 37µm and 52.3µm gives us the starting point for the 
linear decrease.  

 The average beam temperatures of sections centered between 0 and 47.3µm (52.3µm – 5µm) 
was obtained by averaging the corresponding 10µm section (our beam size) of the average temperature 
vs. radial distance graphs. Average beam temperatures of sections centered between 52.3µm and 80µm 
were obtained by taking the average temperature-value of the linear decrease over the corresponding 
10µm radial section. The thus obtained experimental temperature spots were then fit with a Gaussian 
function (S.I. Table 1).  

 

S.I. Table 1: Constants derived from a fit of a Gaussian function ( T(r)=y_0+(A/(w√(π/2)))exp(-2((x-x_c)/w)^2 )) to the 
temperature data. 

 AgI San Carlos Olivine 

y0 341( 39) 356(37) 

xc 1.84 ± 1.42 -0.11± 0.84 

w 50.3 ± 3.7 54.7 ± 2.7 

A 642377 ± 60777 818137 ± 57077 

 

1.4 Pressure Determination 
For computational simplicity, we combine the Murnaghan Equation [Murnaghan, 1951] with the first 
order equation of thermal expansion through EosFit7 GUI [Angel et al., 2014] for the PVT EOS (Equation 
1). 
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Within the pressure range and volumetric strains that we probe, the Murnaghan equation is 
expected to provide a representation of the pressure-volume behavior of these materials that is 
comparable in accuracy to other, harder to invert finite strain equations of state. The expanded 
Murnaghan equation (Equation 1) requires observable input values for the initial (V0, before heating) 
and final (VP, during heating) sample unit cell volumes, and the temperature (∆T) experienced by the 
probed sample volume, together with the physical constants K0, K’, α, and the Anderson-Grüneisen 
parameter δ [Angel et al., 2014; Helffrich and Connolly, 2009]. Note that in this formulation we account 
for the temperature dependence of the bulk modulus through the Anderson-Grüneisen parameter δ, 
whereas no pressure or temperature dependence of the thermal expansivity α is included. This simple 



formulation of α reflects that the relative roles of pressure and temperature on this parameter are of 
opposite sign, and the effect of modest variations in thermal expansion on volume are dwarfed by the 
pressure effects observed. With V0 and VP determined using the unit cell parameters from before and 
during the laser-heating, and ∆T determined from the temperature map produced by the pyrometry set 
up on beamline 12.2.2, Equation 1 yields the total pressure at every position of the X-ray/sample 
transect (S.I. Figure 1). To obtain the thermal pressure component Pth, we subtract the pressure 
obtained through Equation 1 at the corresponding position prior to the heating from that calculated at 
high temperatures (i.e. we subtract the pressure applied by the diamonds at ambient temperature).  

Scattering intensity versus 2θ plots were obtained by azimuthal integration of the 2-dimensional 
powder diffraction patterns using DIOPTAS [Prescher and Prakapenka, 2015]. From the intensity versus 
2θ plots for the silver iodide sample, lattice spacings with Miller indices (200), (220), (311), (222), (400), 
(420), and (422) were used to refine the unit-cell parameters of silver iodide’s cubic crystal structure. 
From the intensity versus 2θ plots for the San Carlos olivine, lattice spacings with Miller indices (020), 
(021), (101), (002), (130), (131), (112), and (211) were analyzed using Celref 3 [Laugier and Bochu, 2002] 
to yield orthorhombic unit-cell parameters. 

2 Model Construction 

We limit our examination to the thermal pressure arising due to restrictions on the total 
volume. The construction of our model is as follows: 

We reduce the sample chamber to a circular geometry, which we can then partition with the 
shell differential element. Consider the thermal pressure that arises at the differential element r (i.e. the 
region in the radial interval [𝑟𝑟 − 𝑑𝑑𝑑𝑑, 𝑟𝑟 + 𝑑𝑑𝑑𝑑]). Considering this element consequently divides the entire 
sample into two regions: the interior – the region within the radial interval [0, 𝑟𝑟 − 𝑑𝑑𝑑𝑑], and the exterior 
– the region within the radial interval [𝑟𝑟 + 𝑑𝑑𝑑𝑑, 𝑏𝑏] (where b is the radius of the entire sample).  

Predicated by Heinz [1990], we estimate the temperature distribution with a Gaussian curve. As 
such, when we move farther away from the center of the sample, the temperature decreases. Thus, the 
thermal expansion of the interior region [0, 𝑟𝑟 − 𝑑𝑑𝑑𝑑] occurs at a greater magnitude than that of the 
exterior region [𝑟𝑟 + 𝑑𝑑𝑑𝑑, 𝑏𝑏]. If we hold the volume of the interior region constant, thermal pressure arises 
to counteract this thermal expansion according to the restriction. Similarly, holding the volume of the 
exterior region constant results in a smaller thermal pressure than that of the interior. Doing so lets us 
think of the r-shell as being incompressible – which translates to an infinite shear strength analogy. With 
this construction, the r-shell experiences a greater thermal pressure from the thermal expansion of the 
interior volume (which points radially outwards at the boundary 𝑟𝑟 − 𝑑𝑑𝑑𝑑) than the thermal pressure it 
experiences from the exterior (which points radially inwards at the boundary 𝑟𝑟 + 𝑑𝑑𝑑𝑑). Of course, in 
reality as 𝑑𝑑𝑑𝑑 → 0, the greater interior thermal pressure would cause the interior volume to expand and 
thus equilibrate with the outer volume. However, modeling thermal pressure by isochorically restricting 
the interior volume represents a good upper bound. 

 With this framework in mind, we can derive a mathematical model. As mentioned above, we 
use a Gaussian curve to model the temperature distribution of the heated sample (Equation 2).  



Equation 2 
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Note that Equation 2 is the area version of the Gaussian Equation. Most are familiar with the expression 
of the Gaussian as a function of the standard deviation (𝜎𝜎) and mean (𝜇𝜇), i.e.  

Equation 3 
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In Equation 2, 𝑥𝑥𝑐𝑐 denotes the center of the curve (i.e. at 𝑥𝑥𝑐𝑐, 𝑇𝑇(𝑥𝑥𝑐𝑐) has its maximum), A denotes the area 
under the curve on the interval [𝑥𝑥𝑐𝑐 − 𝜎𝜎, 𝑥𝑥𝑐𝑐 + 𝜎𝜎], and w denotes the width of the curve on the interval 
[𝑥𝑥𝑐𝑐 − 𝜎𝜎, 𝑥𝑥𝑐𝑐 + 𝜎𝜎] which is 2𝜎𝜎. For conversions between w and common Gaussian parameters, see S.I. 
Table 2. 

S.I. Table 2: Conversion matrix between different forms of Gaussian functions 

𝜎𝜎,𝑤𝑤  𝜎𝜎 = 𝑤𝑤/2 

FWHM,𝑤𝑤 FWHM = 𝑤𝑤�2 ∙ ln(2) 

Height of the curve (𝑦𝑦𝑐𝑐 − 𝑦𝑦0) Height =
𝐴𝐴

𝑤𝑤 ∙ �𝜋𝜋/2
 

 

Using the area version of the Gaussian function lets us fit our temperature data with the Levenberg-
Marquardt iteration algorithm. With Temperature expressed as a function of radius, we can express the 
thermal expansion coefficient and the bulk modulus as functions of temperature. For the thermal 
expansion coefficient, we use Equation 4.  

Equation 4 

𝛼𝛼(𝑟𝑟) = 𝛼𝛼0 + 𝛼𝛼1𝑇𝑇(𝑟𝑟) 

For the bulk modulus, we introduce the Anderson-Grüneisen parameter to link compressibility with 
thermal expansion (Equation 5).  

Equation 5 

𝐾𝐾(𝑟𝑟) = 𝐾𝐾0�1 + 𝛼𝛼(𝑟𝑟)Δ𝑇𝑇(𝑟𝑟)�−𝛿𝛿 

 



In the following derivation of the bulk modulus as a function of radius, 𝑑𝑑𝑉𝑉0 represents the volume of the 
unheated shell (i.e. the radial interval [𝑟𝑟 − 𝑑𝑑𝑑𝑑, 𝑟𝑟 + 𝑑𝑑𝑑𝑑]) and 𝑑𝑑𝑉𝑉𝑇𝑇 represents the thermal expansion of 
𝑑𝑑𝑉𝑉0 under unconstrained conditions  

𝐾𝐾(𝑑𝑑𝑑𝑑𝑇𝑇) = 𝐾𝐾0 �
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Per the temperature curve, at a given r-shell, the interior region expands to some heated volume, and 
the sum of the thermal expansion of the heated interior shells (i.e. ∫ 𝑑𝑑𝑉𝑉𝑇𝑇

𝑟𝑟
0 ) is pressurized to match the 

isochoric assumption of the interior volume (i.e. ∫ 𝑑𝑑𝑉𝑉𝑃𝑃
𝑟𝑟
0 = 𝜋𝜋𝑟𝑟2) (Equation 6 & Equation 7). We employ 

the thermal expansion equation to represent the volumetric expansion of each interior shell (i.e. 𝑑𝑑𝑉𝑉𝑇𝑇 =
𝑑𝑑𝑉𝑉0�1 + 𝛼𝛼(𝑟𝑟)Δ𝑇𝑇(𝑟𝑟)�), and we use the Murnaghan equation (Equation 1) to model the pressure needed 
to compress the sum of the heated volumes to adhere to the isochoric restriction (Equation 8).  

Equation 6 
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Equation 7 
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Equation 8 
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Thus, Equation 8 presents an upper bound for the thermal pressure that arises at a radial distance r. 
Note that due to the steepness of the Gaussian temperature curve in our experiments, the thermal 
pressure of the interior region dominates the thermal pressure contribution at a given radius, so taking 
our upper bound results in a good estimate for real thermal pressure.  

 

3 Thermal pressure in isochorically heated volume is equal to αKdT: 

 



Thermal pressure in a fully constrained volume heated to temperature T is by definition given as 
Equation 9.  

Equation 9 
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This can be rewritten using the chain rule as Equation 10.  

Equation 10 
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Since by definition �𝜕𝜕𝜕𝜕
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= 𝛼𝛼𝑃𝑃, it follows that in the thermodynamic limit thermal 

pressure.  
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